TSTP Solution File: LCL650+1.001 by Zenon---0.7.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Zenon---0.7.1
% Problem  : LCL650+1.001 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_zenon %s %d

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 16:23:08 EDT 2022

% Result   : Theorem 0.43s 0.63s
% Output   : Proof 0.43s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.12  % Problem  : LCL650+1.001 : TPTP v8.1.0. Released v4.0.0.
% 0.12/0.13  % Command  : run_zenon %s %d
% 0.13/0.33  % Computer : n020.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 600
% 0.13/0.33  % DateTime : Sun Jul  3 10:34:45 EDT 2022
% 0.19/0.34  % CPUTime  : 
% 0.43/0.63  (* PROOF-FOUND *)
% 0.43/0.63  % SZS status Theorem
% 0.43/0.63  (* BEGIN-PROOF *)
% 0.43/0.63  % SZS output start Proof
% 0.43/0.63  Theorem main : (~(exists X : zenon_U, (~((forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/((~(p8 X))/\((~(p6 X))/\((~(p4 X))/\(~(p2 X)))))))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p5 Y)))\/((~(forall Y : zenon_U, ((~(r1 X Y))\/(~((~(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))))))\/((forall X : zenon_U, ((~(r1 Y X))\/(p4 X)))\/(~(forall X : zenon_U, ((~(r1 Y X))\/(~((~(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 X Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))))))))))))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/((p4 X)/\((p3 X)/\((p2 X)/\(p1 X)))))))))))))))))).
% 0.43/0.63  Proof.
% 0.43/0.63  assert (zenon_L1_ : forall (zenon_TX_e : zenon_U), (~(~(p3 zenon_TX_e))) -> (p2 zenon_TX_e) -> (~((p3 zenon_TX_e)/\(p2 zenon_TX_e))) -> False).
% 0.43/0.63  do 1 intro. intros zenon_H1 zenon_H2 zenon_H3.
% 0.43/0.63  apply zenon_H1. zenon_intro zenon_H5.
% 0.43/0.63  apply (zenon_notand_s _ _ zenon_H3); [ zenon_intro zenon_H7 | zenon_intro zenon_H6 ].
% 0.43/0.63  exact (zenon_H7 zenon_H5).
% 0.43/0.63  exact (zenon_H6 zenon_H2).
% 0.43/0.63  (* end of lemma zenon_L1_ *)
% 0.43/0.63  assert (zenon_L2_ : forall (zenon_TX_e : zenon_U), (~(~(p1 zenon_TX_e))) -> (~(p1 zenon_TX_e)) -> False).
% 0.43/0.63  do 1 intro. intros zenon_H8 zenon_H9.
% 0.43/0.63  exact (zenon_H8 zenon_H9).
% 0.43/0.63  (* end of lemma zenon_L2_ *)
% 0.43/0.63  assert (zenon_L3_ : forall (zenon_TX_e : zenon_U), (~(((~(p3 zenon_TX_e))/\(~(p1 zenon_TX_e)))\/((p1 zenon_TX_e)/\(p3 zenon_TX_e)))) -> (p2 zenon_TX_e) -> (~((p3 zenon_TX_e)/\(p2 zenon_TX_e))) -> (~(p1 zenon_TX_e)) -> False).
% 0.43/0.63  do 1 intro. intros zenon_Ha zenon_H2 zenon_H3 zenon_H9.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_Ha). zenon_intro zenon_Hc. zenon_intro zenon_Hb.
% 0.43/0.63  apply (zenon_notand_s _ _ zenon_Hc); [ zenon_intro zenon_H1 | zenon_intro zenon_H8 ].
% 0.43/0.63  apply (zenon_L1_ zenon_TX_e); trivial.
% 0.43/0.63  exact (zenon_H8 zenon_H9).
% 0.43/0.63  (* end of lemma zenon_L3_ *)
% 0.43/0.63  assert (zenon_L4_ : forall (zenon_TX_e : zenon_U) (zenon_TY_p : zenon_U), (forall X : zenon_U, ((~(r1 zenon_TY_p X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))) -> (r1 zenon_TY_p zenon_TX_e) -> (p2 zenon_TX_e) -> (~((p3 zenon_TX_e)/\(p2 zenon_TX_e))) -> (~(p1 zenon_TX_e)) -> False).
% 0.43/0.63  do 2 intro. intros zenon_Hd zenon_He zenon_H2 zenon_H3 zenon_H9.
% 0.43/0.63  generalize (zenon_Hd zenon_TX_e). zenon_intro zenon_H10.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H10); [ zenon_intro zenon_H11 | zenon_intro zenon_Ha ].
% 0.43/0.63  exact (zenon_H11 zenon_He).
% 0.43/0.63  apply (zenon_L3_ zenon_TX_e); trivial.
% 0.43/0.63  (* end of lemma zenon_L4_ *)
% 0.43/0.63  assert (zenon_L5_ : forall (zenon_TX_e : zenon_U) (zenon_TY_p : zenon_U) (zenon_TX_u : zenon_U), (forall Y : zenon_U, ((~(r1 zenon_TX_u Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))) -> (r1 zenon_TX_u zenon_TY_p) -> (r1 zenon_TY_p zenon_TX_e) -> (p2 zenon_TX_e) -> (~((p3 zenon_TX_e)/\(p2 zenon_TX_e))) -> (~(p1 zenon_TX_e)) -> False).
% 0.43/0.63  do 3 intro. intros zenon_H12 zenon_H13 zenon_He zenon_H2 zenon_H3 zenon_H9.
% 0.43/0.63  generalize (zenon_H12 zenon_TY_p). zenon_intro zenon_H15.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H15); [ zenon_intro zenon_H16 | zenon_intro zenon_Hd ].
% 0.43/0.63  exact (zenon_H16 zenon_H13).
% 0.43/0.63  apply (zenon_L4_ zenon_TX_e zenon_TY_p); trivial.
% 0.43/0.63  (* end of lemma zenon_L5_ *)
% 0.43/0.63  assert (zenon_L6_ : forall (zenon_TX_u : zenon_U) (zenon_TY_p : zenon_U) (zenon_TY_bb : zenon_U) (zenon_TX_bc : zenon_U) (zenon_TX_e : zenon_U), (~(((~(p1 zenon_TX_e))/\(~(p2 zenon_TX_e)))\/((p2 zenon_TX_e)/\(p1 zenon_TX_e)))) -> (p2 zenon_TX_e) -> (forall Y : zenon_U, ((~(r1 zenon_TX_bc Y))\/(~((~(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))))))\/((forall X : zenon_U, ((~(r1 Y X))\/(p4 X)))\/(~(forall X : zenon_U, ((~(r1 Y X))\/(~((~(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 X Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))))))))))) -> (r1 zenon_TX_bc zenon_TY_bb) -> (~((p3 zenon_TX_e)/\(p2 zenon_TX_e))) -> (r1 zenon_TY_p zenon_TX_e) -> (r1 zenon_TX_u zenon_TY_p) -> (r1 zenon_TY_bb zenon_TX_u) -> False).
% 0.43/0.63  do 5 intro. intros zenon_H17 zenon_H2 zenon_H18 zenon_H19 zenon_H3 zenon_He zenon_H13 zenon_H1a.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H17). zenon_intro zenon_H1e. zenon_intro zenon_H1d.
% 0.43/0.63  apply (zenon_notand_s _ _ zenon_H1d); [ zenon_intro zenon_H6 | zenon_intro zenon_H9 ].
% 0.43/0.63  exact (zenon_H6 zenon_H2).
% 0.43/0.63  generalize (zenon_H18 zenon_TY_bb). zenon_intro zenon_H1f.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H1f); [ zenon_intro zenon_H21 | zenon_intro zenon_H20 ].
% 0.43/0.63  exact (zenon_H21 zenon_H19).
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H20). zenon_intro zenon_H23. zenon_intro zenon_H22.
% 0.43/0.63  apply zenon_H23. zenon_intro zenon_H24.
% 0.43/0.63  generalize (zenon_H24 zenon_TX_u). zenon_intro zenon_H25.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H25); [ zenon_intro zenon_H26 | zenon_intro zenon_H12 ].
% 0.43/0.63  exact (zenon_H26 zenon_H1a).
% 0.43/0.63  apply (zenon_L5_ zenon_TX_e zenon_TY_p zenon_TX_u); trivial.
% 0.43/0.63  (* end of lemma zenon_L6_ *)
% 0.43/0.63  assert (zenon_L7_ : forall (zenon_TX_bc : zenon_U) (zenon_TX_e : zenon_U) (zenon_TX_u : zenon_U) (zenon_TY_bb : zenon_U) (zenon_TY_p : zenon_U), (~(~(forall X : zenon_U, ((~(r1 zenon_TY_p X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))) -> (r1 zenon_TY_bb zenon_TX_u) -> (r1 zenon_TX_u zenon_TY_p) -> (~((p3 zenon_TX_e)/\(p2 zenon_TX_e))) -> (r1 zenon_TX_bc zenon_TY_bb) -> (forall Y : zenon_U, ((~(r1 zenon_TX_bc Y))\/(~((~(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))))))\/((forall X : zenon_U, ((~(r1 Y X))\/(p4 X)))\/(~(forall X : zenon_U, ((~(r1 Y X))\/(~((~(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 X Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))))))))))) -> (p2 zenon_TX_e) -> (r1 zenon_TY_p zenon_TX_e) -> False).
% 0.43/0.63  do 5 intro. intros zenon_H27 zenon_H1a zenon_H13 zenon_H3 zenon_H19 zenon_H18 zenon_H2 zenon_He.
% 0.43/0.63  apply zenon_H27. zenon_intro zenon_H28.
% 0.43/0.63  generalize (zenon_H28 zenon_TX_e). zenon_intro zenon_H29.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H29); [ zenon_intro zenon_H11 | zenon_intro zenon_H17 ].
% 0.43/0.63  exact (zenon_H11 zenon_He).
% 0.43/0.63  apply (zenon_L6_ zenon_TX_u zenon_TY_p zenon_TY_bb zenon_TX_bc zenon_TX_e); trivial.
% 0.43/0.63  (* end of lemma zenon_L7_ *)
% 0.43/0.63  assert (zenon_L8_ : forall (zenon_TX_bc : zenon_U) (zenon_TX_e : zenon_U) (zenon_TY_bb : zenon_U) (zenon_TY_p : zenon_U) (zenon_TX_u : zenon_U), (~((~(forall Y : zenon_U, ((~(r1 zenon_TX_u Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 zenon_TX_u Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 zenon_TX_u Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))) -> (r1 zenon_TX_u zenon_TY_p) -> (r1 zenon_TY_bb zenon_TX_u) -> (~((p3 zenon_TX_e)/\(p2 zenon_TX_e))) -> (r1 zenon_TX_bc zenon_TY_bb) -> (forall Y : zenon_U, ((~(r1 zenon_TX_bc Y))\/(~((~(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))))))\/((forall X : zenon_U, ((~(r1 Y X))\/(p4 X)))\/(~(forall X : zenon_U, ((~(r1 Y X))\/(~((~(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 X Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))))))))))) -> (p2 zenon_TX_e) -> (r1 zenon_TY_p zenon_TX_e) -> False).
% 0.43/0.63  do 5 intro. intros zenon_H2a zenon_H13 zenon_H1a zenon_H3 zenon_H19 zenon_H18 zenon_H2 zenon_He.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H2a). zenon_intro zenon_H2c. zenon_intro zenon_H2b.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H2b). zenon_intro zenon_H2e. zenon_intro zenon_H2d.
% 0.43/0.63  apply zenon_H2d. zenon_intro zenon_H2f.
% 0.43/0.63  generalize (zenon_H2f zenon_TY_p). zenon_intro zenon_H30.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H30); [ zenon_intro zenon_H16 | zenon_intro zenon_H27 ].
% 0.43/0.63  exact (zenon_H16 zenon_H13).
% 0.43/0.63  apply (zenon_L7_ zenon_TX_bc zenon_TX_e zenon_TX_u zenon_TY_bb zenon_TY_p); trivial.
% 0.43/0.63  (* end of lemma zenon_L8_ *)
% 0.43/0.63  assert (zenon_L9_ : forall (zenon_TX_e : zenon_U) (zenon_TY_p : zenon_U) (zenon_TX_u : zenon_U) (zenon_TY_bb : zenon_U) (zenon_TX_bc : zenon_U), (r1 zenon_TX_bc zenon_TY_bb) -> (r1 zenon_TX_u zenon_TY_p) -> (~((p3 zenon_TX_e)/\(p2 zenon_TX_e))) -> (forall Y : zenon_U, ((~(r1 zenon_TX_bc Y))\/(~((~(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))))))\/((forall X : zenon_U, ((~(r1 Y X))\/(p4 X)))\/(~(forall X : zenon_U, ((~(r1 Y X))\/(~((~(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 X Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))))))))))) -> (p2 zenon_TX_e) -> (r1 zenon_TY_p zenon_TX_e) -> (r1 zenon_TY_bb zenon_TX_u) -> False).
% 0.43/0.63  do 5 intro. intros zenon_H19 zenon_H13 zenon_H3 zenon_H18 zenon_H2 zenon_He zenon_H1a.
% 0.43/0.63  generalize (zenon_H18 zenon_TY_bb). zenon_intro zenon_H1f.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H1f); [ zenon_intro zenon_H21 | zenon_intro zenon_H20 ].
% 0.43/0.63  exact (zenon_H21 zenon_H19).
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H20). zenon_intro zenon_H23. zenon_intro zenon_H22.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H22). zenon_intro zenon_H32. zenon_intro zenon_H31.
% 0.43/0.63  apply zenon_H31. zenon_intro zenon_H33.
% 0.43/0.63  generalize (zenon_H33 zenon_TX_u). zenon_intro zenon_H34.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H34); [ zenon_intro zenon_H26 | zenon_intro zenon_H2a ].
% 0.43/0.63  exact (zenon_H26 zenon_H1a).
% 0.43/0.63  apply (zenon_L8_ zenon_TX_bc zenon_TX_e zenon_TY_bb zenon_TY_p zenon_TX_u); trivial.
% 0.43/0.63  (* end of lemma zenon_L9_ *)
% 0.43/0.63  assert (zenon_L10_ : forall (zenon_TX_e : zenon_U), (~(~(p2 zenon_TX_e))) -> (~(p2 zenon_TX_e)) -> False).
% 0.43/0.63  do 1 intro. intros zenon_H35 zenon_H6.
% 0.43/0.63  exact (zenon_H35 zenon_H6).
% 0.43/0.63  (* end of lemma zenon_L10_ *)
% 0.43/0.63  assert (zenon_L11_ : forall (zenon_TX_e : zenon_U), (~(((~(p1 zenon_TX_e))/\(~(p2 zenon_TX_e)))\/((p2 zenon_TX_e)/\(p1 zenon_TX_e)))) -> (~(p1 zenon_TX_e)) -> (~(p2 zenon_TX_e)) -> False).
% 0.43/0.63  do 1 intro. intros zenon_H17 zenon_H9 zenon_H6.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H17). zenon_intro zenon_H1e. zenon_intro zenon_H1d.
% 0.43/0.63  apply (zenon_notand_s _ _ zenon_H1e); [ zenon_intro zenon_H8 | zenon_intro zenon_H35 ].
% 0.43/0.63  exact (zenon_H8 zenon_H9).
% 0.43/0.63  exact (zenon_H35 zenon_H6).
% 0.43/0.63  (* end of lemma zenon_L11_ *)
% 0.43/0.63  assert (zenon_L12_ : forall (zenon_TX_e : zenon_U) (zenon_TY_p : zenon_U), (~(~(forall X : zenon_U, ((~(r1 zenon_TY_p X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))) -> (~(p2 zenon_TX_e)) -> (~(p1 zenon_TX_e)) -> (r1 zenon_TY_p zenon_TX_e) -> False).
% 0.43/0.63  do 2 intro. intros zenon_H27 zenon_H6 zenon_H9 zenon_He.
% 0.43/0.63  apply zenon_H27. zenon_intro zenon_H28.
% 0.43/0.63  generalize (zenon_H28 zenon_TX_e). zenon_intro zenon_H29.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H29); [ zenon_intro zenon_H11 | zenon_intro zenon_H17 ].
% 0.43/0.63  exact (zenon_H11 zenon_He).
% 0.43/0.63  apply (zenon_L11_ zenon_TX_e); trivial.
% 0.43/0.63  (* end of lemma zenon_L12_ *)
% 0.43/0.63  assert (zenon_L13_ : forall (zenon_TX_e : zenon_U) (zenon_TY_p : zenon_U) (zenon_TX_u : zenon_U), (~((~(forall Y : zenon_U, ((~(r1 zenon_TX_u Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 zenon_TX_u Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 zenon_TX_u Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))) -> (r1 zenon_TX_u zenon_TY_p) -> (~(p2 zenon_TX_e)) -> (~(p1 zenon_TX_e)) -> (r1 zenon_TY_p zenon_TX_e) -> False).
% 0.43/0.63  do 3 intro. intros zenon_H2a zenon_H13 zenon_H6 zenon_H9 zenon_He.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H2a). zenon_intro zenon_H2c. zenon_intro zenon_H2b.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H2b). zenon_intro zenon_H2e. zenon_intro zenon_H2d.
% 0.43/0.63  apply zenon_H2d. zenon_intro zenon_H2f.
% 0.43/0.63  generalize (zenon_H2f zenon_TY_p). zenon_intro zenon_H30.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H30); [ zenon_intro zenon_H16 | zenon_intro zenon_H27 ].
% 0.43/0.63  exact (zenon_H16 zenon_H13).
% 0.43/0.63  apply (zenon_L12_ zenon_TX_e zenon_TY_p); trivial.
% 0.43/0.63  (* end of lemma zenon_L13_ *)
% 0.43/0.63  assert (zenon_L14_ : forall (zenon_TY_p : zenon_U) (zenon_TX_u : zenon_U) (zenon_TY_bb : zenon_U) (zenon_TX_bc : zenon_U) (zenon_TX_e : zenon_U), (~(((~(p3 zenon_TX_e))/\(~(p1 zenon_TX_e)))\/((p1 zenon_TX_e)/\(p3 zenon_TX_e)))) -> (forall Y : zenon_U, ((~(r1 zenon_TX_bc Y))\/(~((~(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))))))\/((forall X : zenon_U, ((~(r1 Y X))\/(p4 X)))\/(~(forall X : zenon_U, ((~(r1 Y X))\/(~((~(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 X Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))))))))))) -> (r1 zenon_TX_bc zenon_TY_bb) -> (r1 zenon_TX_u zenon_TY_p) -> (~(p2 zenon_TX_e)) -> (r1 zenon_TY_p zenon_TX_e) -> (r1 zenon_TY_bb zenon_TX_u) -> (p3 zenon_TX_e) -> False).
% 0.43/0.63  do 5 intro. intros zenon_Ha zenon_H18 zenon_H19 zenon_H13 zenon_H6 zenon_He zenon_H1a zenon_H5.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_Ha). zenon_intro zenon_Hc. zenon_intro zenon_Hb.
% 0.43/0.63  apply (zenon_notand_s _ _ zenon_Hb); [ zenon_intro zenon_H9 | zenon_intro zenon_H7 ].
% 0.43/0.63  generalize (zenon_H18 zenon_TY_bb). zenon_intro zenon_H1f.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H1f); [ zenon_intro zenon_H21 | zenon_intro zenon_H20 ].
% 0.43/0.63  exact (zenon_H21 zenon_H19).
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H20). zenon_intro zenon_H23. zenon_intro zenon_H22.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H22). zenon_intro zenon_H32. zenon_intro zenon_H31.
% 0.43/0.63  apply zenon_H31. zenon_intro zenon_H33.
% 0.43/0.63  generalize (zenon_H33 zenon_TX_u). zenon_intro zenon_H34.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H34); [ zenon_intro zenon_H26 | zenon_intro zenon_H2a ].
% 0.43/0.63  exact (zenon_H26 zenon_H1a).
% 0.43/0.63  apply (zenon_L13_ zenon_TX_e zenon_TY_p zenon_TX_u); trivial.
% 0.43/0.63  exact (zenon_H7 zenon_H5).
% 0.43/0.63  (* end of lemma zenon_L14_ *)
% 0.43/0.63  assert (zenon_L15_ : forall (zenon_TX_u : zenon_U) (zenon_TY_bb : zenon_U) (zenon_TX_bc : zenon_U) (zenon_TX_e : zenon_U) (zenon_TY_p : zenon_U), (forall X : zenon_U, ((~(r1 zenon_TY_p X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))) -> (r1 zenon_TY_p zenon_TX_e) -> (forall Y : zenon_U, ((~(r1 zenon_TX_bc Y))\/(~((~(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))))))\/((forall X : zenon_U, ((~(r1 Y X))\/(p4 X)))\/(~(forall X : zenon_U, ((~(r1 Y X))\/(~((~(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 X Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))))))))))) -> (r1 zenon_TX_bc zenon_TY_bb) -> (r1 zenon_TX_u zenon_TY_p) -> (~(p2 zenon_TX_e)) -> (r1 zenon_TY_bb zenon_TX_u) -> (p3 zenon_TX_e) -> False).
% 0.43/0.63  do 5 intro. intros zenon_Hd zenon_He zenon_H18 zenon_H19 zenon_H13 zenon_H6 zenon_H1a zenon_H5.
% 0.43/0.63  generalize (zenon_Hd zenon_TX_e). zenon_intro zenon_H10.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H10); [ zenon_intro zenon_H11 | zenon_intro zenon_Ha ].
% 0.43/0.63  exact (zenon_H11 zenon_He).
% 0.43/0.63  apply (zenon_L14_ zenon_TY_p zenon_TX_u zenon_TY_bb zenon_TX_bc zenon_TX_e); trivial.
% 0.43/0.63  (* end of lemma zenon_L15_ *)
% 0.43/0.63  assert (zenon_L16_ : forall (zenon_TY_bb : zenon_U) (zenon_TX_bc : zenon_U) (zenon_TX_e : zenon_U) (zenon_TY_p : zenon_U) (zenon_TX_u : zenon_U), (forall Y : zenon_U, ((~(r1 zenon_TX_u Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))) -> (r1 zenon_TX_u zenon_TY_p) -> (r1 zenon_TY_p zenon_TX_e) -> (forall Y : zenon_U, ((~(r1 zenon_TX_bc Y))\/(~((~(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))))))\/((forall X : zenon_U, ((~(r1 Y X))\/(p4 X)))\/(~(forall X : zenon_U, ((~(r1 Y X))\/(~((~(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 X Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))))))))))) -> (r1 zenon_TX_bc zenon_TY_bb) -> (~(p2 zenon_TX_e)) -> (r1 zenon_TY_bb zenon_TX_u) -> (p3 zenon_TX_e) -> False).
% 0.43/0.63  do 5 intro. intros zenon_H12 zenon_H13 zenon_He zenon_H18 zenon_H19 zenon_H6 zenon_H1a zenon_H5.
% 0.43/0.63  generalize (zenon_H12 zenon_TY_p). zenon_intro zenon_H15.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H15); [ zenon_intro zenon_H16 | zenon_intro zenon_Hd ].
% 0.43/0.63  exact (zenon_H16 zenon_H13).
% 0.43/0.63  apply (zenon_L15_ zenon_TX_u zenon_TY_bb zenon_TX_bc zenon_TX_e zenon_TY_p); trivial.
% 0.43/0.63  (* end of lemma zenon_L16_ *)
% 0.43/0.63  assert (zenon_L17_ : forall (zenon_TX_bc : zenon_U) (zenon_TY_p : zenon_U) (zenon_TX_u : zenon_U) (zenon_TY_bb : zenon_U) (zenon_TX_e : zenon_U), (~(((~(p2 zenon_TX_e))/\(~(p3 zenon_TX_e)))\/((p3 zenon_TX_e)/\(p2 zenon_TX_e)))) -> (r1 zenon_TY_bb zenon_TX_u) -> (r1 zenon_TY_p zenon_TX_e) -> (forall Y : zenon_U, ((~(r1 zenon_TX_bc Y))\/(~((~(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))))))\/((forall X : zenon_U, ((~(r1 Y X))\/(p4 X)))\/(~(forall X : zenon_U, ((~(r1 Y X))\/(~((~(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 X Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))))))))))) -> (r1 zenon_TX_u zenon_TY_p) -> (r1 zenon_TX_bc zenon_TY_bb) -> False).
% 0.43/0.63  do 5 intro. intros zenon_H36 zenon_H1a zenon_He zenon_H18 zenon_H13 zenon_H19.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H36). zenon_intro zenon_H37. zenon_intro zenon_H3.
% 0.43/0.63  apply (zenon_notand_s _ _ zenon_H37); [ zenon_intro zenon_H35 | zenon_intro zenon_H1 ].
% 0.43/0.63  apply zenon_H35. zenon_intro zenon_H2.
% 0.43/0.63  apply (zenon_L9_ zenon_TX_e zenon_TY_p zenon_TX_u zenon_TY_bb zenon_TX_bc); trivial.
% 0.43/0.63  apply zenon_H1. zenon_intro zenon_H5.
% 0.43/0.63  apply (zenon_notand_s _ _ zenon_H3); [ zenon_intro zenon_H7 | zenon_intro zenon_H6 ].
% 0.43/0.63  exact (zenon_H7 zenon_H5).
% 0.43/0.63  generalize (zenon_H18 zenon_TY_bb). zenon_intro zenon_H1f.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H1f); [ zenon_intro zenon_H21 | zenon_intro zenon_H20 ].
% 0.43/0.63  exact (zenon_H21 zenon_H19).
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H20). zenon_intro zenon_H23. zenon_intro zenon_H22.
% 0.43/0.63  apply zenon_H23. zenon_intro zenon_H24.
% 0.43/0.63  generalize (zenon_H24 zenon_TX_u). zenon_intro zenon_H25.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H25); [ zenon_intro zenon_H26 | zenon_intro zenon_H12 ].
% 0.43/0.63  exact (zenon_H26 zenon_H1a).
% 0.43/0.63  apply (zenon_L16_ zenon_TY_bb zenon_TX_bc zenon_TX_e zenon_TY_p zenon_TX_u); trivial.
% 0.43/0.63  (* end of lemma zenon_L17_ *)
% 0.43/0.63  assert (zenon_L18_ : forall (zenon_TX_bc : zenon_U) (zenon_TX_u : zenon_U) (zenon_TY_bb : zenon_U) (zenon_TX_e : zenon_U) (zenon_TY_p : zenon_U), (forall X : zenon_U, ((~(r1 zenon_TY_p X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))) -> (r1 zenon_TY_p zenon_TX_e) -> (r1 zenon_TY_bb zenon_TX_u) -> (forall Y : zenon_U, ((~(r1 zenon_TX_bc Y))\/(~((~(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))))))\/((forall X : zenon_U, ((~(r1 Y X))\/(p4 X)))\/(~(forall X : zenon_U, ((~(r1 Y X))\/(~((~(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 X Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))))))))))) -> (r1 zenon_TX_u zenon_TY_p) -> (r1 zenon_TX_bc zenon_TY_bb) -> False).
% 0.43/0.63  do 5 intro. intros zenon_H38 zenon_He zenon_H1a zenon_H18 zenon_H13 zenon_H19.
% 0.43/0.63  generalize (zenon_H38 zenon_TX_e). zenon_intro zenon_H39.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H39); [ zenon_intro zenon_H11 | zenon_intro zenon_H36 ].
% 0.43/0.63  exact (zenon_H11 zenon_He).
% 0.43/0.63  apply (zenon_L17_ zenon_TX_bc zenon_TY_p zenon_TX_u zenon_TY_bb zenon_TX_e); trivial.
% 0.43/0.63  (* end of lemma zenon_L18_ *)
% 0.43/0.63  assert (zenon_L19_ : forall (zenon_TX_bc : zenon_U) (zenon_TY_bb : zenon_U) (zenon_TX_e : zenon_U) (zenon_TY_p : zenon_U) (zenon_TX_u : zenon_U), (~((~(forall Y : zenon_U, ((~(r1 zenon_TX_u Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 zenon_TX_u Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 zenon_TX_u Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))) -> (r1 zenon_TX_u zenon_TY_p) -> (r1 zenon_TY_p zenon_TX_e) -> (r1 zenon_TY_bb zenon_TX_u) -> (forall Y : zenon_U, ((~(r1 zenon_TX_bc Y))\/(~((~(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p3 X))/\(~(p1 X)))\/((p1 X)/\(p3 X)))))))))))\/((forall X : zenon_U, ((~(r1 Y X))\/(p4 X)))\/(~(forall X : zenon_U, ((~(r1 Y X))\/(~((~(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p2 X))/\(~(p3 X)))\/((p3 X)/\(p2 X)))))))))\/((forall Y : zenon_U, ((~(r1 X Y))\/(p3 Y)))\/(~(forall Y : zenon_U, ((~(r1 X Y))\/(~(~(forall X : zenon_U, ((~(r1 Y X))\/(~(((~(p1 X))/\(~(p2 X)))\/((p2 X)/\(p1 X)))))))))))))))))))))) -> (r1 zenon_TX_bc zenon_TY_bb) -> False).
% 0.43/0.63  do 5 intro. intros zenon_H2a zenon_H13 zenon_He zenon_H1a zenon_H18 zenon_H19.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H2a). zenon_intro zenon_H2c. zenon_intro zenon_H2b.
% 0.43/0.63  apply zenon_H2c. zenon_intro zenon_H3a.
% 0.43/0.63  generalize (zenon_H3a zenon_TY_p). zenon_intro zenon_H3b.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H3b); [ zenon_intro zenon_H16 | zenon_intro zenon_H38 ].
% 0.43/0.63  exact (zenon_H16 zenon_H13).
% 0.43/0.63  apply (zenon_L18_ zenon_TX_bc zenon_TX_u zenon_TY_bb zenon_TX_e zenon_TY_p); trivial.
% 0.43/0.63  (* end of lemma zenon_L19_ *)
% 0.43/0.63  apply NNPP. intro zenon_G.
% 0.43/0.63  apply zenon_G. zenon_intro zenon_H3c.
% 0.43/0.63  elim zenon_H3c. zenon_intro zenon_TX_bc. zenon_intro zenon_H3d.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H3d). zenon_intro zenon_H3f. zenon_intro zenon_H3e.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H3e). zenon_intro zenon_H41. zenon_intro zenon_H40.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H40). zenon_intro zenon_H43. zenon_intro zenon_H42.
% 0.43/0.63  apply zenon_H43. zenon_intro zenon_H18.
% 0.43/0.63  apply (zenon_notallex_s (fun Y : zenon_U => ((~(r1 zenon_TX_bc Y))\/(forall X : zenon_U, ((~(r1 Y X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/((~(p8 X))/\((~(p6 X))/\((~(p4 X))/\(~(p2 X))))))))))))) zenon_H3f); [ zenon_intro zenon_H44; idtac ].
% 0.43/0.63  elim zenon_H44. zenon_intro zenon_TY_bb. zenon_intro zenon_H45.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H45). zenon_intro zenon_H47. zenon_intro zenon_H46.
% 0.43/0.63  apply zenon_H47. zenon_intro zenon_H19.
% 0.43/0.63  apply (zenon_notallex_s (fun X : zenon_U => ((~(r1 zenon_TY_bb X))\/(forall Y : zenon_U, ((~(r1 X Y))\/(forall X : zenon_U, ((~(r1 Y X))\/((~(p8 X))/\((~(p6 X))/\((~(p4 X))/\(~(p2 X))))))))))) zenon_H46); [ zenon_intro zenon_H48; idtac ].
% 0.43/0.63  elim zenon_H48. zenon_intro zenon_TX_u. zenon_intro zenon_H49.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H49). zenon_intro zenon_H4b. zenon_intro zenon_H4a.
% 0.43/0.63  apply zenon_H4b. zenon_intro zenon_H1a.
% 0.43/0.63  apply (zenon_notallex_s (fun Y : zenon_U => ((~(r1 zenon_TX_u Y))\/(forall X : zenon_U, ((~(r1 Y X))\/((~(p8 X))/\((~(p6 X))/\((~(p4 X))/\(~(p2 X))))))))) zenon_H4a); [ zenon_intro zenon_H4c; idtac ].
% 0.43/0.63  elim zenon_H4c. zenon_intro zenon_TY_p. zenon_intro zenon_H4d.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H4d). zenon_intro zenon_H4f. zenon_intro zenon_H4e.
% 0.43/0.63  apply zenon_H4f. zenon_intro zenon_H13.
% 0.43/0.63  apply (zenon_notallex_s (fun X : zenon_U => ((~(r1 zenon_TY_p X))\/((~(p8 X))/\((~(p6 X))/\((~(p4 X))/\(~(p2 X))))))) zenon_H4e); [ zenon_intro zenon_H50; idtac ].
% 0.43/0.63  elim zenon_H50. zenon_intro zenon_TX_e. zenon_intro zenon_H51.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H51). zenon_intro zenon_H53. zenon_intro zenon_H52.
% 0.43/0.63  apply zenon_H53. zenon_intro zenon_He.
% 0.43/0.63  generalize (zenon_H18 zenon_TY_bb). zenon_intro zenon_H1f.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H1f); [ zenon_intro zenon_H21 | zenon_intro zenon_H20 ].
% 0.43/0.63  exact (zenon_H21 zenon_H19).
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H20). zenon_intro zenon_H23. zenon_intro zenon_H22.
% 0.43/0.63  apply (zenon_notor_s _ _ zenon_H22). zenon_intro zenon_H32. zenon_intro zenon_H31.
% 0.43/0.63  apply zenon_H31. zenon_intro zenon_H33.
% 0.43/0.63  generalize (zenon_H33 zenon_TX_u). zenon_intro zenon_H34.
% 0.43/0.63  apply (zenon_or_s _ _ zenon_H34); [ zenon_intro zenon_H26 | zenon_intro zenon_H2a ].
% 0.43/0.63  exact (zenon_H26 zenon_H1a).
% 0.43/0.63  apply (zenon_L19_ zenon_TX_bc zenon_TY_bb zenon_TX_e zenon_TY_p zenon_TX_u); trivial.
% 0.43/0.63  Qed.
% 0.43/0.63  % SZS output end Proof
% 0.43/0.63  (* END-PROOF *)
% 0.43/0.63  nodes searched: 8005
% 0.43/0.63  max branch formulas: 760
% 0.43/0.63  proof nodes created: 769
% 0.43/0.63  formulas created: 19590
% 0.43/0.63  
%------------------------------------------------------------------------------