TSTP Solution File: LCL614^1 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : LCL614^1 : TPTP v6.1.0. Released v3.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n099.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:25:50 EDT 2014

% Result   : Theorem 1.28s
% Output   : Proof 1.28s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : LCL614^1 : TPTP v6.1.0. Released v3.6.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n099.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:02:31 CDT 2014
% % CPUTime  : 1.28 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL008^0.ax, trying next directory
% FOF formula (<kernel.Constant object at 0x25ec908>, <kernel.Constant object at 0x251c488>) of role type named current_world
% Using role type
% Declaring current_world:fofType
% FOF formula (<kernel.Constant object at 0x251c170>, <kernel.DependentProduct object at 0x251c248>) of role type named prop_a
% Using role type
% Declaring prop_a:(fofType->Prop)
% FOF formula (<kernel.Constant object at 0x251c290>, <kernel.DependentProduct object at 0x251c908>) of role type named prop_b
% Using role type
% Declaring prop_b:(fofType->Prop)
% FOF formula (<kernel.Constant object at 0x251c560>, <kernel.DependentProduct object at 0x251c3b0>) of role type named prop_c
% Using role type
% Declaring prop_c:(fofType->Prop)
% FOF formula (<kernel.Constant object at 0x251c290>, <kernel.DependentProduct object at 0x251c440>) of role type named mfalse_decl
% Using role type
% Declaring mfalse:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) mfalse) (fun (X:fofType)=> False)) of role definition named mfalse
% A new definition: (((eq (fofType->Prop)) mfalse) (fun (X:fofType)=> False))
% Defined: mfalse:=(fun (X:fofType)=> False)
% FOF formula (<kernel.Constant object at 0x251c518>, <kernel.DependentProduct object at 0x251c0e0>) of role type named mtrue_decl
% Using role type
% Declaring mtrue:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) mtrue) (fun (X:fofType)=> True)) of role definition named mtrue
% A new definition: (((eq (fofType->Prop)) mtrue) (fun (X:fofType)=> True))
% Defined: mtrue:=(fun (X:fofType)=> True)
% FOF formula (<kernel.Constant object at 0x251c248>, <kernel.DependentProduct object at 0x253ba70>) of role type named mnot_decl
% Using role type
% Declaring mnot:((fofType->Prop)->(fofType->Prop))
% FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (X:(fofType->Prop)) (U:fofType)=> ((X U)->False))) of role definition named mnot
% A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (X:(fofType->Prop)) (U:fofType)=> ((X U)->False)))
% Defined: mnot:=(fun (X:(fofType->Prop)) (U:fofType)=> ((X U)->False))
% FOF formula (<kernel.Constant object at 0x251c518>, <kernel.DependentProduct object at 0x253b1b8>) of role type named mor_decl
% Using role type
% Declaring mor:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U)))) of role definition named mor
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U))))
% Defined: mor:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U)))
% FOF formula (<kernel.Constant object at 0x251c440>, <kernel.DependentProduct object at 0x253b7e8>) of role type named mand_decl
% Using role type
% Declaring mand:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((and (X U)) (Y U)))) of role definition named mand
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((and (X U)) (Y U))))
% Defined: mand:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((and (X U)) (Y U)))
% FOF formula (<kernel.Constant object at 0x253ba28>, <kernel.DependentProduct object at 0x253b440>) of role type named mimpl_decl
% Using role type
% Declaring mimpl:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimpl) (fun (U:(fofType->Prop)) (V:(fofType->Prop))=> ((mor (mnot U)) V))) of role definition named mimpl
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimpl) (fun (U:(fofType->Prop)) (V:(fofType->Prop))=> ((mor (mnot U)) V)))
% Defined: mimpl:=(fun (U:(fofType->Prop)) (V:(fofType->Prop))=> ((mor (mnot U)) V))
% FOF formula (<kernel.Constant object at 0x253b7e8>, <kernel.DependentProduct object at 0x253bb48>) of role type named miff_decl
% Using role type
% Declaring miff:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) miff) (fun (U:(fofType->Prop)) (V:(fofType->Prop))=> ((mand ((mimpl U) V)) ((mimpl V) U)))) of role definition named miff
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) miff) (fun (U:(fofType->Prop)) (V:(fofType->Prop))=> ((mand ((mimpl U) V)) ((mimpl V) U))))
% Defined: miff:=(fun (U:(fofType->Prop)) (V:(fofType->Prop))=> ((mand ((mimpl U) V)) ((mimpl V) U)))
% FOF formula (<kernel.Constant object at 0x253ba28>, <kernel.DependentProduct object at 0x253b1b8>) of role type named mbox_decl
% Using role type
% Declaring mbox:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (P:(fofType->Prop)) (X:fofType)=> (forall (Y:fofType), (((R X) Y)->(P Y))))) of role definition named mbox
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (P:(fofType->Prop)) (X:fofType)=> (forall (Y:fofType), (((R X) Y)->(P Y)))))
% Defined: mbox:=(fun (R:(fofType->(fofType->Prop))) (P:(fofType->Prop)) (X:fofType)=> (forall (Y:fofType), (((R X) Y)->(P Y))))
% FOF formula (<kernel.Constant object at 0x253b7e8>, <kernel.DependentProduct object at 0x253ba70>) of role type named mdia_decl
% Using role type
% Declaring mdia:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (P:(fofType->Prop)) (X:fofType)=> ((ex fofType) (fun (Y:fofType)=> ((and ((R X) Y)) (P Y)))))) of role definition named mdia
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (P:(fofType->Prop)) (X:fofType)=> ((ex fofType) (fun (Y:fofType)=> ((and ((R X) Y)) (P Y))))))
% Defined: mdia:=(fun (R:(fofType->(fofType->Prop))) (P:(fofType->Prop)) (X:fofType)=> ((ex fofType) (fun (Y:fofType)=> ((and ((R X) Y)) (P Y)))))
% FOF formula (<kernel.Constant object at 0x27917e8>, <kernel.Type object at 0x253bcf8>) of role type named individuals_decl
% Using role type
% Declaring individuals:Type
% FOF formula (<kernel.Constant object at 0x27917e8>, <kernel.DependentProduct object at 0x253b998>) of role type named mall_decl
% Using role type
% Declaring mall:((individuals->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq ((individuals->(fofType->Prop))->(fofType->Prop))) mall) (fun (P:(individuals->(fofType->Prop))) (W:fofType)=> (forall (X:individuals), ((P X) W)))) of role definition named mall
% A new definition: (((eq ((individuals->(fofType->Prop))->(fofType->Prop))) mall) (fun (P:(individuals->(fofType->Prop))) (W:fofType)=> (forall (X:individuals), ((P X) W))))
% Defined: mall:=(fun (P:(individuals->(fofType->Prop))) (W:fofType)=> (forall (X:individuals), ((P X) W)))
% FOF formula (<kernel.Constant object at 0x253b098>, <kernel.DependentProduct object at 0x253b518>) of role type named mexists_decl
% Using role type
% Declaring mexists:((individuals->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq ((individuals->(fofType->Prop))->(fofType->Prop))) mexists) (fun (P:(individuals->(fofType->Prop))) (W:fofType)=> ((ex individuals) (fun (X:individuals)=> ((P X) W))))) of role definition named mexists
% A new definition: (((eq ((individuals->(fofType->Prop))->(fofType->Prop))) mexists) (fun (P:(individuals->(fofType->Prop))) (W:fofType)=> ((ex individuals) (fun (X:individuals)=> ((P X) W)))))
% Defined: mexists:=(fun (P:(individuals->(fofType->Prop))) (W:fofType)=> ((ex individuals) (fun (X:individuals)=> ((P X) W))))
% FOF formula (<kernel.Constant object at 0x253bfc8>, <kernel.DependentProduct object at 0x233e7a0>) of role type named mvalid_decl
% Using role type
% Declaring mvalid:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) mvalid) (fun (P:(fofType->Prop))=> (forall (W:fofType), (P W)))) of role definition named mvalid
% A new definition: (((eq ((fofType->Prop)->Prop)) mvalid) (fun (P:(fofType->Prop))=> (forall (W:fofType), (P W))))
% Defined: mvalid:=(fun (P:(fofType->Prop))=> (forall (W:fofType), (P W)))
% FOF formula (<kernel.Constant object at 0x253b098>, <kernel.DependentProduct object at 0x233e7a0>) of role type named msatisfiable_decl
% Using role type
% Declaring msatisfiable:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (P:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (P W))))) of role definition named msatisfiable
% A new definition: (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (P:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (P W)))))
% Defined: msatisfiable:=(fun (P:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (P W))))
% FOF formula (<kernel.Constant object at 0x233e7e8>, <kernel.DependentProduct object at 0x233e5a8>) of role type named mcountersatisfiable_decl
% Using role type
% Declaring mcountersatisfiable:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (P:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((P W)->False))))) of role definition named mcountersatisfiable
% A new definition: (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (P:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((P W)->False)))))
% Defined: mcountersatisfiable:=(fun (P:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((P W)->False))))
% FOF formula (<kernel.Constant object at 0x233e7a0>, <kernel.DependentProduct object at 0x233ea70>) of role type named minvalid_decl
% Using role type
% Declaring minvalid:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) minvalid) (fun (P:(fofType->Prop))=> (forall (W:fofType), ((P W)->False)))) of role definition named minvalid
% A new definition: (((eq ((fofType->Prop)->Prop)) minvalid) (fun (P:(fofType->Prop))=> (forall (W:fofType), ((P W)->False))))
% Defined: minvalid:=(fun (P:(fofType->Prop))=> (forall (W:fofType), ((P W)->False)))
% FOF formula (forall (R:(fofType->(fofType->Prop))) (X:(fofType->Prop)) (Y:(fofType->Prop)), ((mvalid ((mimpl X) Y))->(mvalid ((mimpl ((mbox R) X)) ((mbox R) X))))) of role conjecture named regularity
% Conjecture to prove = (forall (R:(fofType->(fofType->Prop))) (X:(fofType->Prop)) (Y:(fofType->Prop)), ((mvalid ((mimpl X) Y))->(mvalid ((mimpl ((mbox R) X)) ((mbox R) X))))):Prop
% Parameter individuals_DUMMY:individuals.
% We need to prove ['(forall (R:(fofType->(fofType->Prop))) (X:(fofType->Prop)) (Y:(fofType->Prop)), ((mvalid ((mimpl X) Y))->(mvalid ((mimpl ((mbox R) X)) ((mbox R) X)))))']
% Parameter fofType:Type.
% Parameter current_world:fofType.
% Parameter prop_a:(fofType->Prop).
% Parameter prop_b:(fofType->Prop).
% Parameter prop_c:(fofType->Prop).
% Definition mfalse:=(fun (X:fofType)=> False):(fofType->Prop).
% Definition mtrue:=(fun (X:fofType)=> True):(fofType->Prop).
% Definition mnot:=(fun (X:(fofType->Prop)) (U:fofType)=> ((X U)->False)):((fofType->Prop)->(fofType->Prop)).
% Definition mor:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mand:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((and (X U)) (Y U))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mimpl:=(fun (U:(fofType->Prop)) (V:(fofType->Prop))=> ((mor (mnot U)) V)):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition miff:=(fun (U:(fofType->Prop)) (V:(fofType->Prop))=> ((mand ((mimpl U) V)) ((mimpl V) U))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mbox:=(fun (R:(fofType->(fofType->Prop))) (P:(fofType->Prop)) (X:fofType)=> (forall (Y:fofType), (((R X) Y)->(P Y)))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% Definition mdia:=(fun (R:(fofType->(fofType->Prop))) (P:(fofType->Prop)) (X:fofType)=> ((ex fofType) (fun (Y:fofType)=> ((and ((R X) Y)) (P Y))))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% Parameter individuals:Type.
% Definition mall:=(fun (P:(individuals->(fofType->Prop))) (W:fofType)=> (forall (X:individuals), ((P X) W))):((individuals->(fofType->Prop))->(fofType->Prop)).
% Definition mexists:=(fun (P:(individuals->(fofType->Prop))) (W:fofType)=> ((ex individuals) (fun (X:individuals)=> ((P X) W)))):((individuals->(fofType->Prop))->(fofType->Prop)).
% Definition mvalid:=(fun (P:(fofType->Prop))=> (forall (W:fofType), (P W))):((fofType->Prop)->Prop).
% Definition msatisfiable:=(fun (P:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (P W)))):((fofType->Prop)->Prop).
% Definition mcountersatisfiable:=(fun (P:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((P W)->False)))):((fofType->Prop)->Prop).
% Definition minvalid:=(fun (P:(fofType->Prop))=> (forall (W:fofType), ((P W)->False))):((fofType->Prop)->Prop).
% Trying to prove (forall (R:(fofType->(fofType->Prop))) (X:(fofType->Prop)) (Y:(fofType->Prop)), ((mvalid ((mimpl X) Y))->(mvalid ((mimpl ((mbox R) X)) ((mbox R) X)))))
% Found classic0:=(classic (((mbox R) X) W)):((or (((mbox R) X) W)) (not (((mbox R) X) W)))
% Found (classic (((mbox R) X) W)) as proof of ((or (((mbox R) X) W)) ((mnot ((mbox R) X)) W))
% Found (classic (((mbox R) X) W)) as proof of ((or (((mbox R) X) W)) ((mnot ((mbox R) X)) W))
% Found (or_comm_i00 (classic (((mbox R) X) W))) as proof of ((or ((mnot ((mbox R) X)) W)) (((mbox R) X) W))
% Found ((or_comm_i0 ((mnot ((mbox R) X)) W)) (classic (((mbox R) X) W))) as proof of ((or ((mnot ((mbox R) X)) W)) (((mbox R) X) W))
% Found (((or_comm_i (((mbox R) X) W)) ((mnot ((mbox R) X)) W)) (classic (((mbox R) X) W))) as proof of ((or ((mnot ((mbox R) X)) W)) (((mbox R) X) W))
% Found (((or_comm_i (((mbox R) X) W)) ((mnot ((mbox R) X)) W)) (classic (((mbox R) X) W))) as proof of ((or ((mnot ((mbox R) X)) W)) (((mbox R) X) W))
% Found (fun (W:fofType)=> (((or_comm_i (((mbox R) X) W)) ((mnot ((mbox R) X)) W)) (classic (((mbox R) X) W)))) as proof of (((mimpl ((mbox R) X)) ((mbox R) X)) W)
% Found (fun (x:(mvalid ((mimpl X) Y))) (W:fofType)=> (((or_comm_i (((mbox R) X) W)) ((mnot ((mbox R) X)) W)) (classic (((mbox R) X) W)))) as proof of (mvalid ((mimpl ((mbox R) X)) ((mbox R) X)))
% Found (fun (Y:(fofType->Prop)) (x:(mvalid ((mimpl X) Y))) (W:fofType)=> (((or_comm_i (((mbox R) X) W)) ((mnot ((mbox R) X)) W)) (classic (((mbox R) X) W)))) as proof of ((mvalid ((mimpl X) Y))->(mvalid ((mimpl ((mbox R) X)) ((mbox R) X))))
% Found (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (x:(mvalid ((mimpl X) Y))) (W:fofType)=> (((or_comm_i (((mbox R) X) W)) ((mnot ((mbox R) X)) W)) (classic (((mbox R) X) W)))) as proof of (forall (Y:(fofType->Prop)), ((mvalid ((mimpl X) Y))->(mvalid ((mimpl ((mbox R) X)) ((mbox R) X)))))
% Found (fun (R:(fofType->(fofType->Prop))) (X:(fofType->Prop)) (Y:(fofType->Prop)) (x:(mvalid ((mimpl X) Y))) (W:fofType)=> (((or_comm_i (((mbox R) X) W)) ((mnot ((mbox R) X)) W)) (classic (((mbox R) X) W)))) as proof of (forall (X:(fofType->Prop)) (Y:(fofType->Prop)), ((mvalid ((mimpl X) Y))->(mvalid ((mimpl ((mbox R) X)) ((mbox R) X)))))
% Found (fun (R:(fofType->(fofType->Prop))) (X:(fofType->Prop)) (Y:(fofType->Prop)) (x:(mvalid ((mimpl X) Y))) (W:fofType)=> (((or_comm_i (((mbox R) X) W)) ((mnot ((mbox R) X)) W)) (classic (((mbox R) X) W)))) as proof of (forall (R:(fofType->(fofType->Prop))) (X:(fofType->Prop)) (Y:(fofType->Prop)), ((mvalid ((mimpl X) Y))->(mvalid ((mimpl ((mbox R) X)) ((mbox R) X)))))
% Got proof (fun (R:(fofType->(fofType->Prop))) (X:(fofType->Prop)) (Y:(fofType->Prop)) (x:(mvalid ((mimpl X) Y))) (W:fofType)=> (((or_comm_i (((mbox R) X) W)) ((mnot ((mbox R) X)) W)) (classic (((mbox R) X) W))))
% Time elapsed = 0.928928s
% node=136 cost=1110.000000 depth=11
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (R:(fofType->(fofType->Prop))) (X:(fofType->Prop)) (Y:(fofType->Prop)) (x:(mvalid ((mimpl X) Y))) (W:fofType)=> (((or_comm_i (((mbox R) X) W)) ((mnot ((mbox R) X)) W)) (classic (((mbox R) X) W))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------