TSTP Solution File: LCL573+1 by E---3.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E---3.1
% Problem  : LCL573+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 2400s
% WCLimit  : 300s
% DateTime : Tue Oct 10 18:13:09 EDT 2023

% Result   : Theorem 1.21s 0.63s
% Output   : CNFRefutation 1.21s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   32
%            Number of leaves      :   30
% Syntax   : Number of formulae    :  153 (  82 unt;   0 def)
%            Number of atoms       :  281 (  57 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  219 (  91   ~;  93   |;  17   &)
%                                         (  10 <=>;   8  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   2 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :   18 (  16 usr;  16 prp; 0-2 aty)
%            Number of functors    :   27 (  27 usr;  19 con; 0-2 aty)
%            Number of variables   :  230 (  19 sgn;  56   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(adjunction,axiom,
    ( adjunction
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(X2) )
       => is_a_theorem(and(X1,X2)) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',adjunction) ).

fof(op_strict_equiv,axiom,
    ( op_strict_equiv
   => ! [X1,X2] : strict_equiv(X1,X2) = and(strict_implies(X1,X2),strict_implies(X2,X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',op_strict_equiv) ).

fof(substitution_strict_equiv,axiom,
    ( substitution_strict_equiv
  <=> ! [X1,X2] :
        ( is_a_theorem(strict_equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',substitution_strict_equiv) ).

fof(s1_0_adjunction,axiom,
    adjunction,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_adjunction) ).

fof(s1_0_op_strict_equiv,axiom,
    op_strict_equiv,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_op_strict_equiv) ).

fof(s1_0_substitution_strict_equiv,axiom,
    substitution_strict_equiv,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_substitution_strict_equiv) ).

fof(axiom_m1,axiom,
    ( axiom_m1
  <=> ! [X1,X2] : is_a_theorem(strict_implies(and(X1,X2),and(X2,X1))) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',axiom_m1) ).

fof(modus_ponens_strict_implies,axiom,
    ( modus_ponens_strict_implies
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(strict_implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',modus_ponens_strict_implies) ).

fof(axiom_m5,axiom,
    ( axiom_m5
  <=> ! [X1,X2,X3] : is_a_theorem(strict_implies(and(strict_implies(X1,X2),strict_implies(X2,X3)),strict_implies(X1,X3))) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',axiom_m5) ).

fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',op_implies_and) ).

fof(s1_0_axiom_m1,axiom,
    axiom_m1,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_axiom_m1) ).

fof(s1_0_modus_ponens_strict_implies,axiom,
    modus_ponens_strict_implies,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_modus_ponens_strict_implies) ).

fof(s1_0_axiom_m5,axiom,
    axiom_m5,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_axiom_m5) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X1,X2] : strict_implies(X1,X2) = necessarily(implies(X1,X2)) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',op_strict_implies) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',op_or) ).

fof(hilbert_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',hilbert_op_implies_and) ).

fof(axiom_m2,axiom,
    ( axiom_m2
  <=> ! [X1,X2] : is_a_theorem(strict_implies(and(X1,X2),X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',axiom_m2) ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_op_strict_implies) ).

fof(s1_0_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_op_or) ).

fof(s1_0_axiom_m2,axiom,
    axiom_m2,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_axiom_m2) ).

fof(axiom_m4,axiom,
    ( axiom_m4
  <=> ! [X1] : is_a_theorem(strict_implies(X1,and(X1,X1))) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',axiom_m4) ).

fof(s1_0_axiom_m4,axiom,
    axiom_m4,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_axiom_m4) ).

fof(axiom_m3,axiom,
    ( axiom_m3
  <=> ! [X1,X2,X3] : is_a_theorem(strict_implies(and(and(X1,X2),X3),and(X1,and(X2,X3)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',axiom_m3) ).

fof(s1_0_axiom_m3,axiom,
    axiom_m3,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_axiom_m3) ).

fof(op_possibly,axiom,
    ( op_possibly
   => ! [X1] : possibly(X1) = not(necessarily(not(X1))) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',op_possibly) ).

fof(s1_0_op_possibly,axiom,
    op_possibly,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_op_possibly) ).

fof(axiom_m10,axiom,
    ( axiom_m10
  <=> ! [X1] : is_a_theorem(strict_implies(possibly(X1),necessarily(possibly(X1)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',axiom_m10) ).

fof(s1_0_m10_axiom_m10,axiom,
    axiom_m10,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',s1_0_m10_axiom_m10) ).

fof(axiom_5,axiom,
    ( axiom_5
  <=> ! [X1] : is_a_theorem(implies(possibly(X1),necessarily(possibly(X1)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',axiom_5) ).

fof(km5_axiom_5,conjecture,
    axiom_5,
    file('/export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p',km5_axiom_5) ).

fof(c_0_30,plain,
    ! [X22,X23] :
      ( ( ~ adjunction
        | ~ is_a_theorem(X22)
        | ~ is_a_theorem(X23)
        | is_a_theorem(and(X22,X23)) )
      & ( is_a_theorem(esk4_0)
        | adjunction )
      & ( is_a_theorem(esk5_0)
        | adjunction )
      & ( ~ is_a_theorem(and(esk4_0,esk5_0))
        | adjunction ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[adjunction])])])])]) ).

fof(c_0_31,plain,
    ! [X98,X99] :
      ( ~ op_strict_equiv
      | strict_equiv(X98,X99) = and(strict_implies(X98,X99),strict_implies(X99,X98)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_equiv])])]) ).

fof(c_0_32,plain,
    ! [X26,X27] :
      ( ( ~ substitution_strict_equiv
        | ~ is_a_theorem(strict_equiv(X26,X27))
        | X26 = X27 )
      & ( is_a_theorem(strict_equiv(esk6_0,esk7_0))
        | substitution_strict_equiv )
      & ( esk6_0 != esk7_0
        | substitution_strict_equiv ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_strict_equiv])])])])]) ).

cnf(c_0_33,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ adjunction
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

cnf(c_0_34,plain,
    adjunction,
    inference(split_conjunct,[status(thm)],[s1_0_adjunction]) ).

cnf(c_0_35,plain,
    ( strict_equiv(X1,X2) = and(strict_implies(X1,X2),strict_implies(X2,X1))
    | ~ op_strict_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_36,plain,
    op_strict_equiv,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_equiv]) ).

cnf(c_0_37,plain,
    ( X1 = X2
    | ~ substitution_strict_equiv
    | ~ is_a_theorem(strict_equiv(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_32]) ).

cnf(c_0_38,plain,
    substitution_strict_equiv,
    inference(split_conjunct,[status(thm)],[s1_0_substitution_strict_equiv]) ).

cnf(c_0_39,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_33,c_0_34])]) ).

cnf(c_0_40,plain,
    and(strict_implies(X1,X2),strict_implies(X2,X1)) = strict_equiv(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_35,c_0_36])]) ).

fof(c_0_41,plain,
    ! [X58,X59] :
      ( ( ~ axiom_m1
        | is_a_theorem(strict_implies(and(X58,X59),and(X59,X58))) )
      & ( ~ is_a_theorem(strict_implies(and(esk22_0,esk23_0),and(esk23_0,esk22_0)))
        | axiom_m1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m1])])])]) ).

fof(c_0_42,plain,
    ! [X18,X19] :
      ( ( ~ modus_ponens_strict_implies
        | ~ is_a_theorem(X18)
        | ~ is_a_theorem(strict_implies(X18,X19))
        | is_a_theorem(X19) )
      & ( is_a_theorem(esk2_0)
        | modus_ponens_strict_implies )
      & ( is_a_theorem(strict_implies(esk2_0,esk3_0))
        | modus_ponens_strict_implies )
      & ( ~ is_a_theorem(esk3_0)
        | modus_ponens_strict_implies ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens_strict_implies])])])])]) ).

fof(c_0_43,plain,
    ! [X74,X75,X76] :
      ( ( ~ axiom_m5
        | is_a_theorem(strict_implies(and(strict_implies(X74,X75),strict_implies(X75,X76)),strict_implies(X74,X76))) )
      & ( ~ is_a_theorem(strict_implies(and(strict_implies(esk30_0,esk31_0),strict_implies(esk31_0,esk32_0)),strict_implies(esk30_0,esk32_0)))
        | axiom_m5 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m5])])])]) ).

fof(c_0_44,plain,
    ! [X10,X11] :
      ( ~ op_implies_and
      | implies(X10,X11) = not(and(X10,not(X11))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])]) ).

cnf(c_0_45,plain,
    ( X1 = X2
    | ~ is_a_theorem(strict_equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_37,c_0_38])]) ).

cnf(c_0_46,plain,
    ( is_a_theorem(strict_equiv(X1,X2))
    | ~ is_a_theorem(strict_implies(X2,X1))
    | ~ is_a_theorem(strict_implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_39,c_0_40]) ).

cnf(c_0_47,plain,
    ( is_a_theorem(strict_implies(and(X1,X2),and(X2,X1)))
    | ~ axiom_m1 ),
    inference(split_conjunct,[status(thm)],[c_0_41]) ).

cnf(c_0_48,plain,
    axiom_m1,
    inference(split_conjunct,[status(thm)],[s1_0_axiom_m1]) ).

cnf(c_0_49,plain,
    ( is_a_theorem(X2)
    | ~ modus_ponens_strict_implies
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(strict_implies(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

cnf(c_0_50,plain,
    modus_ponens_strict_implies,
    inference(split_conjunct,[status(thm)],[s1_0_modus_ponens_strict_implies]) ).

cnf(c_0_51,plain,
    ( is_a_theorem(strict_implies(and(strict_implies(X1,X2),strict_implies(X2,X3)),strict_implies(X1,X3)))
    | ~ axiom_m5 ),
    inference(split_conjunct,[status(thm)],[c_0_43]) ).

cnf(c_0_52,plain,
    axiom_m5,
    inference(split_conjunct,[status(thm)],[s1_0_axiom_m5]) ).

fof(c_0_53,plain,
    ! [X96,X97] :
      ( ~ op_strict_implies
      | strict_implies(X96,X97) = necessarily(implies(X96,X97)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_implies])])]) ).

fof(c_0_54,plain,
    ! [X6,X7] :
      ( ~ op_or
      | or(X6,X7) = not(and(not(X6),not(X7))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])]) ).

cnf(c_0_55,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_44]) ).

cnf(c_0_56,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[hilbert_op_implies_and]) ).

cnf(c_0_57,plain,
    ( X1 = X2
    | ~ is_a_theorem(strict_implies(X2,X1))
    | ~ is_a_theorem(strict_implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_45,c_0_46]) ).

cnf(c_0_58,plain,
    is_a_theorem(strict_implies(and(X1,X2),and(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_47,c_0_48])]) ).

cnf(c_0_59,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(strict_implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_49,c_0_50])]) ).

cnf(c_0_60,plain,
    is_a_theorem(strict_implies(and(strict_implies(X1,X2),strict_implies(X2,X3)),strict_implies(X1,X3))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_51,c_0_52])]) ).

fof(c_0_61,plain,
    ! [X62,X63] :
      ( ( ~ axiom_m2
        | is_a_theorem(strict_implies(and(X62,X63),X62)) )
      & ( ~ is_a_theorem(strict_implies(and(esk24_0,esk25_0),esk24_0))
        | axiom_m2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m2])])])]) ).

cnf(c_0_62,plain,
    ( strict_implies(X1,X2) = necessarily(implies(X1,X2))
    | ~ op_strict_implies ),
    inference(split_conjunct,[status(thm)],[c_0_53]) ).

cnf(c_0_63,plain,
    op_strict_implies,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_implies]) ).

cnf(c_0_64,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

cnf(c_0_65,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_55,c_0_56])]) ).

cnf(c_0_66,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[s1_0_op_or]) ).

cnf(c_0_67,plain,
    and(X1,X2) = and(X2,X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57,c_0_58]),c_0_58])]) ).

cnf(c_0_68,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(and(strict_implies(X1,X3),strict_implies(X3,X2))) ),
    inference(spm,[status(thm)],[c_0_59,c_0_60]) ).

cnf(c_0_69,plain,
    ( is_a_theorem(strict_implies(and(X1,X2),X1))
    | ~ axiom_m2 ),
    inference(split_conjunct,[status(thm)],[c_0_61]) ).

cnf(c_0_70,plain,
    axiom_m2,
    inference(split_conjunct,[status(thm)],[s1_0_axiom_m2]) ).

cnf(c_0_71,plain,
    necessarily(implies(X1,X2)) = strict_implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_62,c_0_63])]) ).

cnf(c_0_72,plain,
    implies(not(X1),X2) = or(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_64,c_0_65]),c_0_66])]) ).

cnf(c_0_73,plain,
    not(and(not(X1),X2)) = implies(X2,X1),
    inference(spm,[status(thm)],[c_0_65,c_0_67]) ).

fof(c_0_74,plain,
    ! [X72] :
      ( ( ~ axiom_m4
        | is_a_theorem(strict_implies(X72,and(X72,X72))) )
      & ( ~ is_a_theorem(strict_implies(esk29_0,and(esk29_0,esk29_0)))
        | axiom_m4 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m4])])])]) ).

cnf(c_0_75,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(strict_implies(X3,X2))
    | ~ is_a_theorem(strict_implies(X1,X3)) ),
    inference(spm,[status(thm)],[c_0_68,c_0_39]) ).

cnf(c_0_76,plain,
    is_a_theorem(strict_implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_69,c_0_70])]) ).

cnf(c_0_77,plain,
    necessarily(or(X1,X2)) = strict_implies(not(X1),X2),
    inference(spm,[status(thm)],[c_0_71,c_0_72]) ).

cnf(c_0_78,plain,
    or(X1,X2) = or(X2,X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_65,c_0_73]),c_0_72]),c_0_72]) ).

cnf(c_0_79,plain,
    ( is_a_theorem(strict_implies(X1,and(X1,X1)))
    | ~ axiom_m4 ),
    inference(split_conjunct,[status(thm)],[c_0_74]) ).

cnf(c_0_80,plain,
    axiom_m4,
    inference(split_conjunct,[status(thm)],[s1_0_axiom_m4]) ).

cnf(c_0_81,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(strict_implies(X1,and(X2,X3))) ),
    inference(spm,[status(thm)],[c_0_75,c_0_76]) ).

cnf(c_0_82,plain,
    strict_implies(not(X1),X2) = strict_implies(not(X2),X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_77,c_0_78]),c_0_77]) ).

cnf(c_0_83,plain,
    is_a_theorem(strict_implies(X1,and(X1,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_79,c_0_80])]) ).

cnf(c_0_84,plain,
    ( is_a_theorem(strict_implies(not(X1),X2))
    | ~ is_a_theorem(strict_implies(not(and(X2,X3)),X1)) ),
    inference(spm,[status(thm)],[c_0_81,c_0_82]) ).

cnf(c_0_85,plain,
    and(X1,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57,c_0_83]),c_0_76])]) ).

cnf(c_0_86,plain,
    is_a_theorem(strict_implies(not(X1),not(and(X1,X2)))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_84,c_0_83]),c_0_85]),c_0_82]) ).

cnf(c_0_87,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(strict_implies(not(X2),X3))
    | ~ is_a_theorem(strict_implies(X1,not(X3))) ),
    inference(spm,[status(thm)],[c_0_75,c_0_82]) ).

cnf(c_0_88,plain,
    ( is_a_theorem(strict_implies(not(X1),X2))
    | ~ is_a_theorem(strict_implies(not(X2),X1)) ),
    inference(spm,[status(thm)],[c_0_84,c_0_85]) ).

cnf(c_0_89,plain,
    is_a_theorem(strict_implies(not(not(X1)),implies(X2,X1))),
    inference(spm,[status(thm)],[c_0_86,c_0_73]) ).

cnf(c_0_90,plain,
    ( X1 = not(X2)
    | ~ is_a_theorem(strict_implies(not(X1),X2))
    | ~ is_a_theorem(strict_implies(X1,not(X2))) ),
    inference(spm,[status(thm)],[c_0_57,c_0_82]) ).

cnf(c_0_91,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(strict_implies(X1,not(not(X2)))) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87,c_0_83]),c_0_85]) ).

cnf(c_0_92,plain,
    is_a_theorem(strict_implies(not(implies(X1,X2)),not(X2))),
    inference(spm,[status(thm)],[c_0_88,c_0_89]) ).

cnf(c_0_93,plain,
    ( not(not(X1)) = X1
    | ~ is_a_theorem(strict_implies(X1,not(not(X1)))) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_90,c_0_83]),c_0_85]),c_0_85]) ).

cnf(c_0_94,plain,
    not(not(X1)) = or(X1,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_65,c_0_85]),c_0_72]) ).

cnf(c_0_95,plain,
    is_a_theorem(strict_implies(not(X1),implies(X2,not(X1)))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_91,c_0_92]),c_0_82]) ).

fof(c_0_96,plain,
    ! [X66,X67,X68] :
      ( ( ~ axiom_m3
        | is_a_theorem(strict_implies(and(and(X66,X67),X68),and(X66,and(X67,X68)))) )
      & ( ~ is_a_theorem(strict_implies(and(and(esk26_0,esk27_0),esk28_0),and(esk26_0,and(esk27_0,esk28_0))))
        | axiom_m3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m3])])])]) ).

cnf(c_0_97,plain,
    ( or(X1,X1) = X1
    | ~ is_a_theorem(strict_implies(X1,or(X1,X1))) ),
    inference(spm,[status(thm)],[c_0_93,c_0_94]) ).

cnf(c_0_98,plain,
    is_a_theorem(strict_implies(not(X1),or(X2,not(X1)))),
    inference(spm,[status(thm)],[c_0_95,c_0_72]) ).

cnf(c_0_99,plain,
    ( is_a_theorem(strict_implies(and(and(X1,X2),X3),and(X1,and(X2,X3))))
    | ~ axiom_m3 ),
    inference(split_conjunct,[status(thm)],[c_0_96]) ).

cnf(c_0_100,plain,
    axiom_m3,
    inference(split_conjunct,[status(thm)],[s1_0_axiom_m3]) ).

cnf(c_0_101,plain,
    not(not(not(X1))) = not(X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_97,c_0_98]),c_0_94]) ).

cnf(c_0_102,plain,
    is_a_theorem(strict_implies(and(and(X1,X2),X3),and(X1,and(X2,X3)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_99,c_0_100])]) ).

cnf(c_0_103,plain,
    implies(X1,not(not(X2))) = implies(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_73,c_0_101]),c_0_73]) ).

cnf(c_0_104,plain,
    ( and(and(X1,X2),X3) = and(X1,and(X2,X3))
    | ~ is_a_theorem(strict_implies(and(X1,and(X2,X3)),and(and(X1,X2),X3))) ),
    inference(spm,[status(thm)],[c_0_57,c_0_102]) ).

cnf(c_0_105,plain,
    is_a_theorem(strict_implies(and(X1,X2),X2)),
    inference(spm,[status(thm)],[c_0_76,c_0_67]) ).

cnf(c_0_106,plain,
    strict_implies(X1,not(not(X2))) = strict_implies(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_71,c_0_103]),c_0_71]) ).

cnf(c_0_107,plain,
    is_a_theorem(strict_implies(X1,X1)),
    inference(spm,[status(thm)],[c_0_76,c_0_85]) ).

cnf(c_0_108,plain,
    and(X1,and(X1,X2)) = and(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_104,c_0_85]),c_0_105])]) ).

cnf(c_0_109,plain,
    not(not(X1)) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_93,c_0_106]),c_0_107])]) ).

cnf(c_0_110,plain,
    and(X1,and(X2,X1)) = and(X2,X1),
    inference(spm,[status(thm)],[c_0_108,c_0_67]) ).

cnf(c_0_111,plain,
    not(implies(X1,X2)) = and(not(X2),X1),
    inference(spm,[status(thm)],[c_0_109,c_0_73]) ).

cnf(c_0_112,plain,
    implies(and(X1,not(X2)),X2) = implies(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_73,c_0_110]),c_0_65]) ).

cnf(c_0_113,plain,
    and(not(X1),not(X2)) = not(or(X2,X1)),
    inference(spm,[status(thm)],[c_0_111,c_0_72]) ).

cnf(c_0_114,plain,
    or(not(X1),X2) = implies(X1,X2),
    inference(spm,[status(thm)],[c_0_72,c_0_109]) ).

cnf(c_0_115,plain,
    is_a_theorem(strict_implies(not(X1),implies(X1,X2))),
    inference(spm,[status(thm)],[c_0_86,c_0_65]) ).

cnf(c_0_116,plain,
    necessarily(not(not(X1))) = strict_implies(not(X1),X1),
    inference(spm,[status(thm)],[c_0_77,c_0_94]) ).

cnf(c_0_117,plain,
    or(X1,or(X1,X2)) = or(X2,X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_112,c_0_113]),c_0_72]),c_0_72]),c_0_78]) ).

cnf(c_0_118,plain,
    or(X1,not(X2)) = implies(X2,X1),
    inference(spm,[status(thm)],[c_0_78,c_0_114]) ).

cnf(c_0_119,plain,
    ( is_a_theorem(strict_implies(X1,implies(X2,X3)))
    | ~ is_a_theorem(strict_implies(X1,not(X2))) ),
    inference(spm,[status(thm)],[c_0_75,c_0_115]) ).

cnf(c_0_120,plain,
    strict_implies(not(X1),X1) = necessarily(X1),
    inference(rw,[status(thm)],[c_0_116,c_0_109]) ).

cnf(c_0_121,plain,
    implies(X1,implies(X1,X2)) = implies(X1,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_114,c_0_117]),c_0_118]),c_0_114]) ).

cnf(c_0_122,plain,
    ( is_a_theorem(strict_implies(X1,implies(X1,X2)))
    | ~ is_a_theorem(necessarily(not(X1))) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_119,c_0_120]),c_0_109]) ).

cnf(c_0_123,plain,
    strict_implies(X1,implies(X1,X2)) = strict_implies(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_71,c_0_121]),c_0_71]) ).

fof(c_0_124,plain,
    ! [X94] :
      ( ~ op_possibly
      | possibly(X94) = not(necessarily(not(X94))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_possibly])])]) ).

cnf(c_0_125,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(strict_implies(not(X1),X2))
    | ~ is_a_theorem(not(X2)) ),
    inference(spm,[status(thm)],[c_0_59,c_0_82]) ).

cnf(c_0_126,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(necessarily(not(X1))) ),
    inference(rw,[status(thm)],[c_0_122,c_0_123]) ).

cnf(c_0_127,plain,
    ( possibly(X1) = not(necessarily(not(X1)))
    | ~ op_possibly ),
    inference(split_conjunct,[status(thm)],[c_0_124]) ).

cnf(c_0_128,plain,
    op_possibly,
    inference(split_conjunct,[status(thm)],[s1_0_op_possibly]) ).

cnf(c_0_129,plain,
    ( is_a_theorem(not(X1))
    | ~ is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(not(X2)) ),
    inference(spm,[status(thm)],[c_0_125,c_0_109]) ).

cnf(c_0_130,plain,
    ( is_a_theorem(strict_implies(not(X1),X2))
    | ~ is_a_theorem(necessarily(X1)) ),
    inference(spm,[status(thm)],[c_0_126,c_0_109]) ).

fof(c_0_131,plain,
    ! [X92] :
      ( ( ~ axiom_m10
        | is_a_theorem(strict_implies(possibly(X92),necessarily(possibly(X92)))) )
      & ( ~ is_a_theorem(strict_implies(possibly(esk39_0),necessarily(possibly(esk39_0))))
        | axiom_m10 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m10])])])]) ).

cnf(c_0_132,plain,
    not(necessarily(not(X1))) = possibly(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_127,c_0_128])]) ).

cnf(c_0_133,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(not(X2))
    | ~ is_a_theorem(necessarily(X1)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_129,c_0_130]),c_0_109]) ).

cnf(c_0_134,plain,
    ( is_a_theorem(strict_implies(possibly(X1),necessarily(possibly(X1))))
    | ~ axiom_m10 ),
    inference(split_conjunct,[status(thm)],[c_0_131]) ).

cnf(c_0_135,plain,
    axiom_m10,
    inference(split_conjunct,[status(thm)],[s1_0_m10_axiom_m10]) ).

cnf(c_0_136,plain,
    not(and(X1,possibly(X2))) = implies(X1,necessarily(not(X2))),
    inference(spm,[status(thm)],[c_0_65,c_0_132]) ).

cnf(c_0_137,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(necessarily(X1))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_133,c_0_109]) ).

cnf(c_0_138,plain,
    is_a_theorem(strict_implies(possibly(X1),necessarily(possibly(X1)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_134,c_0_135])]) ).

cnf(c_0_139,plain,
    possibly(and(X1,not(X2))) = not(strict_implies(X1,X2)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_132,c_0_65]),c_0_71]) ).

cnf(c_0_140,plain,
    or(X1,necessarily(not(X2))) = implies(possibly(X2),X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_136,c_0_73]),c_0_72]) ).

fof(c_0_141,plain,
    ! [X40] :
      ( ( ~ axiom_5
        | is_a_theorem(implies(possibly(X40),necessarily(possibly(X40)))) )
      & ( ~ is_a_theorem(implies(possibly(esk13_0),necessarily(possibly(esk13_0))))
        | axiom_5 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_5])])])]) ).

fof(c_0_142,negated_conjecture,
    ~ axiom_5,
    inference(fof_simplification,[status(thm)],[inference(assume_negation,[status(cth)],[km5_axiom_5])]) ).

cnf(c_0_143,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(X3) ),
    inference(spm,[status(thm)],[c_0_137,c_0_71]) ).

cnf(c_0_144,plain,
    is_a_theorem(strict_implies(not(strict_implies(X1,X2)),necessarily(not(strict_implies(X1,X2))))),
    inference(spm,[status(thm)],[c_0_138,c_0_139]) ).

cnf(c_0_145,plain,
    strict_implies(not(X1),necessarily(not(X2))) = strict_implies(possibly(X2),X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_77,c_0_140]),c_0_71]) ).

cnf(c_0_146,plain,
    ( axiom_5
    | ~ is_a_theorem(implies(possibly(esk13_0),necessarily(possibly(esk13_0)))) ),
    inference(split_conjunct,[status(thm)],[c_0_141]) ).

cnf(c_0_147,negated_conjecture,
    ~ axiom_5,
    inference(split_conjunct,[status(thm)],[c_0_142]) ).

cnf(c_0_148,plain,
    ( is_a_theorem(implies(possibly(X1),necessarily(possibly(X1))))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_143,c_0_138]) ).

cnf(c_0_149,plain,
    is_a_theorem(strict_implies(possibly(strict_implies(X1,X2)),strict_implies(X1,X2))),
    inference(rw,[status(thm)],[c_0_144,c_0_145]) ).

cnf(c_0_150,plain,
    ~ is_a_theorem(implies(possibly(esk13_0),necessarily(possibly(esk13_0)))),
    inference(sr,[status(thm)],[c_0_146,c_0_147]) ).

cnf(c_0_151,plain,
    is_a_theorem(implies(possibly(X1),necessarily(possibly(X1)))),
    inference(spm,[status(thm)],[c_0_148,c_0_149]) ).

cnf(c_0_152,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_150,c_0_151])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem    : LCL573+1 : TPTP v8.1.2. Released v3.3.0.
% 0.10/0.14  % Command    : run_E %s %d THM
% 0.13/0.34  % Computer : n007.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit   : 2400
% 0.13/0.34  % WCLimit    : 300
% 0.13/0.34  % DateTime   : Mon Oct  2 12:22:54 EDT 2023
% 0.13/0.34  % CPUTime    : 
% 0.17/0.45  Running first-order theorem proving
% 0.17/0.45  Running: /export/starexec/sandbox2/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --auto-schedule=8 --cpu-limit=300 /export/starexec/sandbox2/tmp/tmp.S7kMbxr21U/E---3.1_14527.p
% 1.21/0.63  # Version: 3.1pre001
% 1.21/0.63  # Preprocessing class: FSMSSLSSSSSNFFN.
% 1.21/0.63  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 1.21/0.63  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 1500s (5) cores
% 1.21/0.63  # Starting new_bool_3 with 300s (1) cores
% 1.21/0.63  # Starting new_bool_1 with 300s (1) cores
% 1.21/0.63  # Starting sh5l with 300s (1) cores
% 1.21/0.63  # G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with pid 14606 completed with status 0
% 1.21/0.63  # Result found by G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI
% 1.21/0.63  # Preprocessing class: FSMSSLSSSSSNFFN.
% 1.21/0.63  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 1.21/0.63  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 1500s (5) cores
% 1.21/0.63  # No SInE strategy applied
% 1.21/0.63  # Search class: FGUSF-FFMM21-MFFFFFNN
% 1.21/0.63  # Scheduled 6 strats onto 5 cores with 1500 seconds (1500 total)
% 1.21/0.63  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 750s (1) cores
% 1.21/0.63  # Starting G-E--_107_B42_F1_PI_SE_Q4_CS_SP_PS_S0YI with 151s (1) cores
% 1.21/0.63  # Starting H----_047_C09_12_F1_AE_ND_CS_SP_S5PRR_S2S with 151s (1) cores
% 1.21/0.63  # Starting U----_207d_00_B07_00_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN with 151s (1) cores
% 1.21/0.63  # Starting G-E--_208_C09_12_F1_SE_CS_SP_PS_S5PRR_S04AN with 151s (1) cores
% 1.21/0.63  # G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with pid 14613 completed with status 0
% 1.21/0.63  # Result found by G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI
% 1.21/0.63  # Preprocessing class: FSMSSLSSSSSNFFN.
% 1.21/0.63  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 1.21/0.63  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 1500s (5) cores
% 1.21/0.63  # No SInE strategy applied
% 1.21/0.63  # Search class: FGUSF-FFMM21-MFFFFFNN
% 1.21/0.63  # Scheduled 6 strats onto 5 cores with 1500 seconds (1500 total)
% 1.21/0.63  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 750s (1) cores
% 1.21/0.63  # Preprocessing time       : 0.002 s
% 1.21/0.63  # Presaturation interreduction done
% 1.21/0.63  
% 1.21/0.63  # Proof found!
% 1.21/0.63  # SZS status Theorem
% 1.21/0.63  # SZS output start CNFRefutation
% See solution above
% 1.21/0.63  # Parsed axioms                        : 52
% 1.21/0.63  # Removed by relevancy pruning/SinE    : 0
% 1.21/0.63  # Initial clauses                      : 81
% 1.21/0.63  # Removed in clause preprocessing      : 0
% 1.21/0.63  # Initial clauses in saturation        : 81
% 1.21/0.63  # Processed clauses                    : 2207
% 1.21/0.63  # ...of these trivial                  : 198
% 1.21/0.63  # ...subsumed                          : 1388
% 1.21/0.63  # ...remaining for further processing  : 621
% 1.21/0.63  # Other redundant clauses eliminated   : 0
% 1.21/0.63  # Clauses deleted for lack of memory   : 0
% 1.21/0.63  # Backward-subsumed                    : 21
% 1.21/0.63  # Backward-rewritten                   : 125
% 1.21/0.63  # Generated clauses                    : 14111
% 1.21/0.63  # ...of the previous two non-redundant : 12646
% 1.21/0.63  # ...aggressively subsumed             : 0
% 1.21/0.63  # Contextual simplify-reflections      : 0
% 1.21/0.63  # Paramodulations                      : 14111
% 1.21/0.63  # Factorizations                       : 0
% 1.21/0.63  # NegExts                              : 0
% 1.21/0.63  # Equation resolutions                 : 0
% 1.21/0.63  # Total rewrite steps                  : 6931
% 1.21/0.63  # Propositional unsat checks           : 0
% 1.21/0.63  #    Propositional check models        : 0
% 1.21/0.63  #    Propositional check unsatisfiable : 0
% 1.21/0.63  #    Propositional clauses             : 0
% 1.21/0.63  #    Propositional clauses after purity: 0
% 1.21/0.63  #    Propositional unsat core size     : 0
% 1.21/0.63  #    Propositional preprocessing time  : 0.000
% 1.21/0.63  #    Propositional encoding time       : 0.000
% 1.21/0.63  #    Propositional solver time         : 0.000
% 1.21/0.63  #    Success case prop preproc time    : 0.000
% 1.21/0.63  #    Success case prop encoding time   : 0.000
% 1.21/0.63  #    Success case prop solver time     : 0.000
% 1.21/0.63  # Current number of processed clauses  : 411
% 1.21/0.63  #    Positive orientable unit clauses  : 142
% 1.21/0.63  #    Positive unorientable unit clauses: 8
% 1.21/0.63  #    Negative unit clauses             : 3
% 1.21/0.63  #    Non-unit-clauses                  : 258
% 1.21/0.63  # Current number of unprocessed clauses: 9991
% 1.21/0.63  # ...number of literals in the above   : 18997
% 1.21/0.63  # Current number of archived formulas  : 0
% 1.21/0.63  # Current number of archived clauses   : 210
% 1.21/0.63  # Clause-clause subsumption calls (NU) : 35888
% 1.21/0.63  # Rec. Clause-clause subsumption calls : 28818
% 1.21/0.63  # Non-unit clause-clause subsumptions  : 1352
% 1.21/0.63  # Unit Clause-clause subsumption calls : 2234
% 1.21/0.63  # Rewrite failures with RHS unbound    : 0
% 1.21/0.63  # BW rewrite match attempts            : 452
% 1.21/0.63  # BW rewrite match successes           : 125
% 1.21/0.63  # Condensation attempts                : 0
% 1.21/0.63  # Condensation successes               : 0
% 1.21/0.63  # Termbank termtop insertions          : 169774
% 1.21/0.63  
% 1.21/0.63  # -------------------------------------------------
% 1.21/0.63  # User time                : 0.136 s
% 1.21/0.63  # System time              : 0.013 s
% 1.21/0.63  # Total time               : 0.149 s
% 1.21/0.63  # Maximum resident set size: 1940 pages
% 1.21/0.63  
% 1.21/0.63  # -------------------------------------------------
% 1.21/0.63  # User time                : 0.717 s
% 1.21/0.63  # System time              : 0.056 s
% 1.21/0.63  # Total time               : 0.773 s
% 1.21/0.63  # Maximum resident set size: 1720 pages
% 1.21/0.63  % E---3.1 exiting
% 1.21/0.63  % E---3.1 exiting
%------------------------------------------------------------------------------