TSTP Solution File: LCL561+1 by Enigma---0.5.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Enigma---0.5.1
% Problem  : LCL561+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : enigmatic-eprover.py %s %d 1

% Computer : n015.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 09:26:47 EDT 2022

% Result   : Theorem 10.97s 2.87s
% Output   : CNFRefutation 10.97s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   30
%            Number of leaves      :   30
% Syntax   : Number of formulae    :  154 (  85 unt;   0 def)
%            Number of atoms       :  278 (  64 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  214 (  90   ~;  90   |;  16   &)
%                                         (   9 <=>;   9  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   2 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :   18 (  16 usr;  16 prp; 0-2 aty)
%            Number of functors    :   28 (  28 usr;  19 con; 0-2 aty)
%            Number of variables   :  235 (  18 sgn  60   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(adjunction,axiom,
    ( adjunction
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(X2) )
       => is_a_theorem(and(X1,X2)) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',adjunction) ).

fof(op_strict_equiv,axiom,
    ( op_strict_equiv
   => ! [X1,X2] : strict_equiv(X1,X2) = and(strict_implies(X1,X2),strict_implies(X2,X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+1.ax',op_strict_equiv) ).

fof(substitution_strict_equiv,axiom,
    ( substitution_strict_equiv
  <=> ! [X1,X2] :
        ( is_a_theorem(strict_equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',substitution_strict_equiv) ).

fof(s1_0_adjunction,axiom,
    adjunction,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_adjunction) ).

fof(s1_0_op_strict_equiv,axiom,
    op_strict_equiv,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_op_strict_equiv) ).

fof(s1_0_substitution_strict_equiv,axiom,
    substitution_strict_equiv,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_substitution_strict_equiv) ).

fof(axiom_m1,axiom,
    ( axiom_m1
  <=> ! [X1,X2] : is_a_theorem(strict_implies(and(X1,X2),and(X2,X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_m1) ).

fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_implies_and) ).

fof(s1_0_axiom_m1,axiom,
    axiom_m1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_axiom_m1) ).

fof(modus_ponens_strict_implies,axiom,
    ( modus_ponens_strict_implies
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(strict_implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',modus_ponens_strict_implies) ).

fof(axiom_m5,axiom,
    ( axiom_m5
  <=> ! [X1,X2,X3] : is_a_theorem(strict_implies(and(strict_implies(X1,X2),strict_implies(X2,X3)),strict_implies(X1,X3))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_m5) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X1,X2] : strict_implies(X1,X2) = necessarily(implies(X1,X2)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+1.ax',op_strict_implies) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_or) ).

fof(hilbert_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',hilbert_op_implies_and) ).

fof(axiom_m4,axiom,
    ( axiom_m4
  <=> ! [X1] : is_a_theorem(strict_implies(X1,and(X1,X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_m4) ).

fof(axiom_m2,axiom,
    ( axiom_m2
  <=> ! [X1,X2] : is_a_theorem(strict_implies(and(X1,X2),X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_m2) ).

fof(s1_0_modus_ponens_strict_implies,axiom,
    modus_ponens_strict_implies,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_modus_ponens_strict_implies) ).

fof(s1_0_axiom_m5,axiom,
    axiom_m5,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_axiom_m5) ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_op_strict_implies) ).

fof(s1_0_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_op_or) ).

fof(s1_0_axiom_m4,axiom,
    axiom_m4,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_axiom_m4) ).

fof(s1_0_axiom_m2,axiom,
    axiom_m2,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_axiom_m2) ).

fof(axiom_m3,axiom,
    ( axiom_m3
  <=> ! [X1,X2,X3] : is_a_theorem(strict_implies(and(and(X1,X2),X3),and(X1,and(X2,X3)))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_m3) ).

fof(s1_0_axiom_m3,axiom,
    axiom_m3,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_axiom_m3) ).

fof(hilbert_equivalence_1,conjecture,
    equivalence_1,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',hilbert_equivalence_1) ).

fof(op_possibly,axiom,
    ( op_possibly
   => ! [X1] : possibly(X1) = not(necessarily(not(X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+1.ax',op_possibly) ).

fof(equivalence_1,axiom,
    ( equivalence_1
  <=> ! [X1,X2] : is_a_theorem(implies(equiv(X1,X2),implies(X1,X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',equivalence_1) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_equiv) ).

fof(s1_0_op_possibly,axiom,
    op_possibly,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_op_possibly) ).

fof(s1_0_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+4.ax',s1_0_op_equiv) ).

fof(c_0_30,plain,
    ! [X133,X134] :
      ( ( ~ adjunction
        | ~ is_a_theorem(X133)
        | ~ is_a_theorem(X134)
        | is_a_theorem(and(X133,X134)) )
      & ( is_a_theorem(esk59_0)
        | adjunction )
      & ( is_a_theorem(esk60_0)
        | adjunction )
      & ( ~ is_a_theorem(and(esk59_0,esk60_0))
        | adjunction ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[adjunction])])])])]) ).

fof(c_0_31,plain,
    ! [X209,X210] :
      ( ~ op_strict_equiv
      | strict_equiv(X209,X210) = and(strict_implies(X209,X210),strict_implies(X210,X209)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_equiv])])]) ).

fof(c_0_32,plain,
    ! [X137,X138] :
      ( ( ~ substitution_strict_equiv
        | ~ is_a_theorem(strict_equiv(X137,X138))
        | X137 = X138 )
      & ( is_a_theorem(strict_equiv(esk61_0,esk62_0))
        | substitution_strict_equiv )
      & ( esk61_0 != esk62_0
        | substitution_strict_equiv ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_strict_equiv])])])])]) ).

cnf(c_0_33,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ adjunction
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

cnf(c_0_34,plain,
    adjunction,
    inference(split_conjunct,[status(thm)],[s1_0_adjunction]) ).

cnf(c_0_35,plain,
    ( strict_equiv(X1,X2) = and(strict_implies(X1,X2),strict_implies(X2,X1))
    | ~ op_strict_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_36,plain,
    op_strict_equiv,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_equiv]) ).

cnf(c_0_37,plain,
    ( X1 = X2
    | ~ substitution_strict_equiv
    | ~ is_a_theorem(strict_equiv(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_32]) ).

cnf(c_0_38,plain,
    substitution_strict_equiv,
    inference(split_conjunct,[status(thm)],[s1_0_substitution_strict_equiv]) ).

cnf(c_0_39,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_33,c_0_34])]) ).

cnf(c_0_40,plain,
    and(strict_implies(X1,X2),strict_implies(X2,X1)) = strict_equiv(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_35,c_0_36])]) ).

fof(c_0_41,plain,
    ! [X169,X170] :
      ( ( ~ axiom_m1
        | is_a_theorem(strict_implies(and(X169,X170),and(X170,X169))) )
      & ( ~ is_a_theorem(strict_implies(and(esk77_0,esk78_0),and(esk78_0,esk77_0)))
        | axiom_m1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m1])])])]) ).

fof(c_0_42,plain,
    ! [X121,X122] :
      ( ~ op_implies_and
      | implies(X121,X122) = not(and(X121,not(X122))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])]) ).

cnf(c_0_43,plain,
    ( X1 = X2
    | ~ is_a_theorem(strict_equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_37,c_0_38])]) ).

cnf(c_0_44,plain,
    ( is_a_theorem(strict_equiv(X1,X2))
    | ~ is_a_theorem(strict_implies(X2,X1))
    | ~ is_a_theorem(strict_implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_39,c_0_40]) ).

cnf(c_0_45,plain,
    ( is_a_theorem(strict_implies(and(X1,X2),and(X2,X1)))
    | ~ axiom_m1 ),
    inference(split_conjunct,[status(thm)],[c_0_41]) ).

cnf(c_0_46,plain,
    axiom_m1,
    inference(split_conjunct,[status(thm)],[s1_0_axiom_m1]) ).

fof(c_0_47,plain,
    ! [X129,X130] :
      ( ( ~ modus_ponens_strict_implies
        | ~ is_a_theorem(X129)
        | ~ is_a_theorem(strict_implies(X129,X130))
        | is_a_theorem(X130) )
      & ( is_a_theorem(esk57_0)
        | modus_ponens_strict_implies )
      & ( is_a_theorem(strict_implies(esk57_0,esk58_0))
        | modus_ponens_strict_implies )
      & ( ~ is_a_theorem(esk58_0)
        | modus_ponens_strict_implies ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens_strict_implies])])])])]) ).

fof(c_0_48,plain,
    ! [X185,X186,X187] :
      ( ( ~ axiom_m5
        | is_a_theorem(strict_implies(and(strict_implies(X185,X186),strict_implies(X186,X187)),strict_implies(X185,X187))) )
      & ( ~ is_a_theorem(strict_implies(and(strict_implies(esk85_0,esk86_0),strict_implies(esk86_0,esk87_0)),strict_implies(esk85_0,esk87_0)))
        | axiom_m5 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m5])])])]) ).

fof(c_0_49,plain,
    ! [X207,X208] :
      ( ~ op_strict_implies
      | strict_implies(X207,X208) = necessarily(implies(X207,X208)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_implies])])]) ).

fof(c_0_50,plain,
    ! [X117,X118] :
      ( ~ op_or
      | or(X117,X118) = not(and(not(X117),not(X118))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])]) ).

cnf(c_0_51,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

cnf(c_0_52,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[hilbert_op_implies_and]) ).

cnf(c_0_53,plain,
    ( X1 = X2
    | ~ is_a_theorem(strict_implies(X2,X1))
    | ~ is_a_theorem(strict_implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_43,c_0_44]) ).

cnf(c_0_54,plain,
    is_a_theorem(strict_implies(and(X1,X2),and(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_45,c_0_46])]) ).

fof(c_0_55,plain,
    ! [X183] :
      ( ( ~ axiom_m4
        | is_a_theorem(strict_implies(X183,and(X183,X183))) )
      & ( ~ is_a_theorem(strict_implies(esk84_0,and(esk84_0,esk84_0)))
        | axiom_m4 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m4])])])]) ).

fof(c_0_56,plain,
    ! [X173,X174] :
      ( ( ~ axiom_m2
        | is_a_theorem(strict_implies(and(X173,X174),X173)) )
      & ( ~ is_a_theorem(strict_implies(and(esk79_0,esk80_0),esk79_0))
        | axiom_m2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m2])])])]) ).

cnf(c_0_57,plain,
    ( is_a_theorem(X2)
    | ~ modus_ponens_strict_implies
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(strict_implies(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_47]) ).

cnf(c_0_58,plain,
    modus_ponens_strict_implies,
    inference(split_conjunct,[status(thm)],[s1_0_modus_ponens_strict_implies]) ).

cnf(c_0_59,plain,
    ( is_a_theorem(strict_implies(and(strict_implies(X1,X2),strict_implies(X2,X3)),strict_implies(X1,X3)))
    | ~ axiom_m5 ),
    inference(split_conjunct,[status(thm)],[c_0_48]) ).

cnf(c_0_60,plain,
    axiom_m5,
    inference(split_conjunct,[status(thm)],[s1_0_axiom_m5]) ).

cnf(c_0_61,plain,
    ( strict_implies(X1,X2) = necessarily(implies(X1,X2))
    | ~ op_strict_implies ),
    inference(split_conjunct,[status(thm)],[c_0_49]) ).

cnf(c_0_62,plain,
    op_strict_implies,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_implies]) ).

cnf(c_0_63,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_50]) ).

cnf(c_0_64,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_51,c_0_52])]) ).

cnf(c_0_65,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[s1_0_op_or]) ).

cnf(c_0_66,plain,
    and(X1,X2) = and(X2,X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_53,c_0_54]),c_0_54])]) ).

cnf(c_0_67,plain,
    ( is_a_theorem(strict_implies(X1,and(X1,X1)))
    | ~ axiom_m4 ),
    inference(split_conjunct,[status(thm)],[c_0_55]) ).

cnf(c_0_68,plain,
    axiom_m4,
    inference(split_conjunct,[status(thm)],[s1_0_axiom_m4]) ).

cnf(c_0_69,plain,
    ( is_a_theorem(strict_implies(and(X1,X2),X1))
    | ~ axiom_m2 ),
    inference(split_conjunct,[status(thm)],[c_0_56]) ).

cnf(c_0_70,plain,
    axiom_m2,
    inference(split_conjunct,[status(thm)],[s1_0_axiom_m2]) ).

cnf(c_0_71,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(strict_implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_57,c_0_58])]) ).

cnf(c_0_72,plain,
    is_a_theorem(strict_implies(and(strict_implies(X1,X2),strict_implies(X2,X3)),strict_implies(X1,X3))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_59,c_0_60])]) ).

cnf(c_0_73,plain,
    necessarily(implies(X1,X2)) = strict_implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_61,c_0_62])]) ).

cnf(c_0_74,plain,
    implies(not(X1),X2) = or(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_63,c_0_64]),c_0_65])]) ).

cnf(c_0_75,plain,
    not(and(not(X1),X2)) = implies(X2,X1),
    inference(spm,[status(thm)],[c_0_64,c_0_66]) ).

cnf(c_0_76,plain,
    is_a_theorem(strict_implies(X1,and(X1,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_67,c_0_68])]) ).

cnf(c_0_77,plain,
    is_a_theorem(strict_implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_69,c_0_70])]) ).

cnf(c_0_78,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(and(strict_implies(X1,X3),strict_implies(X3,X2))) ),
    inference(spm,[status(thm)],[c_0_71,c_0_72]) ).

cnf(c_0_79,plain,
    necessarily(or(X1,X2)) = strict_implies(not(X1),X2),
    inference(spm,[status(thm)],[c_0_73,c_0_74]) ).

cnf(c_0_80,plain,
    or(X1,X2) = or(X2,X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64,c_0_75]),c_0_74]),c_0_74]) ).

cnf(c_0_81,plain,
    and(X1,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_53,c_0_76]),c_0_77])]) ).

cnf(c_0_82,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(strict_implies(X3,X2))
    | ~ is_a_theorem(strict_implies(X1,X3)) ),
    inference(spm,[status(thm)],[c_0_78,c_0_39]) ).

cnf(c_0_83,plain,
    is_a_theorem(strict_implies(and(X1,X2),X2)),
    inference(spm,[status(thm)],[c_0_77,c_0_66]) ).

cnf(c_0_84,plain,
    strict_implies(not(X1),X2) = strict_implies(not(X2),X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_79,c_0_80]),c_0_79]) ).

cnf(c_0_85,plain,
    not(not(X1)) = or(X1,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64,c_0_81]),c_0_74]) ).

cnf(c_0_86,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(strict_implies(X1,and(X3,X2))) ),
    inference(spm,[status(thm)],[c_0_82,c_0_83]) ).

cnf(c_0_87,plain,
    is_a_theorem(strict_implies(X1,X1)),
    inference(rw,[status(thm)],[c_0_76,c_0_81]) ).

cnf(c_0_88,plain,
    strict_implies(not(X1),not(X2)) = strict_implies(or(X2,X2),X1),
    inference(spm,[status(thm)],[c_0_84,c_0_85]) ).

cnf(c_0_89,plain,
    ( is_a_theorem(strict_implies(not(X1),X2))
    | ~ is_a_theorem(strict_implies(not(and(X3,X2)),X1)) ),
    inference(spm,[status(thm)],[c_0_86,c_0_84]) ).

cnf(c_0_90,plain,
    is_a_theorem(strict_implies(or(X1,X1),X1)),
    inference(spm,[status(thm)],[c_0_87,c_0_88]) ).

cnf(c_0_91,plain,
    is_a_theorem(strict_implies(not(X1),not(and(X2,X1)))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_89,c_0_87]),c_0_84]) ).

fof(c_0_92,plain,
    ! [X177,X178,X179] :
      ( ( ~ axiom_m3
        | is_a_theorem(strict_implies(and(and(X177,X178),X179),and(X177,and(X178,X179)))) )
      & ( ~ is_a_theorem(strict_implies(and(and(esk81_0,esk82_0),esk83_0),and(esk81_0,and(esk82_0,esk83_0))))
        | axiom_m3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m3])])])]) ).

cnf(c_0_93,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(strict_implies(X1,or(X2,X2))) ),
    inference(spm,[status(thm)],[c_0_82,c_0_90]) ).

cnf(c_0_94,plain,
    is_a_theorem(strict_implies(not(X1),implies(X1,X2))),
    inference(spm,[status(thm)],[c_0_91,c_0_75]) ).

cnf(c_0_95,plain,
    ( is_a_theorem(strict_implies(and(and(X1,X2),X3),and(X1,and(X2,X3))))
    | ~ axiom_m3 ),
    inference(split_conjunct,[status(thm)],[c_0_92]) ).

cnf(c_0_96,plain,
    axiom_m3,
    inference(split_conjunct,[status(thm)],[s1_0_axiom_m3]) ).

cnf(c_0_97,plain,
    is_a_theorem(strict_implies(not(X1),not(or(X1,X1)))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_93,c_0_90]),c_0_85]),c_0_84]) ).

cnf(c_0_98,plain,
    is_a_theorem(strict_implies(not(not(X1)),or(X1,X2))),
    inference(spm,[status(thm)],[c_0_94,c_0_74]) ).

cnf(c_0_99,plain,
    is_a_theorem(strict_implies(and(and(X1,X2),X3),and(X1,and(X2,X3)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_95,c_0_96])]) ).

cnf(c_0_100,plain,
    ( X1 = not(X2)
    | ~ is_a_theorem(strict_implies(not(X1),X2))
    | ~ is_a_theorem(strict_implies(X1,not(X2))) ),
    inference(spm,[status(thm)],[c_0_53,c_0_84]) ).

cnf(c_0_101,plain,
    not(or(X1,X1)) = not(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_53,c_0_97]),c_0_84]),c_0_98])]) ).

cnf(c_0_102,plain,
    ( and(and(X1,X2),X3) = and(X1,and(X2,X3))
    | ~ is_a_theorem(strict_implies(and(X1,and(X2,X3)),and(and(X1,X2),X3))) ),
    inference(spm,[status(thm)],[c_0_53,c_0_99]) ).

cnf(c_0_103,plain,
    ( not(not(X1)) = X1
    | ~ is_a_theorem(strict_implies(X1,not(not(X1)))) ),
    inference(spm,[status(thm)],[c_0_100,c_0_87]) ).

cnf(c_0_104,plain,
    implies(X1,or(X2,X2)) = implies(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64,c_0_101]),c_0_64]) ).

cnf(c_0_105,plain,
    and(X1,and(X1,X2)) = and(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_102,c_0_81]),c_0_83])]) ).

cnf(c_0_106,plain,
    ( or(X1,X1) = X1
    | ~ is_a_theorem(strict_implies(X1,or(X1,X1))) ),
    inference(spm,[status(thm)],[c_0_103,c_0_85]) ).

cnf(c_0_107,plain,
    strict_implies(X1,or(X2,X2)) = strict_implies(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_73,c_0_104]),c_0_73]) ).

cnf(c_0_108,plain,
    not(and(X1,implies(X2,X3))) = implies(X1,and(X2,not(X3))),
    inference(spm,[status(thm)],[c_0_64,c_0_64]) ).

cnf(c_0_109,plain,
    and(X1,and(X2,X1)) = and(X2,X1),
    inference(spm,[status(thm)],[c_0_105,c_0_66]) ).

cnf(c_0_110,plain,
    or(and(X1,not(X2)),X3) = implies(implies(X1,X2),X3),
    inference(spm,[status(thm)],[c_0_74,c_0_64]) ).

cnf(c_0_111,plain,
    or(X1,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_106,c_0_107]),c_0_87])]) ).

cnf(c_0_112,plain,
    implies(implies(X1,X2),and(X1,not(X2))) = not(implies(X1,X2)),
    inference(spm,[status(thm)],[c_0_108,c_0_81]) ).

cnf(c_0_113,plain,
    implies(and(X1,not(X2)),X2) = implies(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_75,c_0_109]),c_0_64]) ).

cnf(c_0_114,plain,
    and(X1,not(X2)) = not(implies(X1,X2)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_110,c_0_111]),c_0_112]) ).

cnf(c_0_115,plain,
    not(and(X1,or(X2,X2))) = implies(X1,not(X2)),
    inference(spm,[status(thm)],[c_0_64,c_0_85]) ).

cnf(c_0_116,plain,
    implies(or(X1,X1),X2) = or(not(X1),X2),
    inference(spm,[status(thm)],[c_0_74,c_0_85]) ).

cnf(c_0_117,plain,
    or(X1,implies(X2,X1)) = implies(X2,X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_113,c_0_114]),c_0_74]),c_0_80]) ).

cnf(c_0_118,plain,
    or(X1,not(X2)) = implies(or(X2,X2),X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_75,c_0_115]),c_0_74]) ).

cnf(c_0_119,plain,
    or(not(X1),X2) = implies(X1,X2),
    inference(rw,[status(thm)],[c_0_116,c_0_111]) ).

cnf(c_0_120,plain,
    or(X1,or(X2,X1)) = or(X2,X1),
    inference(spm,[status(thm)],[c_0_117,c_0_74]) ).

cnf(c_0_121,plain,
    or(X1,not(X2)) = implies(X2,X1),
    inference(rw,[status(thm)],[c_0_118,c_0_111]) ).

cnf(c_0_122,plain,
    implies(X1,implies(X1,X2)) = implies(X1,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_119,c_0_120]),c_0_121]),c_0_121]) ).

cnf(c_0_123,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(strict_implies(not(X1),X2))
    | ~ is_a_theorem(not(X2)) ),
    inference(spm,[status(thm)],[c_0_71,c_0_84]) ).

cnf(c_0_124,plain,
    ( is_a_theorem(strict_implies(X1,implies(X2,X3)))
    | ~ is_a_theorem(strict_implies(X1,not(X2))) ),
    inference(spm,[status(thm)],[c_0_82,c_0_94]) ).

cnf(c_0_125,plain,
    strict_implies(not(X1),X1) = necessarily(X1),
    inference(spm,[status(thm)],[c_0_79,c_0_111]) ).

cnf(c_0_126,plain,
    not(not(X1)) = X1,
    inference(rw,[status(thm)],[c_0_85,c_0_111]) ).

cnf(c_0_127,plain,
    strict_implies(X1,implies(X1,X2)) = strict_implies(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_73,c_0_122]),c_0_73]) ).

cnf(c_0_128,plain,
    ( is_a_theorem(not(X1))
    | ~ is_a_theorem(strict_implies(or(X1,X1),X2))
    | ~ is_a_theorem(not(X2)) ),
    inference(spm,[status(thm)],[c_0_123,c_0_85]) ).

cnf(c_0_129,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(necessarily(not(X1))) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_124,c_0_125]),c_0_126]),c_0_127]) ).

cnf(c_0_130,plain,
    ( is_a_theorem(not(X1))
    | ~ is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(not(X2)) ),
    inference(rw,[status(thm)],[c_0_128,c_0_111]) ).

cnf(c_0_131,plain,
    ( is_a_theorem(strict_implies(not(X1),X2))
    | ~ is_a_theorem(necessarily(X1)) ),
    inference(spm,[status(thm)],[c_0_129,c_0_126]) ).

fof(c_0_132,negated_conjecture,
    ~ equivalence_1,
    inference(assume_negation,[status(cth)],[hilbert_equivalence_1]) ).

cnf(c_0_133,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(not(X2))
    | ~ is_a_theorem(necessarily(X1)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_130,c_0_131]),c_0_126]) ).

fof(c_0_134,plain,
    ! [X205] :
      ( ~ op_possibly
      | possibly(X205) = not(necessarily(not(X205))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_possibly])])]) ).

fof(c_0_135,plain,
    ! [X59,X60] :
      ( ( ~ equivalence_1
        | is_a_theorem(implies(equiv(X59,X60),implies(X59,X60))) )
      & ( ~ is_a_theorem(implies(equiv(esk27_0,esk28_0),implies(esk27_0,esk28_0)))
        | equivalence_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[equivalence_1])])])]) ).

fof(c_0_136,negated_conjecture,
    ~ equivalence_1,
    inference(fof_simplification,[status(thm)],[c_0_132]) ).

fof(c_0_137,plain,
    ! [X125,X126] :
      ( ~ op_equiv
      | equiv(X125,X126) = and(implies(X125,X126),implies(X126,X125)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])]) ).

cnf(c_0_138,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(necessarily(X1))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_133,c_0_126]) ).

cnf(c_0_139,plain,
    ( possibly(X1) = not(necessarily(not(X1)))
    | ~ op_possibly ),
    inference(split_conjunct,[status(thm)],[c_0_134]) ).

cnf(c_0_140,plain,
    op_possibly,
    inference(split_conjunct,[status(thm)],[s1_0_op_possibly]) ).

cnf(c_0_141,plain,
    ( equivalence_1
    | ~ is_a_theorem(implies(equiv(esk27_0,esk28_0),implies(esk27_0,esk28_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_135]) ).

cnf(c_0_142,negated_conjecture,
    ~ equivalence_1,
    inference(split_conjunct,[status(thm)],[c_0_136]) ).

cnf(c_0_143,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_137]) ).

cnf(c_0_144,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[s1_0_op_equiv]) ).

cnf(c_0_145,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(X3) ),
    inference(spm,[status(thm)],[c_0_138,c_0_73]) ).

cnf(c_0_146,plain,
    not(necessarily(not(X1))) = possibly(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_139,c_0_140])]) ).

cnf(c_0_147,plain,
    ~ is_a_theorem(implies(equiv(esk27_0,esk28_0),implies(esk27_0,esk28_0))),
    inference(sr,[status(thm)],[c_0_141,c_0_142]) ).

cnf(c_0_148,plain,
    equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_143,c_0_144])]) ).

cnf(c_0_149,plain,
    ( is_a_theorem(implies(and(X1,X2),X1))
    | ~ is_a_theorem(X3) ),
    inference(spm,[status(thm)],[c_0_145,c_0_77]) ).

cnf(c_0_150,plain,
    is_a_theorem(strict_implies(possibly(X1),implies(necessarily(not(X1)),X2))),
    inference(spm,[status(thm)],[c_0_94,c_0_146]) ).

cnf(c_0_151,plain,
    ~ is_a_theorem(implies(and(implies(esk27_0,esk28_0),implies(esk28_0,esk27_0)),implies(esk27_0,esk28_0))),
    inference(rw,[status(thm)],[c_0_147,c_0_148]) ).

cnf(c_0_152,plain,
    is_a_theorem(implies(and(X1,X2),X1)),
    inference(spm,[status(thm)],[c_0_149,c_0_150]) ).

cnf(c_0_153,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_151,c_0_152])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : LCL561+1 : TPTP v8.1.0. Released v3.3.0.
% 0.07/0.13  % Command  : enigmatic-eprover.py %s %d 1
% 0.13/0.34  % Computer : n015.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Mon Jul  4 14:45:33 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.19/0.45  # ENIGMATIC: Selected SinE mode:
% 0.19/0.46  # Parsing /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.19/0.46  # Filter: axfilter_auto   0 goes into file theBenchmark_axfilter_auto   0.p
% 0.19/0.46  # Filter: axfilter_auto   1 goes into file theBenchmark_axfilter_auto   1.p
% 0.19/0.46  # Filter: axfilter_auto   2 goes into file theBenchmark_axfilter_auto   2.p
% 10.97/2.87  # ENIGMATIC: Solved by autoschedule:
% 10.97/2.87  # No SInE strategy applied
% 10.97/2.87  # Trying AutoSched0 for 150 seconds
% 10.97/2.87  # AutoSched0-Mode selected heuristic G_E___208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI
% 10.97/2.87  # and selection function SelectComplexExceptUniqMaxHorn.
% 10.97/2.87  #
% 10.97/2.87  # Preprocessing time       : 0.019 s
% 10.97/2.87  # Presaturation interreduction done
% 10.97/2.87  
% 10.97/2.87  # Proof found!
% 10.97/2.87  # SZS status Theorem
% 10.97/2.87  # SZS output start CNFRefutation
% See solution above
% 10.97/2.87  # Training examples: 0 positive, 0 negative
% 10.97/2.87  
% 10.97/2.87  # -------------------------------------------------
% 10.97/2.87  # User time                : 0.489 s
% 10.97/2.87  # System time              : 0.023 s
% 10.97/2.87  # Total time               : 0.512 s
% 10.97/2.87  # Maximum resident set size: 7124 pages
% 10.97/2.87  
%------------------------------------------------------------------------------