TSTP Solution File: LCL549+1 by E---3.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E---3.1
% Problem  : LCL549+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n010.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 2400s
% WCLimit  : 300s
% DateTime : Tue Oct 10 18:13:06 EDT 2023

% Result   : Theorem 0.34s 0.60s
% Output   : CNFRefutation 0.34s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   19
%            Number of leaves      :   36
% Syntax   : Number of formulae    :  139 (  72 unt;   0 def)
%            Number of atoms       :  256 (  44 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  195 (  78   ~;  78   |;  18   &)
%                                         (  13 <=>;   8  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :   21 (  19 usr;  19 prp; 0-2 aty)
%            Number of functors    :   30 (  30 usr;  22 con; 0-2 aty)
%            Number of variables   :  165 (   9 sgn;  62   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',modus_ponens) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,and(X1,X2)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',and_3) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',substitution_of_equivalents) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',op_equiv) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',hilbert_modus_ponens) ).

fof(hilbert_and_3,axiom,
    and_3,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',hilbert_and_3) ).

fof(substitution_of_equivalents_0001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',substitution_of_equivalents_0001) ).

fof(hilbert_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',hilbert_op_equiv) ).

fof(implies_1,axiom,
    ( implies_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,X1))) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',implies_1) ).

fof(implies_2,axiom,
    ( implies_2
  <=> ! [X1,X2] : is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',implies_2) ).

fof(hilbert_implies_1,axiom,
    implies_1,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',hilbert_implies_1) ).

fof(hilbert_implies_2,axiom,
    implies_2,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',hilbert_implies_2) ).

fof(and_1,axiom,
    ( and_1
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',and_1) ).

fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',op_implies_and) ).

fof(hilbert_and_1,axiom,
    and_1,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',hilbert_and_1) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',op_or) ).

fof(hilbert_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',hilbert_op_implies_and) ).

fof(or_3,axiom,
    ( or_3
  <=> ! [X1,X2,X3] : is_a_theorem(implies(implies(X1,X3),implies(implies(X2,X3),implies(or(X1,X2),X3)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',or_3) ).

fof(hilbert_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',hilbert_op_or) ).

fof(hilbert_or_3,axiom,
    or_3,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',hilbert_or_3) ).

fof(and_2,axiom,
    ( and_2
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X2)) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',and_2) ).

fof(hilbert_and_2,axiom,
    and_2,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',hilbert_and_2) ).

fof(op_possibly,axiom,
    ( op_possibly
   => ! [X1] : possibly(X1) = not(necessarily(not(X1))) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',op_possibly) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X1,X2] : strict_implies(X1,X2) = necessarily(implies(X1,X2)) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',op_strict_implies) ).

fof(km4b_op_possibly,axiom,
    op_possibly,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',km4b_op_possibly) ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',s1_0_op_strict_implies) ).

fof(axiom_4,axiom,
    ( axiom_4
  <=> ! [X1] : is_a_theorem(implies(necessarily(X1),necessarily(necessarily(X1)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',axiom_4) ).

fof(axiom_M,axiom,
    ( axiom_M
  <=> ! [X1] : is_a_theorem(implies(necessarily(X1),X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',axiom_M) ).

fof(km4b_axiom_4,axiom,
    axiom_4,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',km4b_axiom_4) ).

fof(km4b_axiom_M,axiom,
    axiom_M,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',km4b_axiom_M) ).

fof(necessitation,axiom,
    ( necessitation
  <=> ! [X1] :
        ( is_a_theorem(X1)
       => is_a_theorem(necessarily(X1)) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',necessitation) ).

fof(axiom_m10,axiom,
    ( axiom_m10
  <=> ! [X1] : is_a_theorem(strict_implies(possibly(X1),necessarily(possibly(X1)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',axiom_m10) ).

fof(s1_0_m10_axiom_m10,conjecture,
    axiom_m10,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',s1_0_m10_axiom_m10) ).

fof(km4b_necessitation,axiom,
    necessitation,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',km4b_necessitation) ).

fof(axiom_B,axiom,
    ( axiom_B
  <=> ! [X1] : is_a_theorem(implies(X1,necessarily(possibly(X1)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',axiom_B) ).

fof(km4b_axiom_B,axiom,
    axiom_B,
    file('/export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p',km4b_axiom_B) ).

fof(c_0_36,plain,
    ! [X7,X8] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X7)
        | ~ is_a_theorem(implies(X7,X8))
        | is_a_theorem(X8) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])]) ).

fof(c_0_37,plain,
    ! [X41,X42] :
      ( ( ~ and_3
        | is_a_theorem(implies(X41,implies(X42,and(X41,X42)))) )
      & ( ~ is_a_theorem(implies(esk18_0,implies(esk19_0,and(esk18_0,esk19_0))))
        | and_3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_3])])])]) ).

fof(c_0_38,plain,
    ! [X11,X12] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X11,X12))
        | X11 = X12 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])]) ).

fof(c_0_39,plain,
    ! [X125,X126] :
      ( ~ op_equiv
      | equiv(X125,X126) = and(implies(X125,X126),implies(X126,X125)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])]) ).

cnf(c_0_40,plain,
    ( is_a_theorem(X2)
    | ~ modus_ponens
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_36]) ).

cnf(c_0_41,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_ponens]) ).

cnf(c_0_42,plain,
    ( is_a_theorem(implies(X1,implies(X2,and(X1,X2))))
    | ~ and_3 ),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_43,plain,
    and_3,
    inference(split_conjunct,[status(thm)],[hilbert_and_3]) ).

cnf(c_0_44,plain,
    ( X1 = X2
    | ~ substitution_of_equivalents
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

cnf(c_0_45,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents_0001]) ).

cnf(c_0_46,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_47,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[hilbert_op_equiv]) ).

cnf(c_0_48,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_40,c_0_41])]) ).

cnf(c_0_49,plain,
    is_a_theorem(implies(X1,implies(X2,and(X1,X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_42,c_0_43])]) ).

fof(c_0_50,plain,
    ! [X19,X20] :
      ( ( ~ implies_1
        | is_a_theorem(implies(X19,implies(X20,X19))) )
      & ( ~ is_a_theorem(implies(esk7_0,implies(esk8_0,esk7_0)))
        | implies_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_1])])])]) ).

fof(c_0_51,plain,
    ! [X23,X24] :
      ( ( ~ implies_2
        | is_a_theorem(implies(implies(X23,implies(X23,X24)),implies(X23,X24))) )
      & ( ~ is_a_theorem(implies(implies(esk9_0,implies(esk9_0,esk10_0)),implies(esk9_0,esk10_0)))
        | implies_2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_2])])])]) ).

cnf(c_0_52,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_44,c_0_45])]) ).

cnf(c_0_53,plain,
    equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_46,c_0_47])]) ).

cnf(c_0_54,plain,
    ( is_a_theorem(implies(X1,and(X2,X1)))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_48,c_0_49]) ).

cnf(c_0_55,plain,
    ( is_a_theorem(implies(X1,implies(X2,X1)))
    | ~ implies_1 ),
    inference(split_conjunct,[status(thm)],[c_0_50]) ).

cnf(c_0_56,plain,
    implies_1,
    inference(split_conjunct,[status(thm)],[hilbert_implies_1]) ).

cnf(c_0_57,plain,
    ( is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2)))
    | ~ implies_2 ),
    inference(split_conjunct,[status(thm)],[c_0_51]) ).

cnf(c_0_58,plain,
    implies_2,
    inference(split_conjunct,[status(thm)],[hilbert_implies_2]) ).

cnf(c_0_59,plain,
    ( X1 = X2
    | ~ is_a_theorem(and(implies(X1,X2),implies(X2,X1))) ),
    inference(rw,[status(thm)],[c_0_52,c_0_53]) ).

cnf(c_0_60,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_48,c_0_54]) ).

cnf(c_0_61,plain,
    is_a_theorem(implies(X1,implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_55,c_0_56])]) ).

cnf(c_0_62,plain,
    is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_57,c_0_58])]) ).

fof(c_0_63,plain,
    ! [X33,X34] :
      ( ( ~ and_1
        | is_a_theorem(implies(and(X33,X34),X33)) )
      & ( ~ is_a_theorem(implies(and(esk14_0,esk15_0),esk14_0))
        | and_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_1])])])]) ).

fof(c_0_64,plain,
    ! [X121,X122] :
      ( ~ op_implies_and
      | implies(X121,X122) = not(and(X121,not(X122))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])]) ).

cnf(c_0_65,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_59,c_0_60]) ).

cnf(c_0_66,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_48,c_0_61]) ).

cnf(c_0_67,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X1,implies(X1,X2))) ),
    inference(spm,[status(thm)],[c_0_48,c_0_62]) ).

cnf(c_0_68,plain,
    ( is_a_theorem(implies(and(X1,X2),X1))
    | ~ and_1 ),
    inference(split_conjunct,[status(thm)],[c_0_63]) ).

cnf(c_0_69,plain,
    and_1,
    inference(split_conjunct,[status(thm)],[hilbert_and_1]) ).

fof(c_0_70,plain,
    ! [X117,X118] :
      ( ~ op_or
      | or(X117,X118) = not(and(not(X117),not(X118))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])]) ).

cnf(c_0_71,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_64]) ).

cnf(c_0_72,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[hilbert_op_implies_and]) ).

cnf(c_0_73,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_65,c_0_66]) ).

cnf(c_0_74,plain,
    is_a_theorem(implies(X1,and(X1,X1))),
    inference(spm,[status(thm)],[c_0_67,c_0_49]) ).

cnf(c_0_75,plain,
    is_a_theorem(implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_68,c_0_69])]) ).

fof(c_0_76,plain,
    ! [X53,X54,X55] :
      ( ( ~ or_3
        | is_a_theorem(implies(implies(X53,X55),implies(implies(X54,X55),implies(or(X53,X54),X55)))) )
      & ( ~ is_a_theorem(implies(implies(esk24_0,esk26_0),implies(implies(esk25_0,esk26_0),implies(or(esk24_0,esk25_0),esk26_0))))
        | or_3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[or_3])])])]) ).

cnf(c_0_77,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_70]) ).

cnf(c_0_78,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_71,c_0_72])]) ).

cnf(c_0_79,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[hilbert_op_or]) ).

cnf(c_0_80,plain,
    ( implies(X1,X2) = X2
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_73,c_0_61]) ).

cnf(c_0_81,plain,
    and(X1,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_65,c_0_74]),c_0_75])]) ).

cnf(c_0_82,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(implies(X3,X2),implies(or(X1,X3),X2))))
    | ~ or_3 ),
    inference(split_conjunct,[status(thm)],[c_0_76]) ).

cnf(c_0_83,plain,
    or(X1,X2) = implies(not(X1),X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_77,c_0_78]),c_0_79])]) ).

cnf(c_0_84,plain,
    or_3,
    inference(split_conjunct,[status(thm)],[hilbert_or_3]) ).

cnf(c_0_85,plain,
    implies(X1,implies(X2,X2)) = implies(X2,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_80,c_0_74]),c_0_81]),c_0_81]) ).

cnf(c_0_86,plain,
    is_a_theorem(implies(X1,X1)),
    inference(spm,[status(thm)],[c_0_67,c_0_61]) ).

fof(c_0_87,plain,
    ! [X37,X38] :
      ( ( ~ and_2
        | is_a_theorem(implies(and(X37,X38),X38)) )
      & ( ~ is_a_theorem(implies(and(esk16_0,esk17_0),esk17_0))
        | and_2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_2])])])]) ).

cnf(c_0_88,plain,
    is_a_theorem(implies(implies(X1,X2),implies(implies(X3,X2),implies(implies(not(X1),X3),X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_82,c_0_83]),c_0_84])]) ).

cnf(c_0_89,plain,
    ( implies(X1,X1) = X2
    | ~ is_a_theorem(implies(implies(X1,X1),X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_65,c_0_85]),c_0_86])]) ).

cnf(c_0_90,plain,
    ( is_a_theorem(implies(and(X1,X2),X2))
    | ~ and_2 ),
    inference(split_conjunct,[status(thm)],[c_0_87]) ).

cnf(c_0_91,plain,
    and_2,
    inference(split_conjunct,[status(thm)],[hilbert_and_2]) ).

fof(c_0_92,plain,
    ! [X205] :
      ( ~ op_possibly
      | possibly(X205) = not(necessarily(not(X205))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_possibly])])]) ).

fof(c_0_93,plain,
    ! [X207,X208] :
      ( ~ op_strict_implies
      | strict_implies(X207,X208) = necessarily(implies(X207,X208)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_implies])])]) ).

cnf(c_0_94,plain,
    is_a_theorem(implies(implies(X1,X2),implies(implies(not(X1),X1),X2))),
    inference(spm,[status(thm)],[c_0_67,c_0_88]) ).

cnf(c_0_95,plain,
    implies(X1,and(implies(X2,X2),X1)) = implies(X2,X2),
    inference(spm,[status(thm)],[c_0_89,c_0_49]) ).

cnf(c_0_96,plain,
    is_a_theorem(implies(and(X1,X2),X2)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_90,c_0_91])]) ).

cnf(c_0_97,plain,
    ( possibly(X1) = not(necessarily(not(X1)))
    | ~ op_possibly ),
    inference(split_conjunct,[status(thm)],[c_0_92]) ).

cnf(c_0_98,plain,
    op_possibly,
    inference(split_conjunct,[status(thm)],[km4b_op_possibly]) ).

cnf(c_0_99,plain,
    ( strict_implies(X1,X2) = necessarily(implies(X1,X2))
    | ~ op_strict_implies ),
    inference(split_conjunct,[status(thm)],[c_0_93]) ).

cnf(c_0_100,plain,
    op_strict_implies,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_implies]) ).

cnf(c_0_101,plain,
    implies(implies(not(X1),X1),X1) = implies(X1,X1),
    inference(spm,[status(thm)],[c_0_89,c_0_94]) ).

cnf(c_0_102,plain,
    and(implies(X1,X1),X2) = X2,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_65,c_0_95]),c_0_86]),c_0_96])]) ).

fof(c_0_103,plain,
    ! [X147] :
      ( ( ~ axiom_4
        | is_a_theorem(implies(necessarily(X147),necessarily(necessarily(X147)))) )
      & ( ~ is_a_theorem(implies(necessarily(esk66_0),necessarily(necessarily(esk66_0))))
        | axiom_4 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_4])])])]) ).

fof(c_0_104,plain,
    ! [X145] :
      ( ( ~ axiom_M
        | is_a_theorem(implies(necessarily(X145),X145)) )
      & ( ~ is_a_theorem(implies(necessarily(esk65_0),esk65_0))
        | axiom_M ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_M])])])]) ).

cnf(c_0_105,plain,
    not(necessarily(not(X1))) = possibly(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_97,c_0_98])]) ).

cnf(c_0_106,plain,
    necessarily(implies(X1,X2)) = strict_implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_99,c_0_100])]) ).

cnf(c_0_107,plain,
    implies(not(X1),X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_59,c_0_101]),c_0_102]),c_0_61])]) ).

cnf(c_0_108,plain,
    ( is_a_theorem(implies(necessarily(X1),necessarily(necessarily(X1))))
    | ~ axiom_4 ),
    inference(split_conjunct,[status(thm)],[c_0_103]) ).

cnf(c_0_109,plain,
    axiom_4,
    inference(split_conjunct,[status(thm)],[km4b_axiom_4]) ).

cnf(c_0_110,plain,
    ( is_a_theorem(implies(necessarily(X1),X1))
    | ~ axiom_M ),
    inference(split_conjunct,[status(thm)],[c_0_104]) ).

cnf(c_0_111,plain,
    axiom_M,
    inference(split_conjunct,[status(thm)],[km4b_axiom_M]) ).

fof(c_0_112,plain,
    ! [X127] :
      ( ( ~ necessitation
        | ~ is_a_theorem(X127)
        | is_a_theorem(necessarily(X127)) )
      & ( is_a_theorem(esk56_0)
        | necessitation )
      & ( ~ is_a_theorem(necessarily(esk56_0))
        | necessitation ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[necessitation])])])])]) ).

cnf(c_0_113,plain,
    not(strict_implies(X1,X2)) = possibly(and(X1,not(X2))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_105,c_0_78]),c_0_106]) ).

cnf(c_0_114,plain,
    strict_implies(not(X1),X1) = necessarily(X1),
    inference(spm,[status(thm)],[c_0_106,c_0_107]) ).

cnf(c_0_115,plain,
    is_a_theorem(implies(necessarily(X1),necessarily(necessarily(X1)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_108,c_0_109])]) ).

cnf(c_0_116,plain,
    is_a_theorem(implies(necessarily(X1),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_110,c_0_111])]) ).

fof(c_0_117,plain,
    ! [X203] :
      ( ( ~ axiom_m10
        | is_a_theorem(strict_implies(possibly(X203),necessarily(possibly(X203)))) )
      & ( ~ is_a_theorem(strict_implies(possibly(esk94_0),necessarily(possibly(esk94_0))))
        | axiom_m10 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m10])])])]) ).

fof(c_0_118,negated_conjecture,
    ~ axiom_m10,
    inference(fof_simplification,[status(thm)],[inference(assume_negation,[status(cth)],[s1_0_m10_axiom_m10])]) ).

cnf(c_0_119,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ necessitation
    | ~ is_a_theorem(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_112]) ).

cnf(c_0_120,plain,
    necessitation,
    inference(split_conjunct,[status(thm)],[km4b_necessitation]) ).

fof(c_0_121,plain,
    ! [X149] :
      ( ( ~ axiom_B
        | is_a_theorem(implies(X149,necessarily(possibly(X149)))) )
      & ( ~ is_a_theorem(implies(esk67_0,necessarily(possibly(esk67_0))))
        | axiom_B ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_B])])])]) ).

cnf(c_0_122,plain,
    not(necessarily(X1)) = possibly(not(X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_113,c_0_114]),c_0_81]) ).

cnf(c_0_123,plain,
    necessarily(necessarily(X1)) = necessarily(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_65,c_0_115]),c_0_116])]) ).

cnf(c_0_124,plain,
    not(not(X1)) = implies(not(X1),X1),
    inference(spm,[status(thm)],[c_0_78,c_0_81]) ).

cnf(c_0_125,plain,
    ( axiom_m10
    | ~ is_a_theorem(strict_implies(possibly(esk94_0),necessarily(possibly(esk94_0)))) ),
    inference(split_conjunct,[status(thm)],[c_0_117]) ).

cnf(c_0_126,negated_conjecture,
    ~ axiom_m10,
    inference(split_conjunct,[status(thm)],[c_0_118]) ).

cnf(c_0_127,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_119,c_0_120])]) ).

cnf(c_0_128,plain,
    ( is_a_theorem(implies(X1,necessarily(possibly(X1))))
    | ~ axiom_B ),
    inference(split_conjunct,[status(thm)],[c_0_121]) ).

cnf(c_0_129,plain,
    axiom_B,
    inference(split_conjunct,[status(thm)],[km4b_axiom_B]) ).

cnf(c_0_130,plain,
    possibly(possibly(not(X1))) = possibly(not(X1)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_122,c_0_123]),c_0_122]),c_0_122]) ).

cnf(c_0_131,plain,
    not(not(X1)) = X1,
    inference(rw,[status(thm)],[c_0_124,c_0_107]) ).

cnf(c_0_132,plain,
    ~ is_a_theorem(strict_implies(possibly(esk94_0),necessarily(possibly(esk94_0)))),
    inference(sr,[status(thm)],[c_0_125,c_0_126]) ).

cnf(c_0_133,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_127,c_0_106]) ).

cnf(c_0_134,plain,
    is_a_theorem(implies(X1,necessarily(possibly(X1)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_128,c_0_129])]) ).

cnf(c_0_135,plain,
    possibly(possibly(X1)) = possibly(X1),
    inference(spm,[status(thm)],[c_0_130,c_0_131]) ).

cnf(c_0_136,plain,
    ~ is_a_theorem(implies(possibly(esk94_0),necessarily(possibly(esk94_0)))),
    inference(spm,[status(thm)],[c_0_132,c_0_133]) ).

cnf(c_0_137,plain,
    is_a_theorem(implies(possibly(X1),necessarily(possibly(X1)))),
    inference(spm,[status(thm)],[c_0_134,c_0_135]) ).

cnf(c_0_138,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_136,c_0_137])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.14  % Problem    : LCL549+1 : TPTP v8.1.2. Released v3.3.0.
% 0.06/0.15  % Command    : run_E %s %d THM
% 0.14/0.36  % Computer : n010.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit   : 2400
% 0.14/0.36  % WCLimit    : 300
% 0.14/0.36  % DateTime   : Mon Oct  2 12:16:35 EDT 2023
% 0.14/0.36  % CPUTime    : 
% 0.21/0.51  Running first-order theorem proving
% 0.21/0.51  Running: /export/starexec/sandbox2/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --auto-schedule=8 --cpu-limit=300 /export/starexec/sandbox2/tmp/tmp.U0LBsvbjGz/E---3.1_10907.p
% 0.34/0.60  # Version: 3.1pre001
% 0.34/0.60  # Preprocessing class: FSLSSLSSSSSNFFN.
% 0.34/0.60  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.34/0.60  # Starting H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with 1500s (5) cores
% 0.34/0.60  # Starting new_bool_3 with 300s (1) cores
% 0.34/0.60  # Starting new_bool_1 with 300s (1) cores
% 0.34/0.60  # Starting sh5l with 300s (1) cores
% 0.34/0.60  # H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with pid 10985 completed with status 0
% 0.34/0.60  # Result found by H----_102_C18_F1_PI_AE_CS_SP_PS_S2S
% 0.34/0.60  # Preprocessing class: FSLSSLSSSSSNFFN.
% 0.34/0.60  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.34/0.60  # Starting H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with 1500s (5) cores
% 0.34/0.60  # No SInE strategy applied
% 0.34/0.60  # Search class: FGUSF-FFMM21-MFFFFFNN
% 0.34/0.60  # Scheduled 7 strats onto 5 cores with 1500 seconds (1500 total)
% 0.34/0.60  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 675s (1) cores
% 0.34/0.60  # Starting H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with 151s (1) cores
% 0.34/0.60  # Starting H----_047_C09_12_F1_AE_ND_CS_SP_S5PRR_S2S with 136s (1) cores
% 0.34/0.60  # Starting U----_207d_00_B07_00_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN with 136s (1) cores
% 0.34/0.60  # Starting G-E--_208_C09_12_F1_SE_CS_SP_PS_S5PRR_S04AN with 136s (1) cores
% 0.34/0.60  # U----_207d_00_B07_00_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN with pid 10998 completed with status 0
% 0.34/0.60  # Result found by U----_207d_00_B07_00_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN
% 0.34/0.60  # Preprocessing class: FSLSSLSSSSSNFFN.
% 0.34/0.60  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.34/0.60  # Starting H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with 1500s (5) cores
% 0.34/0.60  # No SInE strategy applied
% 0.34/0.60  # Search class: FGUSF-FFMM21-MFFFFFNN
% 0.34/0.60  # Scheduled 7 strats onto 5 cores with 1500 seconds (1500 total)
% 0.34/0.60  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 675s (1) cores
% 0.34/0.60  # Starting H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with 151s (1) cores
% 0.34/0.60  # Starting H----_047_C09_12_F1_AE_ND_CS_SP_S5PRR_S2S with 136s (1) cores
% 0.34/0.60  # Starting U----_207d_00_B07_00_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN with 136s (1) cores
% 0.34/0.60  # Preprocessing time       : 0.002 s
% 0.34/0.60  # Presaturation interreduction done
% 0.34/0.60  
% 0.34/0.60  # Proof found!
% 0.34/0.60  # SZS status Theorem
% 0.34/0.60  # SZS output start CNFRefutation
% See solution above
% 0.34/0.60  # Parsed axioms                        : 89
% 0.34/0.60  # Removed by relevancy pruning/SinE    : 0
% 0.34/0.60  # Initial clauses                      : 147
% 0.34/0.60  # Removed in clause preprocessing      : 0
% 0.34/0.60  # Initial clauses in saturation        : 147
% 0.34/0.60  # Processed clauses                    : 688
% 0.34/0.60  # ...of these trivial                  : 89
% 0.34/0.60  # ...subsumed                          : 166
% 0.34/0.60  # ...remaining for further processing  : 433
% 0.34/0.60  # Other redundant clauses eliminated   : 0
% 0.34/0.60  # Clauses deleted for lack of memory   : 0
% 0.34/0.60  # Backward-subsumed                    : 3
% 0.34/0.60  # Backward-rewritten                   : 73
% 0.34/0.60  # Generated clauses                    : 4776
% 0.34/0.60  # ...of the previous two non-redundant : 3107
% 0.34/0.60  # ...aggressively subsumed             : 0
% 0.34/0.60  # Contextual simplify-reflections      : 6
% 0.34/0.60  # Paramodulations                      : 4776
% 0.34/0.60  # Factorizations                       : 0
% 0.34/0.60  # NegExts                              : 0
% 0.34/0.60  # Equation resolutions                 : 0
% 0.34/0.60  # Total rewrite steps                  : 5826
% 0.34/0.60  # Propositional unsat checks           : 0
% 0.34/0.60  #    Propositional check models        : 0
% 0.34/0.60  #    Propositional check unsatisfiable : 0
% 0.34/0.60  #    Propositional clauses             : 0
% 0.34/0.60  #    Propositional clauses after purity: 0
% 0.34/0.60  #    Propositional unsat core size     : 0
% 0.34/0.60  #    Propositional preprocessing time  : 0.000
% 0.34/0.60  #    Propositional encoding time       : 0.000
% 0.34/0.60  #    Propositional solver time         : 0.000
% 0.34/0.60  #    Success case prop preproc time    : 0.000
% 0.34/0.60  #    Success case prop encoding time   : 0.000
% 0.34/0.60  #    Success case prop solver time     : 0.000
% 0.34/0.60  # Current number of processed clauses  : 244
% 0.34/0.60  #    Positive orientable unit clauses  : 145
% 0.34/0.60  #    Positive unorientable unit clauses: 2
% 0.34/0.60  #    Negative unit clauses             : 5
% 0.34/0.60  #    Non-unit-clauses                  : 92
% 0.34/0.60  # Current number of unprocessed clauses: 2653
% 0.34/0.60  # ...number of literals in the above   : 3676
% 0.34/0.60  # Current number of archived formulas  : 0
% 0.34/0.60  # Current number of archived clauses   : 189
% 0.34/0.60  # Clause-clause subsumption calls (NU) : 3672
% 0.34/0.60  # Rec. Clause-clause subsumption calls : 2141
% 0.34/0.60  # Non-unit clause-clause subsumptions  : 121
% 0.34/0.60  # Unit Clause-clause subsumption calls : 896
% 0.34/0.60  # Rewrite failures with RHS unbound    : 0
% 0.34/0.60  # BW rewrite match attempts            : 1061
% 0.34/0.60  # BW rewrite match successes           : 48
% 0.34/0.60  # Condensation attempts                : 0
% 0.34/0.60  # Condensation successes               : 0
% 0.34/0.60  # Termbank termtop insertions          : 64404
% 0.34/0.60  
% 0.34/0.60  # -------------------------------------------------
% 0.34/0.60  # User time                : 0.074 s
% 0.34/0.60  # System time              : 0.004 s
% 0.34/0.60  # Total time               : 0.078 s
% 0.34/0.60  # Maximum resident set size: 2256 pages
% 0.34/0.60  
% 0.34/0.60  # -------------------------------------------------
% 0.34/0.60  # User time                : 0.300 s
% 0.34/0.60  # System time              : 0.024 s
% 0.34/0.60  # Total time               : 0.324 s
% 0.34/0.60  # Maximum resident set size: 1768 pages
% 0.34/0.60  % E---3.1 exiting
% 0.34/0.60  % E---3.1 exiting
%------------------------------------------------------------------------------