TSTP Solution File: LCL548+1 by Enigma---0.5.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Enigma---0.5.1
% Problem  : LCL548+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : enigmatic-eprover.py %s %d 1

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 09:26:43 EDT 2022

% Result   : Theorem 9.23s 2.69s
% Output   : CNFRefutation 9.23s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :   34
% Syntax   : Number of formulae    :  126 (  63 unt;   0 def)
%            Number of atoms       :  236 (  34 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  184 (  74   ~;  73   |;  17   &)
%                                         (  12 <=>;   8  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :   20 (  18 usr;  18 prp; 0-2 aty)
%            Number of functors    :   28 (  28 usr;  20 con; 0-2 aty)
%            Number of variables   :  143 (   7 sgn  58   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',modus_ponens) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,and(X1,X2)))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',and_3) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',substitution_of_equivalents) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_equiv) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_modus_ponens) ).

fof(hilbert_and_3,axiom,
    and_3,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_and_3) ).

fof(implies_2,axiom,
    ( implies_2
  <=> ! [X1,X2] : is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',implies_2) ).

fof(substitution_of_equivalents_001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',substitution_of_equivalents) ).

fof(hilbert_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_op_equiv) ).

fof(hilbert_implies_2,axiom,
    implies_2,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_implies_2) ).

fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_implies_and) ).

fof(and_1,axiom,
    ( and_1
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',and_1) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_or) ).

fof(hilbert_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_op_implies_and) ).

fof(hilbert_and_1,axiom,
    and_1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_and_1) ).

fof(modus_tollens,axiom,
    ( modus_tollens
  <=> ! [X1,X2] : is_a_theorem(implies(implies(not(X2),not(X1)),implies(X1,X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',modus_tollens) ).

fof(hilbert_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_op_or) ).

fof(or_1,axiom,
    ( or_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,or(X1,X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',or_1) ).

fof(hilbert_modus_tollens,axiom,
    modus_tollens,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_modus_tollens) ).

fof(hilbert_or_1,axiom,
    or_1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_or_1) ).

fof(s1_0_m6s3m9b_axiom_m9,conjecture,
    axiom_m9,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',s1_0_m6s3m9b_axiom_m9) ).

fof(necessitation,axiom,
    ( necessitation
  <=> ! [X1] :
        ( is_a_theorem(X1)
       => is_a_theorem(necessarily(X1)) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',necessitation) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X1,X2] : strict_implies(X1,X2) = necessarily(implies(X1,X2)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+1.ax',op_strict_implies) ).

fof(op_possibly,axiom,
    ( op_possibly
   => ! [X1] : possibly(X1) = not(necessarily(not(X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+1.ax',op_possibly) ).

fof(axiom_4,axiom,
    ( axiom_4
  <=> ! [X1] : is_a_theorem(implies(necessarily(X1),necessarily(necessarily(X1)))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_4) ).

fof(axiom_M,axiom,
    ( axiom_M
  <=> ! [X1] : is_a_theorem(implies(necessarily(X1),X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_M) ).

fof(axiom_m9,axiom,
    ( axiom_m9
  <=> ! [X1] : is_a_theorem(strict_implies(possibly(possibly(X1)),possibly(X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_m9) ).

fof(km4b_necessitation,axiom,
    necessitation,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+3.ax',km4b_necessitation) ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',s1_0_op_strict_implies) ).

fof(km4b_op_possibly,axiom,
    op_possibly,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+3.ax',km4b_op_possibly) ).

fof(km4b_axiom_4,axiom,
    axiom_4,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+3.ax',km4b_axiom_4) ).

fof(km4b_axiom_M,axiom,
    axiom_M,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+3.ax',km4b_axiom_M) ).

fof(implies_1,axiom,
    ( implies_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',implies_1) ).

fof(hilbert_implies_1,axiom,
    implies_1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_implies_1) ).

fof(c_0_34,plain,
    ! [X7,X8] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X7)
        | ~ is_a_theorem(implies(X7,X8))
        | is_a_theorem(X8) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])]) ).

fof(c_0_35,plain,
    ! [X41,X42] :
      ( ( ~ and_3
        | is_a_theorem(implies(X41,implies(X42,and(X41,X42)))) )
      & ( ~ is_a_theorem(implies(esk18_0,implies(esk19_0,and(esk18_0,esk19_0))))
        | and_3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_3])])])]) ).

fof(c_0_36,plain,
    ! [X11,X12] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X11,X12))
        | X11 = X12 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])]) ).

fof(c_0_37,plain,
    ! [X125,X126] :
      ( ~ op_equiv
      | equiv(X125,X126) = and(implies(X125,X126),implies(X126,X125)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])]) ).

cnf(c_0_38,plain,
    ( is_a_theorem(X2)
    | ~ modus_ponens
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_34]) ).

cnf(c_0_39,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_ponens]) ).

cnf(c_0_40,plain,
    ( is_a_theorem(implies(X1,implies(X2,and(X1,X2))))
    | ~ and_3 ),
    inference(split_conjunct,[status(thm)],[c_0_35]) ).

cnf(c_0_41,plain,
    and_3,
    inference(split_conjunct,[status(thm)],[hilbert_and_3]) ).

fof(c_0_42,plain,
    ! [X23,X24] :
      ( ( ~ implies_2
        | is_a_theorem(implies(implies(X23,implies(X23,X24)),implies(X23,X24))) )
      & ( ~ is_a_theorem(implies(implies(esk9_0,implies(esk9_0,esk10_0)),implies(esk9_0,esk10_0)))
        | implies_2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_2])])])]) ).

cnf(c_0_43,plain,
    ( X1 = X2
    | ~ substitution_of_equivalents
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_36]) ).

cnf(c_0_44,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents]) ).

cnf(c_0_45,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_46,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[hilbert_op_equiv]) ).

cnf(c_0_47,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_38,c_0_39])]) ).

cnf(c_0_48,plain,
    is_a_theorem(implies(X1,implies(X2,and(X1,X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_40,c_0_41])]) ).

cnf(c_0_49,plain,
    ( is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2)))
    | ~ implies_2 ),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

cnf(c_0_50,plain,
    implies_2,
    inference(split_conjunct,[status(thm)],[hilbert_implies_2]) ).

fof(c_0_51,plain,
    ! [X121,X122] :
      ( ~ op_implies_and
      | implies(X121,X122) = not(and(X121,not(X122))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])]) ).

cnf(c_0_52,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_43,c_0_44])]) ).

cnf(c_0_53,plain,
    equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_45,c_0_46])]) ).

cnf(c_0_54,plain,
    ( is_a_theorem(implies(X1,and(X2,X1)))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_47,c_0_48]) ).

cnf(c_0_55,plain,
    is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_49,c_0_50])]) ).

fof(c_0_56,plain,
    ! [X33,X34] :
      ( ( ~ and_1
        | is_a_theorem(implies(and(X33,X34),X33)) )
      & ( ~ is_a_theorem(implies(and(esk14_0,esk15_0),esk14_0))
        | and_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_1])])])]) ).

fof(c_0_57,plain,
    ! [X117,X118] :
      ( ~ op_or
      | or(X117,X118) = not(and(not(X117),not(X118))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])]) ).

cnf(c_0_58,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_51]) ).

cnf(c_0_59,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[hilbert_op_implies_and]) ).

cnf(c_0_60,plain,
    ( X1 = X2
    | ~ is_a_theorem(and(implies(X1,X2),implies(X2,X1))) ),
    inference(spm,[status(thm)],[c_0_52,c_0_53]) ).

cnf(c_0_61,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_47,c_0_54]) ).

cnf(c_0_62,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X1,implies(X1,X2))) ),
    inference(spm,[status(thm)],[c_0_47,c_0_55]) ).

cnf(c_0_63,plain,
    ( is_a_theorem(implies(and(X1,X2),X1))
    | ~ and_1 ),
    inference(split_conjunct,[status(thm)],[c_0_56]) ).

cnf(c_0_64,plain,
    and_1,
    inference(split_conjunct,[status(thm)],[hilbert_and_1]) ).

fof(c_0_65,plain,
    ! [X15,X16] :
      ( ( ~ modus_tollens
        | is_a_theorem(implies(implies(not(X16),not(X15)),implies(X15,X16))) )
      & ( ~ is_a_theorem(implies(implies(not(esk6_0),not(esk5_0)),implies(esk5_0,esk6_0)))
        | modus_tollens ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_tollens])])])]) ).

cnf(c_0_66,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_57]) ).

cnf(c_0_67,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_58,c_0_59])]) ).

cnf(c_0_68,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[hilbert_op_or]) ).

fof(c_0_69,plain,
    ! [X45,X46] :
      ( ( ~ or_1
        | is_a_theorem(implies(X45,or(X45,X46))) )
      & ( ~ is_a_theorem(implies(esk20_0,or(esk20_0,esk21_0)))
        | or_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[or_1])])])]) ).

cnf(c_0_70,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_60,c_0_61]) ).

cnf(c_0_71,plain,
    is_a_theorem(implies(X1,and(X1,X1))),
    inference(spm,[status(thm)],[c_0_62,c_0_48]) ).

cnf(c_0_72,plain,
    is_a_theorem(implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_63,c_0_64])]) ).

cnf(c_0_73,plain,
    ( is_a_theorem(implies(implies(not(X1),not(X2)),implies(X2,X1)))
    | ~ modus_tollens ),
    inference(split_conjunct,[status(thm)],[c_0_65]) ).

cnf(c_0_74,plain,
    implies(not(X1),X2) = or(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_66,c_0_67]),c_0_68])]) ).

cnf(c_0_75,plain,
    modus_tollens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_tollens]) ).

cnf(c_0_76,plain,
    ( is_a_theorem(implies(X1,or(X1,X2)))
    | ~ or_1 ),
    inference(split_conjunct,[status(thm)],[c_0_69]) ).

cnf(c_0_77,plain,
    or_1,
    inference(split_conjunct,[status(thm)],[hilbert_or_1]) ).

cnf(c_0_78,plain,
    and(X1,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_70,c_0_71]),c_0_72])]) ).

cnf(c_0_79,plain,
    is_a_theorem(implies(or(X1,not(X2)),implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_73,c_0_74]),c_0_75])]) ).

cnf(c_0_80,plain,
    is_a_theorem(implies(X1,or(X1,X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_76,c_0_77])]) ).

cnf(c_0_81,plain,
    not(not(X1)) = or(X1,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67,c_0_78]),c_0_74]) ).

cnf(c_0_82,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(or(X2,not(X1))) ),
    inference(spm,[status(thm)],[c_0_47,c_0_79]) ).

fof(c_0_83,negated_conjecture,
    ~ axiom_m9,
    inference(assume_negation,[status(cth)],[s1_0_m6s3m9b_axiom_m9]) ).

fof(c_0_84,plain,
    ! [X127] :
      ( ( ~ necessitation
        | ~ is_a_theorem(X127)
        | is_a_theorem(necessarily(X127)) )
      & ( is_a_theorem(esk56_0)
        | necessitation )
      & ( ~ is_a_theorem(necessarily(esk56_0))
        | necessitation ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[necessitation])])])])]) ).

fof(c_0_85,plain,
    ! [X207,X208] :
      ( ~ op_strict_implies
      | strict_implies(X207,X208) = necessarily(implies(X207,X208)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_implies])])]) ).

fof(c_0_86,plain,
    ! [X205] :
      ( ~ op_possibly
      | possibly(X205) = not(necessarily(not(X205))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_possibly])])]) ).

cnf(c_0_87,plain,
    is_a_theorem(implies(X1,not(not(X1)))),
    inference(spm,[status(thm)],[c_0_80,c_0_81]) ).

cnf(c_0_88,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(or(X2,or(X1,X1))) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_82,c_0_81]),c_0_74]) ).

cnf(c_0_89,plain,
    is_a_theorem(or(X1,or(not(X1),X2))),
    inference(spm,[status(thm)],[c_0_80,c_0_74]) ).

fof(c_0_90,plain,
    ! [X147] :
      ( ( ~ axiom_4
        | is_a_theorem(implies(necessarily(X147),necessarily(necessarily(X147)))) )
      & ( ~ is_a_theorem(implies(necessarily(esk66_0),necessarily(necessarily(esk66_0))))
        | axiom_4 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_4])])])]) ).

fof(c_0_91,plain,
    ! [X145] :
      ( ( ~ axiom_M
        | is_a_theorem(implies(necessarily(X145),X145)) )
      & ( ~ is_a_theorem(implies(necessarily(esk65_0),esk65_0))
        | axiom_M ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_M])])])]) ).

fof(c_0_92,plain,
    ! [X201] :
      ( ( ~ axiom_m9
        | is_a_theorem(strict_implies(possibly(possibly(X201)),possibly(X201))) )
      & ( ~ is_a_theorem(strict_implies(possibly(possibly(esk93_0)),possibly(esk93_0)))
        | axiom_m9 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m9])])])]) ).

fof(c_0_93,negated_conjecture,
    ~ axiom_m9,
    inference(fof_simplification,[status(thm)],[c_0_83]) ).

cnf(c_0_94,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ necessitation
    | ~ is_a_theorem(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_84]) ).

cnf(c_0_95,plain,
    necessitation,
    inference(split_conjunct,[status(thm)],[km4b_necessitation]) ).

cnf(c_0_96,plain,
    ( strict_implies(X1,X2) = necessarily(implies(X1,X2))
    | ~ op_strict_implies ),
    inference(split_conjunct,[status(thm)],[c_0_85]) ).

cnf(c_0_97,plain,
    op_strict_implies,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_implies]) ).

cnf(c_0_98,plain,
    ( possibly(X1) = not(necessarily(not(X1)))
    | ~ op_possibly ),
    inference(split_conjunct,[status(thm)],[c_0_86]) ).

cnf(c_0_99,plain,
    op_possibly,
    inference(split_conjunct,[status(thm)],[km4b_op_possibly]) ).

cnf(c_0_100,plain,
    ( not(not(X1)) = X1
    | ~ is_a_theorem(or(not(X1),X1)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_70,c_0_87]),c_0_74]) ).

cnf(c_0_101,plain,
    is_a_theorem(or(not(X1),X1)),
    inference(spm,[status(thm)],[c_0_88,c_0_89]) ).

cnf(c_0_102,plain,
    ( is_a_theorem(implies(necessarily(X1),necessarily(necessarily(X1))))
    | ~ axiom_4 ),
    inference(split_conjunct,[status(thm)],[c_0_90]) ).

cnf(c_0_103,plain,
    axiom_4,
    inference(split_conjunct,[status(thm)],[km4b_axiom_4]) ).

cnf(c_0_104,plain,
    ( is_a_theorem(implies(necessarily(X1),X1))
    | ~ axiom_M ),
    inference(split_conjunct,[status(thm)],[c_0_91]) ).

cnf(c_0_105,plain,
    axiom_M,
    inference(split_conjunct,[status(thm)],[km4b_axiom_M]) ).

fof(c_0_106,plain,
    ! [X19,X20] :
      ( ( ~ implies_1
        | is_a_theorem(implies(X19,implies(X20,X19))) )
      & ( ~ is_a_theorem(implies(esk7_0,implies(esk8_0,esk7_0)))
        | implies_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_1])])])]) ).

cnf(c_0_107,plain,
    ( axiom_m9
    | ~ is_a_theorem(strict_implies(possibly(possibly(esk93_0)),possibly(esk93_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_92]) ).

cnf(c_0_108,negated_conjecture,
    ~ axiom_m9,
    inference(split_conjunct,[status(thm)],[c_0_93]) ).

cnf(c_0_109,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_94,c_0_95])]) ).

cnf(c_0_110,plain,
    necessarily(implies(X1,X2)) = strict_implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_96,c_0_97])]) ).

cnf(c_0_111,plain,
    not(necessarily(not(X1))) = possibly(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_98,c_0_99])]) ).

cnf(c_0_112,plain,
    not(not(X1)) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_100,c_0_101])]) ).

cnf(c_0_113,plain,
    is_a_theorem(implies(necessarily(X1),necessarily(necessarily(X1)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_102,c_0_103])]) ).

cnf(c_0_114,plain,
    is_a_theorem(implies(necessarily(X1),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_104,c_0_105])]) ).

cnf(c_0_115,plain,
    ( is_a_theorem(implies(X1,implies(X2,X1)))
    | ~ implies_1 ),
    inference(split_conjunct,[status(thm)],[c_0_106]) ).

cnf(c_0_116,plain,
    implies_1,
    inference(split_conjunct,[status(thm)],[hilbert_implies_1]) ).

cnf(c_0_117,plain,
    ~ is_a_theorem(strict_implies(possibly(possibly(esk93_0)),possibly(esk93_0))),
    inference(sr,[status(thm)],[c_0_107,c_0_108]) ).

cnf(c_0_118,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_109,c_0_110]) ).

cnf(c_0_119,plain,
    possibly(not(X1)) = not(necessarily(X1)),
    inference(spm,[status(thm)],[c_0_111,c_0_112]) ).

cnf(c_0_120,plain,
    necessarily(necessarily(X1)) = necessarily(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_70,c_0_113]),c_0_114])]) ).

cnf(c_0_121,plain,
    is_a_theorem(implies(X1,implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_115,c_0_116])]) ).

cnf(c_0_122,plain,
    ~ is_a_theorem(implies(possibly(possibly(esk93_0)),possibly(esk93_0))),
    inference(spm,[status(thm)],[c_0_117,c_0_118]) ).

cnf(c_0_123,plain,
    possibly(possibly(X1)) = possibly(X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_119,c_0_111]),c_0_120]),c_0_111]) ).

cnf(c_0_124,plain,
    is_a_theorem(implies(X1,X1)),
    inference(spm,[status(thm)],[c_0_62,c_0_121]) ).

cnf(c_0_125,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_122,c_0_123]),c_0_124])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.13  % Problem  : LCL548+1 : TPTP v8.1.0. Released v3.3.0.
% 0.08/0.14  % Command  : enigmatic-eprover.py %s %d 1
% 0.14/0.35  % Computer : n026.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 600
% 0.14/0.35  % DateTime : Mon Jul  4 09:28:23 EDT 2022
% 0.14/0.36  % CPUTime  : 
% 0.22/0.47  # ENIGMATIC: Selected SinE mode:
% 0.22/0.48  # Parsing /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.22/0.48  # Filter: axfilter_auto   0 goes into file theBenchmark_axfilter_auto   0.p
% 0.22/0.48  # Filter: axfilter_auto   1 goes into file theBenchmark_axfilter_auto   1.p
% 0.22/0.48  # Filter: axfilter_auto   2 goes into file theBenchmark_axfilter_auto   2.p
% 9.23/2.69  # ENIGMATIC: Solved by autoschedule:
% 9.23/2.69  # No SInE strategy applied
% 9.23/2.69  # Trying AutoSched0 for 150 seconds
% 9.23/2.69  # AutoSched0-Mode selected heuristic G_E___208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI
% 9.23/2.69  # and selection function SelectComplexExceptUniqMaxHorn.
% 9.23/2.69  #
% 9.23/2.69  # Preprocessing time       : 0.031 s
% 9.23/2.69  # Presaturation interreduction done
% 9.23/2.69  
% 9.23/2.69  # Proof found!
% 9.23/2.69  # SZS status Theorem
% 9.23/2.69  # SZS output start CNFRefutation
% See solution above
% 9.23/2.69  # Training examples: 0 positive, 0 negative
% 9.23/2.69  
% 9.23/2.69  # -------------------------------------------------
% 9.23/2.69  # User time                : 0.271 s
% 9.23/2.69  # System time              : 0.023 s
% 9.23/2.69  # Total time               : 0.294 s
% 9.23/2.69  # Maximum resident set size: 7124 pages
% 9.23/2.69  
%------------------------------------------------------------------------------