TSTP Solution File: LCL539+1 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : LCL539+1 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art05.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Wed Dec 29 13:52:41 EST 2010

% Result   : Theorem 1.19s
% Output   : Solution 1.19s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP7734/LCL539+1.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... 
% found
% SZS status THM for /tmp/SystemOnTPTP7734/LCL539+1.tptp
% SZS output start Solution for /tmp/SystemOnTPTP7734/LCL539+1.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 7830
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.00 WC
% # Preprocessing time     : 0.023 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(1, axiom,modus_ponens,file('/tmp/SRASS.s.p', hilbert_modus_ponens)).
% fof(5, axiom,substitution_of_equivalents,file('/tmp/SRASS.s.p', substitution_of_equivalents)).
% fof(9, axiom,op_strict_equiv,file('/tmp/SRASS.s.p', s1_0_op_strict_equiv)).
% fof(10, axiom,(substitution_strict_equiv<=>![X1]:![X2]:(is_a_theorem(strict_equiv(X1,X2))=>X1=X2)),file('/tmp/SRASS.s.p', substitution_strict_equiv)).
% fof(13, axiom,op_equiv,file('/tmp/SRASS.s.p', hilbert_op_equiv)).
% fof(14, axiom,and_1,file('/tmp/SRASS.s.p', hilbert_and_1)).
% fof(15, axiom,and_2,file('/tmp/SRASS.s.p', hilbert_and_2)).
% fof(16, axiom,and_3,file('/tmp/SRASS.s.p', hilbert_and_3)).
% fof(21, axiom,op_strict_implies,file('/tmp/SRASS.s.p', s1_0_op_strict_implies)).
% fof(23, axiom,(op_strict_equiv=>![X1]:![X2]:strict_equiv(X1,X2)=and(strict_implies(X1,X2),strict_implies(X2,X1))),file('/tmp/SRASS.s.p', op_strict_equiv)).
% fof(24, axiom,(substitution_of_equivalents<=>![X1]:![X2]:(is_a_theorem(equiv(X1,X2))=>X1=X2)),file('/tmp/SRASS.s.p', substitution_of_equivalents)).
% fof(30, axiom,axiom_M,file('/tmp/SRASS.s.p', km4b_axiom_M)).
% fof(43, axiom,(op_strict_implies=>![X1]:![X2]:strict_implies(X1,X2)=necessarily(implies(X1,X2))),file('/tmp/SRASS.s.p', op_strict_implies)).
% fof(47, axiom,(op_equiv=>![X1]:![X2]:equiv(X1,X2)=and(implies(X1,X2),implies(X2,X1))),file('/tmp/SRASS.s.p', op_equiv)).
% fof(50, axiom,(modus_ponens<=>![X1]:![X2]:((is_a_theorem(X1)&is_a_theorem(implies(X1,X2)))=>is_a_theorem(X2))),file('/tmp/SRASS.s.p', modus_ponens)).
% fof(63, axiom,(and_1<=>![X1]:![X2]:is_a_theorem(implies(and(X1,X2),X1))),file('/tmp/SRASS.s.p', and_1)).
% fof(64, axiom,(and_2<=>![X1]:![X2]:is_a_theorem(implies(and(X1,X2),X2))),file('/tmp/SRASS.s.p', and_2)).
% fof(65, axiom,(and_3<=>![X1]:![X2]:is_a_theorem(implies(X1,implies(X2,and(X1,X2))))),file('/tmp/SRASS.s.p', and_3)).
% fof(79, axiom,(axiom_M<=>![X1]:is_a_theorem(implies(necessarily(X1),X1))),file('/tmp/SRASS.s.p', axiom_M)).
% fof(89, conjecture,substitution_strict_equiv,file('/tmp/SRASS.s.p', s1_0_substitution_strict_equiv)).
% fof(90, negated_conjecture,~(substitution_strict_equiv),inference(assume_negation,[status(cth)],[89])).
% fof(91, negated_conjecture,~(substitution_strict_equiv),inference(fof_simplification,[status(thm)],[90,theory(equality)])).
% cnf(92,plain,(modus_ponens),inference(split_conjunct,[status(thm)],[1])).
% cnf(96,plain,(substitution_of_equivalents),inference(split_conjunct,[status(thm)],[5])).
% cnf(100,plain,(op_strict_equiv),inference(split_conjunct,[status(thm)],[9])).
% fof(101, plain,((~(substitution_strict_equiv)|![X1]:![X2]:(~(is_a_theorem(strict_equiv(X1,X2)))|X1=X2))&(?[X1]:?[X2]:(is_a_theorem(strict_equiv(X1,X2))&~(X1=X2))|substitution_strict_equiv)),inference(fof_nnf,[status(thm)],[10])).
% fof(102, plain,((~(substitution_strict_equiv)|![X3]:![X4]:(~(is_a_theorem(strict_equiv(X3,X4)))|X3=X4))&(?[X5]:?[X6]:(is_a_theorem(strict_equiv(X5,X6))&~(X5=X6))|substitution_strict_equiv)),inference(variable_rename,[status(thm)],[101])).
% fof(103, plain,((~(substitution_strict_equiv)|![X3]:![X4]:(~(is_a_theorem(strict_equiv(X3,X4)))|X3=X4))&((is_a_theorem(strict_equiv(esk1_0,esk2_0))&~(esk1_0=esk2_0))|substitution_strict_equiv)),inference(skolemize,[status(esa)],[102])).
% fof(104, plain,![X3]:![X4]:(((~(is_a_theorem(strict_equiv(X3,X4)))|X3=X4)|~(substitution_strict_equiv))&((is_a_theorem(strict_equiv(esk1_0,esk2_0))&~(esk1_0=esk2_0))|substitution_strict_equiv)),inference(shift_quantors,[status(thm)],[103])).
% fof(105, plain,![X3]:![X4]:(((~(is_a_theorem(strict_equiv(X3,X4)))|X3=X4)|~(substitution_strict_equiv))&((is_a_theorem(strict_equiv(esk1_0,esk2_0))|substitution_strict_equiv)&(~(esk1_0=esk2_0)|substitution_strict_equiv))),inference(distribute,[status(thm)],[104])).
% cnf(106,plain,(substitution_strict_equiv|esk1_0!=esk2_0),inference(split_conjunct,[status(thm)],[105])).
% cnf(107,plain,(substitution_strict_equiv|is_a_theorem(strict_equiv(esk1_0,esk2_0))),inference(split_conjunct,[status(thm)],[105])).
% cnf(111,plain,(op_equiv),inference(split_conjunct,[status(thm)],[13])).
% cnf(112,plain,(and_1),inference(split_conjunct,[status(thm)],[14])).
% cnf(113,plain,(and_2),inference(split_conjunct,[status(thm)],[15])).
% cnf(114,plain,(and_3),inference(split_conjunct,[status(thm)],[16])).
% cnf(119,plain,(op_strict_implies),inference(split_conjunct,[status(thm)],[21])).
% fof(121, plain,(~(op_strict_equiv)|![X1]:![X2]:strict_equiv(X1,X2)=and(strict_implies(X1,X2),strict_implies(X2,X1))),inference(fof_nnf,[status(thm)],[23])).
% fof(122, plain,(~(op_strict_equiv)|![X3]:![X4]:strict_equiv(X3,X4)=and(strict_implies(X3,X4),strict_implies(X4,X3))),inference(variable_rename,[status(thm)],[121])).
% fof(123, plain,![X3]:![X4]:(strict_equiv(X3,X4)=and(strict_implies(X3,X4),strict_implies(X4,X3))|~(op_strict_equiv)),inference(shift_quantors,[status(thm)],[122])).
% cnf(124,plain,(strict_equiv(X1,X2)=and(strict_implies(X1,X2),strict_implies(X2,X1))|~op_strict_equiv),inference(split_conjunct,[status(thm)],[123])).
% fof(125, plain,((~(substitution_of_equivalents)|![X1]:![X2]:(~(is_a_theorem(equiv(X1,X2)))|X1=X2))&(?[X1]:?[X2]:(is_a_theorem(equiv(X1,X2))&~(X1=X2))|substitution_of_equivalents)),inference(fof_nnf,[status(thm)],[24])).
% fof(126, plain,((~(substitution_of_equivalents)|![X3]:![X4]:(~(is_a_theorem(equiv(X3,X4)))|X3=X4))&(?[X5]:?[X6]:(is_a_theorem(equiv(X5,X6))&~(X5=X6))|substitution_of_equivalents)),inference(variable_rename,[status(thm)],[125])).
% fof(127, plain,((~(substitution_of_equivalents)|![X3]:![X4]:(~(is_a_theorem(equiv(X3,X4)))|X3=X4))&((is_a_theorem(equiv(esk3_0,esk4_0))&~(esk3_0=esk4_0))|substitution_of_equivalents)),inference(skolemize,[status(esa)],[126])).
% fof(128, plain,![X3]:![X4]:(((~(is_a_theorem(equiv(X3,X4)))|X3=X4)|~(substitution_of_equivalents))&((is_a_theorem(equiv(esk3_0,esk4_0))&~(esk3_0=esk4_0))|substitution_of_equivalents)),inference(shift_quantors,[status(thm)],[127])).
% fof(129, plain,![X3]:![X4]:(((~(is_a_theorem(equiv(X3,X4)))|X3=X4)|~(substitution_of_equivalents))&((is_a_theorem(equiv(esk3_0,esk4_0))|substitution_of_equivalents)&(~(esk3_0=esk4_0)|substitution_of_equivalents))),inference(distribute,[status(thm)],[128])).
% cnf(132,plain,(X1=X2|~substitution_of_equivalents|~is_a_theorem(equiv(X1,X2))),inference(split_conjunct,[status(thm)],[129])).
% cnf(138,plain,(axiom_M),inference(split_conjunct,[status(thm)],[30])).
% fof(201, plain,(~(op_strict_implies)|![X1]:![X2]:strict_implies(X1,X2)=necessarily(implies(X1,X2))),inference(fof_nnf,[status(thm)],[43])).
% fof(202, plain,(~(op_strict_implies)|![X3]:![X4]:strict_implies(X3,X4)=necessarily(implies(X3,X4))),inference(variable_rename,[status(thm)],[201])).
% fof(203, plain,![X3]:![X4]:(strict_implies(X3,X4)=necessarily(implies(X3,X4))|~(op_strict_implies)),inference(shift_quantors,[status(thm)],[202])).
% cnf(204,plain,(strict_implies(X1,X2)=necessarily(implies(X1,X2))|~op_strict_implies),inference(split_conjunct,[status(thm)],[203])).
% fof(217, plain,(~(op_equiv)|![X1]:![X2]:equiv(X1,X2)=and(implies(X1,X2),implies(X2,X1))),inference(fof_nnf,[status(thm)],[47])).
% fof(218, plain,(~(op_equiv)|![X3]:![X4]:equiv(X3,X4)=and(implies(X3,X4),implies(X4,X3))),inference(variable_rename,[status(thm)],[217])).
% fof(219, plain,![X3]:![X4]:(equiv(X3,X4)=and(implies(X3,X4),implies(X4,X3))|~(op_equiv)),inference(shift_quantors,[status(thm)],[218])).
% cnf(220,plain,(equiv(X1,X2)=and(implies(X1,X2),implies(X2,X1))|~op_equiv),inference(split_conjunct,[status(thm)],[219])).
% fof(239, plain,((~(modus_ponens)|![X1]:![X2]:((~(is_a_theorem(X1))|~(is_a_theorem(implies(X1,X2))))|is_a_theorem(X2)))&(?[X1]:?[X2]:((is_a_theorem(X1)&is_a_theorem(implies(X1,X2)))&~(is_a_theorem(X2)))|modus_ponens)),inference(fof_nnf,[status(thm)],[50])).
% fof(240, plain,((~(modus_ponens)|![X3]:![X4]:((~(is_a_theorem(X3))|~(is_a_theorem(implies(X3,X4))))|is_a_theorem(X4)))&(?[X5]:?[X6]:((is_a_theorem(X5)&is_a_theorem(implies(X5,X6)))&~(is_a_theorem(X6)))|modus_ponens)),inference(variable_rename,[status(thm)],[239])).
% fof(241, plain,((~(modus_ponens)|![X3]:![X4]:((~(is_a_theorem(X3))|~(is_a_theorem(implies(X3,X4))))|is_a_theorem(X4)))&(((is_a_theorem(esk30_0)&is_a_theorem(implies(esk30_0,esk31_0)))&~(is_a_theorem(esk31_0)))|modus_ponens)),inference(skolemize,[status(esa)],[240])).
% fof(242, plain,![X3]:![X4]:((((~(is_a_theorem(X3))|~(is_a_theorem(implies(X3,X4))))|is_a_theorem(X4))|~(modus_ponens))&(((is_a_theorem(esk30_0)&is_a_theorem(implies(esk30_0,esk31_0)))&~(is_a_theorem(esk31_0)))|modus_ponens)),inference(shift_quantors,[status(thm)],[241])).
% fof(243, plain,![X3]:![X4]:((((~(is_a_theorem(X3))|~(is_a_theorem(implies(X3,X4))))|is_a_theorem(X4))|~(modus_ponens))&(((is_a_theorem(esk30_0)|modus_ponens)&(is_a_theorem(implies(esk30_0,esk31_0))|modus_ponens))&(~(is_a_theorem(esk31_0))|modus_ponens))),inference(distribute,[status(thm)],[242])).
% cnf(247,plain,(is_a_theorem(X1)|~modus_ponens|~is_a_theorem(implies(X2,X1))|~is_a_theorem(X2)),inference(split_conjunct,[status(thm)],[243])).
% fof(316, plain,((~(and_1)|![X1]:![X2]:is_a_theorem(implies(and(X1,X2),X1)))&(?[X1]:?[X2]:~(is_a_theorem(implies(and(X1,X2),X1)))|and_1)),inference(fof_nnf,[status(thm)],[63])).
% fof(317, plain,((~(and_1)|![X3]:![X4]:is_a_theorem(implies(and(X3,X4),X3)))&(?[X5]:?[X6]:~(is_a_theorem(implies(and(X5,X6),X5)))|and_1)),inference(variable_rename,[status(thm)],[316])).
% fof(318, plain,((~(and_1)|![X3]:![X4]:is_a_theorem(implies(and(X3,X4),X3)))&(~(is_a_theorem(implies(and(esk50_0,esk51_0),esk50_0)))|and_1)),inference(skolemize,[status(esa)],[317])).
% fof(319, plain,![X3]:![X4]:((is_a_theorem(implies(and(X3,X4),X3))|~(and_1))&(~(is_a_theorem(implies(and(esk50_0,esk51_0),esk50_0)))|and_1)),inference(shift_quantors,[status(thm)],[318])).
% cnf(321,plain,(is_a_theorem(implies(and(X1,X2),X1))|~and_1),inference(split_conjunct,[status(thm)],[319])).
% fof(322, plain,((~(and_2)|![X1]:![X2]:is_a_theorem(implies(and(X1,X2),X2)))&(?[X1]:?[X2]:~(is_a_theorem(implies(and(X1,X2),X2)))|and_2)),inference(fof_nnf,[status(thm)],[64])).
% fof(323, plain,((~(and_2)|![X3]:![X4]:is_a_theorem(implies(and(X3,X4),X4)))&(?[X5]:?[X6]:~(is_a_theorem(implies(and(X5,X6),X6)))|and_2)),inference(variable_rename,[status(thm)],[322])).
% fof(324, plain,((~(and_2)|![X3]:![X4]:is_a_theorem(implies(and(X3,X4),X4)))&(~(is_a_theorem(implies(and(esk52_0,esk53_0),esk53_0)))|and_2)),inference(skolemize,[status(esa)],[323])).
% fof(325, plain,![X3]:![X4]:((is_a_theorem(implies(and(X3,X4),X4))|~(and_2))&(~(is_a_theorem(implies(and(esk52_0,esk53_0),esk53_0)))|and_2)),inference(shift_quantors,[status(thm)],[324])).
% cnf(327,plain,(is_a_theorem(implies(and(X1,X2),X2))|~and_2),inference(split_conjunct,[status(thm)],[325])).
% fof(328, plain,((~(and_3)|![X1]:![X2]:is_a_theorem(implies(X1,implies(X2,and(X1,X2)))))&(?[X1]:?[X2]:~(is_a_theorem(implies(X1,implies(X2,and(X1,X2)))))|and_3)),inference(fof_nnf,[status(thm)],[65])).
% fof(329, plain,((~(and_3)|![X3]:![X4]:is_a_theorem(implies(X3,implies(X4,and(X3,X4)))))&(?[X5]:?[X6]:~(is_a_theorem(implies(X5,implies(X6,and(X5,X6)))))|and_3)),inference(variable_rename,[status(thm)],[328])).
% fof(330, plain,((~(and_3)|![X3]:![X4]:is_a_theorem(implies(X3,implies(X4,and(X3,X4)))))&(~(is_a_theorem(implies(esk54_0,implies(esk55_0,and(esk54_0,esk55_0)))))|and_3)),inference(skolemize,[status(esa)],[329])).
% fof(331, plain,![X3]:![X4]:((is_a_theorem(implies(X3,implies(X4,and(X3,X4))))|~(and_3))&(~(is_a_theorem(implies(esk54_0,implies(esk55_0,and(esk54_0,esk55_0)))))|and_3)),inference(shift_quantors,[status(thm)],[330])).
% cnf(333,plain,(is_a_theorem(implies(X1,implies(X2,and(X1,X2))))|~and_3),inference(split_conjunct,[status(thm)],[331])).
% fof(412, plain,((~(axiom_M)|![X1]:is_a_theorem(implies(necessarily(X1),X1)))&(?[X1]:~(is_a_theorem(implies(necessarily(X1),X1)))|axiom_M)),inference(fof_nnf,[status(thm)],[79])).
% fof(413, plain,((~(axiom_M)|![X2]:is_a_theorem(implies(necessarily(X2),X2)))&(?[X3]:~(is_a_theorem(implies(necessarily(X3),X3)))|axiom_M)),inference(variable_rename,[status(thm)],[412])).
% fof(414, plain,((~(axiom_M)|![X2]:is_a_theorem(implies(necessarily(X2),X2)))&(~(is_a_theorem(implies(necessarily(esk82_0),esk82_0)))|axiom_M)),inference(skolemize,[status(esa)],[413])).
% fof(415, plain,![X2]:((is_a_theorem(implies(necessarily(X2),X2))|~(axiom_M))&(~(is_a_theorem(implies(necessarily(esk82_0),esk82_0)))|axiom_M)),inference(shift_quantors,[status(thm)],[414])).
% cnf(417,plain,(is_a_theorem(implies(necessarily(X1),X1))|~axiom_M),inference(split_conjunct,[status(thm)],[415])).
% cnf(467,negated_conjecture,(~substitution_strict_equiv),inference(split_conjunct,[status(thm)],[91])).
% cnf(471,plain,(esk2_0!=esk1_0),inference(sr,[status(thm)],[106,467,theory(equality)])).
% cnf(477,plain,(is_a_theorem(strict_equiv(esk1_0,esk2_0))),inference(sr,[status(thm)],[107,467,theory(equality)])).
% cnf(489,plain,(X1=X2|$false|~is_a_theorem(equiv(X1,X2))),inference(rw,[status(thm)],[132,96,theory(equality)])).
% cnf(490,plain,(X1=X2|~is_a_theorem(equiv(X1,X2))),inference(cn,[status(thm)],[489,theory(equality)])).
% cnf(491,plain,(is_a_theorem(implies(necessarily(X1),X1))|$false),inference(rw,[status(thm)],[417,138,theory(equality)])).
% cnf(492,plain,(is_a_theorem(implies(necessarily(X1),X1))),inference(cn,[status(thm)],[491,theory(equality)])).
% cnf(511,plain,(is_a_theorem(implies(and(X1,X2),X2))|$false),inference(rw,[status(thm)],[327,113,theory(equality)])).
% cnf(512,plain,(is_a_theorem(implies(and(X1,X2),X2))),inference(cn,[status(thm)],[511,theory(equality)])).
% cnf(513,plain,(is_a_theorem(implies(and(X1,X2),X1))|$false),inference(rw,[status(thm)],[321,112,theory(equality)])).
% cnf(514,plain,(is_a_theorem(implies(and(X1,X2),X1))),inference(cn,[status(thm)],[513,theory(equality)])).
% cnf(518,plain,(is_a_theorem(X1)|$false|~is_a_theorem(X2)|~is_a_theorem(implies(X2,X1))),inference(rw,[status(thm)],[247,92,theory(equality)])).
% cnf(519,plain,(is_a_theorem(X1)|~is_a_theorem(X2)|~is_a_theorem(implies(X2,X1))),inference(cn,[status(thm)],[518,theory(equality)])).
% cnf(520,plain,(is_a_theorem(X1)|~is_a_theorem(necessarily(X1))),inference(spm,[status(thm)],[519,492,theory(equality)])).
% cnf(521,plain,(is_a_theorem(X1)|~is_a_theorem(and(X2,X1))),inference(spm,[status(thm)],[519,512,theory(equality)])).
% cnf(522,plain,(is_a_theorem(X1)|~is_a_theorem(and(X1,X2))),inference(spm,[status(thm)],[519,514,theory(equality)])).
% cnf(527,plain,(necessarily(implies(X1,X2))=strict_implies(X1,X2)|$false),inference(rw,[status(thm)],[204,119,theory(equality)])).
% cnf(528,plain,(necessarily(implies(X1,X2))=strict_implies(X1,X2)),inference(cn,[status(thm)],[527,theory(equality)])).
% cnf(572,plain,(is_a_theorem(implies(X1,implies(X2,and(X1,X2))))|$false),inference(rw,[status(thm)],[333,114,theory(equality)])).
% cnf(573,plain,(is_a_theorem(implies(X1,implies(X2,and(X1,X2))))),inference(cn,[status(thm)],[572,theory(equality)])).
% cnf(574,plain,(is_a_theorem(implies(X1,and(X2,X1)))|~is_a_theorem(X2)),inference(spm,[status(thm)],[519,573,theory(equality)])).
% cnf(581,plain,(and(strict_implies(X1,X2),strict_implies(X2,X1))=strict_equiv(X1,X2)|$false),inference(rw,[status(thm)],[124,100,theory(equality)])).
% cnf(582,plain,(and(strict_implies(X1,X2),strict_implies(X2,X1))=strict_equiv(X1,X2)),inference(cn,[status(thm)],[581,theory(equality)])).
% cnf(586,plain,(and(implies(X1,X2),implies(X2,X1))=equiv(X1,X2)|$false),inference(rw,[status(thm)],[220,111,theory(equality)])).
% cnf(587,plain,(and(implies(X1,X2),implies(X2,X1))=equiv(X1,X2)),inference(cn,[status(thm)],[586,theory(equality)])).
% cnf(588,plain,(X1=X2|~is_a_theorem(and(implies(X1,X2),implies(X2,X1)))),inference(spm,[status(thm)],[490,587,theory(equality)])).
% cnf(648,plain,(is_a_theorem(implies(X1,X2))|~is_a_theorem(strict_implies(X1,X2))),inference(spm,[status(thm)],[520,528,theory(equality)])).
% cnf(651,plain,(is_a_theorem(strict_implies(X1,X2))|~is_a_theorem(strict_equiv(X2,X1))),inference(spm,[status(thm)],[521,582,theory(equality)])).
% cnf(658,plain,(is_a_theorem(strict_implies(X1,X2))|~is_a_theorem(strict_equiv(X1,X2))),inference(spm,[status(thm)],[522,582,theory(equality)])).
% cnf(829,plain,(is_a_theorem(strict_implies(esk2_0,esk1_0))),inference(spm,[status(thm)],[651,477,theory(equality)])).
% cnf(831,plain,(is_a_theorem(implies(esk2_0,esk1_0))),inference(spm,[status(thm)],[648,829,theory(equality)])).
% cnf(836,plain,(is_a_theorem(strict_implies(esk1_0,esk2_0))),inference(spm,[status(thm)],[658,477,theory(equality)])).
% cnf(838,plain,(is_a_theorem(implies(esk1_0,esk2_0))),inference(spm,[status(thm)],[648,836,theory(equality)])).
% cnf(1193,plain,(is_a_theorem(and(X1,X2))|~is_a_theorem(X2)|~is_a_theorem(X1)),inference(spm,[status(thm)],[519,574,theory(equality)])).
% cnf(1216,plain,(X1=X2|~is_a_theorem(implies(X2,X1))|~is_a_theorem(implies(X1,X2))),inference(spm,[status(thm)],[588,1193,theory(equality)])).
% cnf(1287,plain,(esk1_0=esk2_0|~is_a_theorem(implies(esk1_0,esk2_0))),inference(spm,[status(thm)],[1216,831,theory(equality)])).
% cnf(1315,plain,(esk1_0=esk2_0|$false),inference(rw,[status(thm)],[1287,838,theory(equality)])).
% cnf(1316,plain,(esk1_0=esk2_0),inference(cn,[status(thm)],[1315,theory(equality)])).
% cnf(1317,plain,($false),inference(sr,[status(thm)],[1316,471,theory(equality)])).
% cnf(1318,plain,($false),1317,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 345
% # ...of these trivial                : 36
% # ...subsumed                        : 44
% # ...remaining for further processing: 265
% # Other redundant clauses eliminated : 0
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 1
% # Backward-rewritten                 : 25
% # Generated clauses                  : 563
% # ...of the previous two non-trivial : 435
% # Contextual simplify-reflections    : 4
% # Paramodulations                    : 563
% # Factorizations                     : 0
% # Equation resolutions               : 0
% # Current number of processed clauses: 239
% #    Positive orientable unit clauses: 110
% #    Positive unorientable unit clauses: 1
% #    Negative unit clauses           : 2
% #    Non-unit-clauses                : 126
% # Current number of unprocessed clauses: 237
% # ...number of literals in the above : 330
% # Clause-clause subsumption calls (NU) : 4222
% # Rec. Clause-clause subsumption calls : 4178
% # Unit Clause-clause subsumption calls : 921
% # Rewrite failures with RHS unbound  : 0
% # Indexed BW rewrite attempts        : 186
% # Indexed BW rewrite successes       : 20
% # Backwards rewriting index:   417 leaves,   1.27+/-0.769 terms/leaf
% # Paramod-from index:           99 leaves,   1.23+/-0.547 terms/leaf
% # Paramod-into index:          375 leaves,   1.22+/-0.619 terms/leaf
% # -------------------------------------------------
% # User time              : 0.048 s
% # System time            : 0.005 s
% # Total time             : 0.053 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.15 CPU 0.25 WC
% FINAL PrfWatch: 0.15 CPU 0.25 WC
% SZS output end Solution for /tmp/SystemOnTPTP7734/LCL539+1.tptp
% 
%------------------------------------------------------------------------------