TSTP Solution File: LCL539+1 by ET---2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ET---2.0
% Problem  : LCL539+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_ET %s %d

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 10:11:46 EDT 2022

% Result   : Theorem 0.22s 1.40s
% Output   : CNFRefutation 0.22s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   11
%            Number of leaves      :   21
% Syntax   : Number of formulae    :   88 (  38 unt;   0 def)
%            Number of atoms       :  187 (  24 equ)
%            Maximal formula atoms :   10 (   2 avg)
%            Number of connectives :  162 (  63   ~;  68   |;  16   &)
%                                         (   8 <=>;   7  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :   14 (  12 usr;  12 prp; 0-2 aty)
%            Number of functors    :   21 (  21 usr;  15 con; 0-2 aty)
%            Number of variables   :   97 (   6 sgn  42   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',modus_ponens) ).

fof(and_2,axiom,
    ( and_2
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X2)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',and_2) ).

fof(and_1,axiom,
    ( and_1
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',and_1) ).

fof(axiom_M,axiom,
    ( axiom_M
  <=> ! [X1] : is_a_theorem(implies(necessarily(X1),X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_M) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_modus_ponens) ).

fof(hilbert_and_2,axiom,
    and_2,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_and_2) ).

fof(op_strict_equiv,axiom,
    ( op_strict_equiv
   => ! [X1,X2] : strict_equiv(X1,X2) = and(strict_implies(X1,X2),strict_implies(X2,X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+1.ax',op_strict_equiv) ).

fof(s1_0_substitution_strict_equiv,conjecture,
    substitution_strict_equiv,
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',s1_0_substitution_strict_equiv) ).

fof(hilbert_and_1,axiom,
    and_1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_and_1) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',substitution_of_equivalents) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_equiv) ).

fof(km4b_axiom_M,axiom,
    axiom_M,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+3.ax',km4b_axiom_M) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X1,X2] : strict_implies(X1,X2) = necessarily(implies(X1,X2)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+1.ax',op_strict_implies) ).

fof(s1_0_op_strict_equiv,axiom,
    op_strict_equiv,
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',s1_0_op_strict_equiv) ).

fof(substitution_strict_equiv,axiom,
    ( substitution_strict_equiv
  <=> ! [X1,X2] :
        ( is_a_theorem(strict_equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',substitution_strict_equiv) ).

fof(substitution_of_equivalents_001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',substitution_of_equivalents) ).

fof(hilbert_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_op_equiv) ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies,
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',s1_0_op_strict_implies) ).

fof(adjunction,axiom,
    ( adjunction
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(X2) )
       => is_a_theorem(and(X1,X2)) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',adjunction) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,and(X1,X2)))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',and_3) ).

fof(hilbert_and_3,axiom,
    and_3,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_and_3) ).

fof(c_0_21,plain,
    ! [X3,X4] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X3)
        | ~ is_a_theorem(implies(X3,X4))
        | is_a_theorem(X4) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])])])]) ).

fof(c_0_22,plain,
    ! [X3,X4] :
      ( ( ~ and_2
        | is_a_theorem(implies(and(X3,X4),X4)) )
      & ( ~ is_a_theorem(implies(and(esk16_0,esk17_0),esk17_0))
        | and_2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_2])])])])])]) ).

fof(c_0_23,plain,
    ! [X3,X4] :
      ( ( ~ and_1
        | is_a_theorem(implies(and(X3,X4),X3)) )
      & ( ~ is_a_theorem(implies(and(esk14_0,esk15_0),esk14_0))
        | and_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_1])])])])])]) ).

fof(c_0_24,plain,
    ! [X2] :
      ( ( ~ axiom_M
        | is_a_theorem(implies(necessarily(X2),X2)) )
      & ( ~ is_a_theorem(implies(necessarily(esk65_0),esk65_0))
        | axiom_M ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_M])])])])])]) ).

cnf(c_0_25,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2)
    | ~ modus_ponens ),
    inference(split_conjunct,[status(thm)],[c_0_21]) ).

cnf(c_0_26,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_ponens]) ).

cnf(c_0_27,plain,
    ( is_a_theorem(implies(and(X1,X2),X2))
    | ~ and_2 ),
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

cnf(c_0_28,plain,
    and_2,
    inference(split_conjunct,[status(thm)],[hilbert_and_2]) ).

fof(c_0_29,plain,
    ! [X3,X4] :
      ( ~ op_strict_equiv
      | strict_equiv(X3,X4) = and(strict_implies(X3,X4),strict_implies(X4,X3)) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_equiv])])])])]) ).

fof(c_0_30,negated_conjecture,
    ~ substitution_strict_equiv,
    inference(assume_negation,[status(cth)],[s1_0_substitution_strict_equiv]) ).

cnf(c_0_31,plain,
    ( is_a_theorem(implies(and(X1,X2),X1))
    | ~ and_1 ),
    inference(split_conjunct,[status(thm)],[c_0_23]) ).

cnf(c_0_32,plain,
    and_1,
    inference(split_conjunct,[status(thm)],[hilbert_and_1]) ).

fof(c_0_33,plain,
    ! [X3,X4] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X3,X4))
        | X3 = X4 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])])])]) ).

fof(c_0_34,plain,
    ! [X3,X4] :
      ( ~ op_equiv
      | equiv(X3,X4) = and(implies(X3,X4),implies(X4,X3)) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])])])]) ).

cnf(c_0_35,plain,
    ( is_a_theorem(implies(necessarily(X1),X1))
    | ~ axiom_M ),
    inference(split_conjunct,[status(thm)],[c_0_24]) ).

cnf(c_0_36,plain,
    axiom_M,
    inference(split_conjunct,[status(thm)],[km4b_axiom_M]) ).

fof(c_0_37,plain,
    ! [X3,X4] :
      ( ~ op_strict_implies
      | strict_implies(X3,X4) = necessarily(implies(X3,X4)) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_implies])])])])]) ).

cnf(c_0_38,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_25,c_0_26])]) ).

cnf(c_0_39,plain,
    is_a_theorem(implies(and(X1,X2),X2)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_27,c_0_28])]) ).

cnf(c_0_40,plain,
    ( strict_equiv(X1,X2) = and(strict_implies(X1,X2),strict_implies(X2,X1))
    | ~ op_strict_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_29]) ).

cnf(c_0_41,plain,
    op_strict_equiv,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_equiv]) ).

fof(c_0_42,plain,
    ! [X3,X4] :
      ( ( ~ substitution_strict_equiv
        | ~ is_a_theorem(strict_equiv(X3,X4))
        | X3 = X4 )
      & ( is_a_theorem(strict_equiv(esk61_0,esk62_0))
        | substitution_strict_equiv )
      & ( esk61_0 != esk62_0
        | substitution_strict_equiv ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_strict_equiv])])])])])])]) ).

fof(c_0_43,negated_conjecture,
    ~ substitution_strict_equiv,
    inference(fof_simplification,[status(thm)],[c_0_30]) ).

cnf(c_0_44,plain,
    is_a_theorem(implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_31,c_0_32])]) ).

cnf(c_0_45,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2))
    | ~ substitution_of_equivalents ),
    inference(split_conjunct,[status(thm)],[c_0_33]) ).

cnf(c_0_46,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents]) ).

cnf(c_0_47,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_34]) ).

cnf(c_0_48,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[hilbert_op_equiv]) ).

cnf(c_0_49,plain,
    is_a_theorem(implies(necessarily(X1),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_35,c_0_36])]) ).

cnf(c_0_50,plain,
    ( strict_implies(X1,X2) = necessarily(implies(X1,X2))
    | ~ op_strict_implies ),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_51,plain,
    op_strict_implies,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_implies]) ).

cnf(c_0_52,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(and(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_38,c_0_39]) ).

cnf(c_0_53,plain,
    and(strict_implies(X1,X2),strict_implies(X2,X1)) = strict_equiv(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_40,c_0_41])]) ).

cnf(c_0_54,plain,
    ( substitution_strict_equiv
    | is_a_theorem(strict_equiv(esk61_0,esk62_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

cnf(c_0_55,negated_conjecture,
    ~ substitution_strict_equiv,
    inference(split_conjunct,[status(thm)],[c_0_43]) ).

cnf(c_0_56,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(and(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_38,c_0_44]) ).

cnf(c_0_57,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_45,c_0_46])]) ).

cnf(c_0_58,plain,
    equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_47,c_0_48])]) ).

fof(c_0_59,plain,
    ! [X3,X4] :
      ( ( ~ adjunction
        | ~ is_a_theorem(X3)
        | ~ is_a_theorem(X4)
        | is_a_theorem(and(X3,X4)) )
      & ( is_a_theorem(esk59_0)
        | adjunction )
      & ( is_a_theorem(esk60_0)
        | adjunction )
      & ( ~ is_a_theorem(and(esk59_0,esk60_0))
        | adjunction ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[adjunction])])])])])])]) ).

cnf(c_0_60,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(necessarily(X1)) ),
    inference(spm,[status(thm)],[c_0_38,c_0_49]) ).

cnf(c_0_61,plain,
    necessarily(implies(X1,X2)) = strict_implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_50,c_0_51])]) ).

cnf(c_0_62,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(strict_equiv(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_52,c_0_53]) ).

cnf(c_0_63,plain,
    is_a_theorem(strict_equiv(esk61_0,esk62_0)),
    inference(sr,[status(thm)],[c_0_54,c_0_55]) ).

cnf(c_0_64,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(strict_equiv(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_56,c_0_53]) ).

fof(c_0_65,plain,
    ! [X3,X4] :
      ( ( ~ and_3
        | is_a_theorem(implies(X3,implies(X4,and(X3,X4)))) )
      & ( ~ is_a_theorem(implies(esk18_0,implies(esk19_0,and(esk18_0,esk19_0))))
        | and_3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_3])])])])])]) ).

cnf(c_0_66,plain,
    ( X1 = X2
    | ~ is_a_theorem(and(implies(X1,X2),implies(X2,X1))) ),
    inference(spm,[status(thm)],[c_0_57,c_0_58]) ).

cnf(c_0_67,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1)
    | ~ adjunction ),
    inference(split_conjunct,[status(thm)],[c_0_59]) ).

cnf(c_0_68,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(strict_implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_60,c_0_61]) ).

cnf(c_0_69,plain,
    is_a_theorem(strict_implies(esk62_0,esk61_0)),
    inference(spm,[status(thm)],[c_0_62,c_0_63]) ).

cnf(c_0_70,plain,
    is_a_theorem(strict_implies(esk61_0,esk62_0)),
    inference(spm,[status(thm)],[c_0_64,c_0_63]) ).

cnf(c_0_71,plain,
    ( is_a_theorem(implies(X1,implies(X2,and(X1,X2))))
    | ~ and_3 ),
    inference(split_conjunct,[status(thm)],[c_0_65]) ).

cnf(c_0_72,plain,
    and_3,
    inference(split_conjunct,[status(thm)],[hilbert_and_3]) ).

cnf(c_0_73,plain,
    ( X1 = X2
    | ~ adjunction
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_66,c_0_67]) ).

cnf(c_0_74,plain,
    is_a_theorem(implies(esk62_0,esk61_0)),
    inference(spm,[status(thm)],[c_0_68,c_0_69]) ).

cnf(c_0_75,plain,
    is_a_theorem(implies(esk61_0,esk62_0)),
    inference(spm,[status(thm)],[c_0_68,c_0_70]) ).

cnf(c_0_76,plain,
    is_a_theorem(implies(X1,implies(X2,and(X1,X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_71,c_0_72])]) ).

cnf(c_0_77,plain,
    ( substitution_strict_equiv
    | esk61_0 != esk62_0 ),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

cnf(c_0_78,plain,
    ( esk62_0 = esk61_0
    | ~ adjunction ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_73,c_0_74]),c_0_75])]) ).

cnf(c_0_79,plain,
    ( is_a_theorem(implies(X1,and(X2,X1)))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_38,c_0_76]) ).

cnf(c_0_80,plain,
    ( adjunction
    | is_a_theorem(esk60_0) ),
    inference(split_conjunct,[status(thm)],[c_0_59]) ).

cnf(c_0_81,plain,
    ~ adjunction,
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_77,c_0_78]),c_0_55]) ).

cnf(c_0_82,plain,
    ( adjunction
    | is_a_theorem(esk59_0) ),
    inference(split_conjunct,[status(thm)],[c_0_59]) ).

cnf(c_0_83,plain,
    ( adjunction
    | ~ is_a_theorem(and(esk59_0,esk60_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_59]) ).

cnf(c_0_84,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_38,c_0_79]) ).

cnf(c_0_85,plain,
    is_a_theorem(esk60_0),
    inference(sr,[status(thm)],[c_0_80,c_0_81]) ).

cnf(c_0_86,plain,
    is_a_theorem(esk59_0),
    inference(sr,[status(thm)],[c_0_82,c_0_81]) ).

cnf(c_0_87,plain,
    $false,
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_83,c_0_84]),c_0_85]),c_0_86])]),c_0_81]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : LCL539+1 : TPTP v8.1.0. Released v3.3.0.
% 0.03/0.12  % Command  : run_ET %s %d
% 0.12/0.33  % Computer : n006.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Mon Jul  4 00:20:07 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.22/1.40  # Running protocol protocol_eprover_4a02c828a8cc55752123edbcc1ad40e453c11447 for 23 seconds:
% 0.22/1.40  # SinE strategy is GSinE(CountFormulas,hypos,1.4,,04,100,1.0)
% 0.22/1.40  # Preprocessing time       : 0.015 s
% 0.22/1.40  
% 0.22/1.40  # Failure: Out of unprocessed clauses!
% 0.22/1.40  # OLD status GaveUp
% 0.22/1.40  # Parsed axioms                        : 89
% 0.22/1.40  # Removed by relevancy pruning/SinE    : 85
% 0.22/1.40  # Initial clauses                      : 6
% 0.22/1.40  # Removed in clause preprocessing      : 0
% 0.22/1.40  # Initial clauses in saturation        : 6
% 0.22/1.40  # Processed clauses                    : 6
% 0.22/1.40  # ...of these trivial                  : 0
% 0.22/1.40  # ...subsumed                          : 1
% 0.22/1.40  # ...remaining for further processing  : 5
% 0.22/1.40  # Other redundant clauses eliminated   : 0
% 0.22/1.40  # Clauses deleted for lack of memory   : 0
% 0.22/1.40  # Backward-subsumed                    : 0
% 0.22/1.40  # Backward-rewritten                   : 0
% 0.22/1.40  # Generated clauses                    : 0
% 0.22/1.40  # ...of the previous two non-trivial   : 0
% 0.22/1.40  # Contextual simplify-reflections      : 0
% 0.22/1.40  # Paramodulations                      : 0
% 0.22/1.40  # Factorizations                       : 0
% 0.22/1.40  # Equation resolutions                 : 0
% 0.22/1.40  # Current number of processed clauses  : 5
% 0.22/1.40  #    Positive orientable unit clauses  : 3
% 0.22/1.40  #    Positive unorientable unit clauses: 0
% 0.22/1.40  #    Negative unit clauses             : 2
% 0.22/1.40  #    Non-unit-clauses                  : 0
% 0.22/1.40  # Current number of unprocessed clauses: 0
% 0.22/1.40  # ...number of literals in the above   : 0
% 0.22/1.40  # Current number of archived formulas  : 0
% 0.22/1.40  # Current number of archived clauses   : 0
% 0.22/1.40  # Clause-clause subsumption calls (NU) : 0
% 0.22/1.40  # Rec. Clause-clause subsumption calls : 0
% 0.22/1.40  # Non-unit clause-clause subsumptions  : 0
% 0.22/1.40  # Unit Clause-clause subsumption calls : 0
% 0.22/1.40  # Rewrite failures with RHS unbound    : 0
% 0.22/1.40  # BW rewrite match attempts            : 0
% 0.22/1.40  # BW rewrite match successes           : 0
% 0.22/1.40  # Condensation attempts                : 0
% 0.22/1.40  # Condensation successes               : 0
% 0.22/1.40  # Termbank termtop insertions          : 903
% 0.22/1.40  
% 0.22/1.40  # -------------------------------------------------
% 0.22/1.40  # User time                : 0.014 s
% 0.22/1.40  # System time              : 0.002 s
% 0.22/1.40  # Total time               : 0.015 s
% 0.22/1.40  # Maximum resident set size: 2860 pages
% 0.22/1.40  # Running protocol protocol_eprover_f171197f65f27d1ba69648a20c844832c84a5dd7 for 23 seconds:
% 0.22/1.40  # Preprocessing time       : 0.022 s
% 0.22/1.40  
% 0.22/1.40  # Proof found!
% 0.22/1.40  # SZS status Theorem
% 0.22/1.40  # SZS output start CNFRefutation
% See solution above
% 0.22/1.41  # Proof object total steps             : 88
% 0.22/1.41  # Proof object clause steps            : 54
% 0.22/1.41  # Proof object formula steps           : 34
% 0.22/1.41  # Proof object conjectures             : 4
% 0.22/1.41  # Proof object clause conjectures      : 1
% 0.22/1.41  # Proof object formula conjectures     : 3
% 0.22/1.41  # Proof object initial clauses used    : 25
% 0.22/1.41  # Proof object initial formulas used   : 21
% 0.22/1.41  # Proof object generating inferences   : 17
% 0.22/1.41  # Proof object simplifying inferences  : 28
% 0.22/1.41  # Training examples: 0 positive, 0 negative
% 0.22/1.41  # Parsed axioms                        : 89
% 0.22/1.41  # Removed by relevancy pruning/SinE    : 0
% 0.22/1.41  # Initial clauses                      : 147
% 0.22/1.41  # Removed in clause preprocessing      : 0
% 0.22/1.41  # Initial clauses in saturation        : 147
% 0.22/1.41  # Processed clauses                    : 534
% 0.22/1.41  # ...of these trivial                  : 31
% 0.22/1.41  # ...subsumed                          : 123
% 0.22/1.41  # ...remaining for further processing  : 380
% 0.22/1.41  # Other redundant clauses eliminated   : 0
% 0.22/1.41  # Clauses deleted for lack of memory   : 0
% 0.22/1.41  # Backward-subsumed                    : 6
% 0.22/1.41  # Backward-rewritten                   : 18
% 0.22/1.41  # Generated clauses                    : 2633
% 0.22/1.41  # ...of the previous two non-trivial   : 2531
% 0.22/1.41  # Contextual simplify-reflections      : 136
% 0.22/1.41  # Paramodulations                      : 2631
% 0.22/1.41  # Factorizations                       : 0
% 0.22/1.41  # Equation resolutions                 : 0
% 0.22/1.41  # Current number of processed clauses  : 354
% 0.22/1.41  #    Positive orientable unit clauses  : 75
% 0.22/1.41  #    Positive unorientable unit clauses: 1
% 0.22/1.41  #    Negative unit clauses             : 2
% 0.22/1.41  #    Non-unit-clauses                  : 276
% 0.22/1.41  # Current number of unprocessed clauses: 2116
% 0.22/1.41  # ...number of literals in the above   : 7752
% 0.22/1.41  # Current number of archived formulas  : 0
% 0.22/1.41  # Current number of archived clauses   : 26
% 0.22/1.41  # Clause-clause subsumption calls (NU) : 17810
% 0.22/1.41  # Rec. Clause-clause subsumption calls : 8833
% 0.22/1.41  # Non-unit clause-clause subsumptions  : 246
% 0.22/1.41  # Unit Clause-clause subsumption calls : 726
% 0.22/1.41  # Rewrite failures with RHS unbound    : 0
% 0.22/1.41  # BW rewrite match attempts            : 47
% 0.22/1.41  # BW rewrite match successes           : 10
% 0.22/1.41  # Condensation attempts                : 0
% 0.22/1.41  # Condensation successes               : 0
% 0.22/1.41  # Termbank termtop insertions          : 44581
% 0.22/1.41  
% 0.22/1.41  # -------------------------------------------------
% 0.22/1.41  # User time                : 0.089 s
% 0.22/1.41  # System time              : 0.004 s
% 0.22/1.41  # Total time               : 0.093 s
% 0.22/1.41  # Maximum resident set size: 6384 pages
%------------------------------------------------------------------------------