TSTP Solution File: LCL538+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : LCL538+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n021.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 12:53:00 EDT 2022

% Result   : Theorem 2.15s 2.32s
% Output   : CNFRefutation 2.15s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :   11
% Syntax   : Number of formulae    :   61 (  27 unt;   0 def)
%            Number of atoms       :  130 (  16 equ)
%            Maximal formula atoms :   10 (   2 avg)
%            Number of connectives :  118 (  49   ~;  47   |;  13   &)
%                                         (   6 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   3 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    8 (   5 usr;   5 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   5 con; 0-2 aty)
%            Number of variables   :   57 (   0 sgn  19   !;   5   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X,Y] :
        ( ( is_a_theorem(X)
          & is_a_theorem(implies(X,Y)) )
       => is_a_theorem(Y) ) ) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens ).

fof(modus_ponens_strict_implies,axiom,
    ( modus_ponens_strict_implies
  <=> ! [X,Y] :
        ( ( is_a_theorem(X)
          & is_a_theorem(strict_implies(X,Y)) )
       => is_a_theorem(Y) ) ) ).

fof(axiom_M,axiom,
    ( axiom_M
  <=> ! [X] : is_a_theorem(implies(necessarily(X),X)) ) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X,Y] : strict_implies(X,Y) = necessarily(implies(X,Y)) ) ).

fof(km4b_axiom_M,axiom,
    axiom_M ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies ).

fof(s1_0_modus_ponens_strict_implies,conjecture,
    modus_ponens_strict_implies ).

fof(subgoal_0,plain,
    modus_ponens_strict_implies,
    inference(strip,[],[s1_0_modus_ponens_strict_implies]) ).

fof(negate_0_0,plain,
    ~ modus_ponens_strict_implies,
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ( ~ modus_ponens
  <=> ? [X,Y] :
        ( ~ is_a_theorem(Y)
        & is_a_theorem(X)
        & is_a_theorem(implies(X,Y)) ) ),
    inference(canonicalize,[],[modus_ponens]) ).

fof(normalize_0_1,plain,
    ! [X,Y] :
      ( ( ~ is_a_theorem(skolemFOFtoCNF_Y)
        | modus_ponens )
      & ( is_a_theorem(implies(skolemFOFtoCNF_X,skolemFOFtoCNF_Y))
        | modus_ponens )
      & ( is_a_theorem(skolemFOFtoCNF_X)
        | modus_ponens )
      & ( ~ is_a_theorem(X)
        | ~ is_a_theorem(implies(X,Y))
        | ~ modus_ponens
        | is_a_theorem(Y) ) ),
    inference(clausify,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ! [X,Y] :
      ( ~ is_a_theorem(X)
      | ~ is_a_theorem(implies(X,Y))
      | ~ modus_ponens
      | is_a_theorem(Y) ),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    modus_ponens,
    inference(canonicalize,[],[hilbert_modus_ponens]) ).

fof(normalize_0_4,plain,
    ( ~ modus_ponens_strict_implies
  <=> ? [X,Y] :
        ( ~ is_a_theorem(Y)
        & is_a_theorem(X)
        & is_a_theorem(strict_implies(X,Y)) ) ),
    inference(canonicalize,[],[modus_ponens_strict_implies]) ).

fof(normalize_0_5,plain,
    ! [X,Y] :
      ( ( ~ is_a_theorem(skolemFOFtoCNF_Y_15)
        | modus_ponens_strict_implies )
      & ( is_a_theorem(skolemFOFtoCNF_X_16)
        | modus_ponens_strict_implies )
      & ( is_a_theorem(strict_implies(skolemFOFtoCNF_X_16,skolemFOFtoCNF_Y_15))
        | modus_ponens_strict_implies )
      & ( ~ is_a_theorem(X)
        | ~ is_a_theorem(strict_implies(X,Y))
        | ~ modus_ponens_strict_implies
        | is_a_theorem(Y) ) ),
    inference(clausify,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ( is_a_theorem(strict_implies(skolemFOFtoCNF_X_16,skolemFOFtoCNF_Y_15))
    | modus_ponens_strict_implies ),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    ~ modus_ponens_strict_implies,
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_8,plain,
    ( ~ axiom_M
  <=> ? [X] : ~ is_a_theorem(implies(necessarily(X),X)) ),
    inference(canonicalize,[],[axiom_M]) ).

fof(normalize_0_9,plain,
    ! [X] :
      ( ( ~ axiom_M
        | is_a_theorem(implies(necessarily(X),X)) )
      & ( ~ is_a_theorem(implies(necessarily(skolemFOFtoCNF_X_20),skolemFOFtoCNF_X_20))
        | axiom_M ) ),
    inference(clausify,[],[normalize_0_8]) ).

fof(normalize_0_10,plain,
    ! [X] :
      ( ~ axiom_M
      | is_a_theorem(implies(necessarily(X),X)) ),
    inference(conjunct,[],[normalize_0_9]) ).

fof(normalize_0_11,plain,
    axiom_M,
    inference(canonicalize,[],[km4b_axiom_M]) ).

fof(normalize_0_12,plain,
    ( ~ op_strict_implies
    | ! [X,Y] : strict_implies(X,Y) = necessarily(implies(X,Y)) ),
    inference(canonicalize,[],[op_strict_implies]) ).

fof(normalize_0_13,plain,
    ! [X,Y] :
      ( ~ op_strict_implies
      | strict_implies(X,Y) = necessarily(implies(X,Y)) ),
    inference(clausify,[],[normalize_0_12]) ).

fof(normalize_0_14,plain,
    op_strict_implies,
    inference(canonicalize,[],[s1_0_op_strict_implies]) ).

fof(normalize_0_15,plain,
    ( is_a_theorem(skolemFOFtoCNF_X_16)
    | modus_ponens_strict_implies ),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_16,plain,
    ( ~ is_a_theorem(skolemFOFtoCNF_Y_15)
    | modus_ponens_strict_implies ),
    inference(conjunct,[],[normalize_0_5]) ).

cnf(refute_0_0,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | ~ modus_ponens
    | is_a_theorem(Y) ),
    inference(canonicalize,[],[normalize_0_2]) ).

cnf(refute_0_1,plain,
    modus_ponens,
    inference(canonicalize,[],[normalize_0_3]) ).

cnf(refute_0_2,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | is_a_theorem(Y) ),
    inference(resolve,[$cnf( modus_ponens )],[refute_0_1,refute_0_0]) ).

cnf(refute_0_3,plain,
    ( ~ is_a_theorem(implies(skolemFOFtoCNF_X_16,skolemFOFtoCNF_Y_15))
    | ~ is_a_theorem(skolemFOFtoCNF_X_16)
    | is_a_theorem(skolemFOFtoCNF_Y_15) ),
    inference(subst,[],[refute_0_2:[bind(X,$fot(skolemFOFtoCNF_X_16)),bind(Y,$fot(skolemFOFtoCNF_Y_15))]]) ).

cnf(refute_0_4,plain,
    ( is_a_theorem(strict_implies(skolemFOFtoCNF_X_16,skolemFOFtoCNF_Y_15))
    | modus_ponens_strict_implies ),
    inference(canonicalize,[],[normalize_0_6]) ).

cnf(refute_0_5,plain,
    ~ modus_ponens_strict_implies,
    inference(canonicalize,[],[normalize_0_7]) ).

cnf(refute_0_6,plain,
    is_a_theorem(strict_implies(skolemFOFtoCNF_X_16,skolemFOFtoCNF_Y_15)),
    inference(resolve,[$cnf( modus_ponens_strict_implies )],[refute_0_4,refute_0_5]) ).

cnf(refute_0_7,plain,
    ( ~ axiom_M
    | is_a_theorem(implies(necessarily(X),X)) ),
    inference(canonicalize,[],[normalize_0_10]) ).

cnf(refute_0_8,plain,
    axiom_M,
    inference(canonicalize,[],[normalize_0_11]) ).

cnf(refute_0_9,plain,
    is_a_theorem(implies(necessarily(X),X)),
    inference(resolve,[$cnf( axiom_M )],[refute_0_8,refute_0_7]) ).

cnf(refute_0_10,plain,
    is_a_theorem(implies(necessarily(implies(X_4,X_5)),implies(X_4,X_5))),
    inference(subst,[],[refute_0_9:[bind(X,$fot(implies(X_4,X_5)))]]) ).

cnf(refute_0_11,plain,
    ( ~ op_strict_implies
    | strict_implies(X,Y) = necessarily(implies(X,Y)) ),
    inference(canonicalize,[],[normalize_0_13]) ).

cnf(refute_0_12,plain,
    op_strict_implies,
    inference(canonicalize,[],[normalize_0_14]) ).

cnf(refute_0_13,plain,
    strict_implies(X,Y) = necessarily(implies(X,Y)),
    inference(resolve,[$cnf( op_strict_implies )],[refute_0_12,refute_0_11]) ).

cnf(refute_0_14,plain,
    strict_implies(X_4,X_5) = necessarily(implies(X_4,X_5)),
    inference(subst,[],[refute_0_13:[bind(X,$fot(X_4)),bind(Y,$fot(X_5))]]) ).

cnf(refute_0_15,plain,
    X0 = X0,
    introduced(tautology,[refl,[$fot(X0)]]) ).

cnf(refute_0_16,plain,
    ( X0 != X0
    | X0 != Y0
    | Y0 = X0 ),
    introduced(tautology,[equality,[$cnf( $equal(X0,X0) ),[0],$fot(Y0)]]) ).

cnf(refute_0_17,plain,
    ( X0 != Y0
    | Y0 = X0 ),
    inference(resolve,[$cnf( $equal(X0,X0) )],[refute_0_15,refute_0_16]) ).

cnf(refute_0_18,plain,
    ( strict_implies(X_4,X_5) != necessarily(implies(X_4,X_5))
    | necessarily(implies(X_4,X_5)) = strict_implies(X_4,X_5) ),
    inference(subst,[],[refute_0_17:[bind(X0,$fot(strict_implies(X_4,X_5))),bind(Y0,$fot(necessarily(implies(X_4,X_5))))]]) ).

cnf(refute_0_19,plain,
    necessarily(implies(X_4,X_5)) = strict_implies(X_4,X_5),
    inference(resolve,[$cnf( $equal(strict_implies(X_4,X_5),necessarily(implies(X_4,X_5))) )],[refute_0_14,refute_0_18]) ).

cnf(refute_0_20,plain,
    ( necessarily(implies(X_4,X_5)) != strict_implies(X_4,X_5)
    | ~ is_a_theorem(implies(necessarily(implies(X_4,X_5)),implies(X_4,X_5)))
    | is_a_theorem(implies(strict_implies(X_4,X_5),implies(X_4,X_5))) ),
    introduced(tautology,[equality,[$cnf( is_a_theorem(implies(necessarily(implies(X_4,X_5)),implies(X_4,X_5))) ),[0,0],$fot(strict_implies(X_4,X_5))]]) ).

cnf(refute_0_21,plain,
    ( ~ is_a_theorem(implies(necessarily(implies(X_4,X_5)),implies(X_4,X_5)))
    | is_a_theorem(implies(strict_implies(X_4,X_5),implies(X_4,X_5))) ),
    inference(resolve,[$cnf( $equal(necessarily(implies(X_4,X_5)),strict_implies(X_4,X_5)) )],[refute_0_19,refute_0_20]) ).

cnf(refute_0_22,plain,
    is_a_theorem(implies(strict_implies(X_4,X_5),implies(X_4,X_5))),
    inference(resolve,[$cnf( is_a_theorem(implies(necessarily(implies(X_4,X_5)),implies(X_4,X_5))) )],[refute_0_10,refute_0_21]) ).

cnf(refute_0_23,plain,
    ( ~ is_a_theorem(implies(strict_implies(X_4,X_5),implies(X_4,X_5)))
    | ~ is_a_theorem(strict_implies(X_4,X_5))
    | is_a_theorem(implies(X_4,X_5)) ),
    inference(subst,[],[refute_0_2:[bind(X,$fot(strict_implies(X_4,X_5))),bind(Y,$fot(implies(X_4,X_5)))]]) ).

cnf(refute_0_24,plain,
    ( ~ is_a_theorem(strict_implies(X_4,X_5))
    | is_a_theorem(implies(X_4,X_5)) ),
    inference(resolve,[$cnf( is_a_theorem(implies(strict_implies(X_4,X_5),implies(X_4,X_5))) )],[refute_0_22,refute_0_23]) ).

cnf(refute_0_25,plain,
    ( ~ is_a_theorem(strict_implies(skolemFOFtoCNF_X_16,skolemFOFtoCNF_Y_15))
    | is_a_theorem(implies(skolemFOFtoCNF_X_16,skolemFOFtoCNF_Y_15)) ),
    inference(subst,[],[refute_0_24:[bind(X_4,$fot(skolemFOFtoCNF_X_16)),bind(X_5,$fot(skolemFOFtoCNF_Y_15))]]) ).

cnf(refute_0_26,plain,
    is_a_theorem(implies(skolemFOFtoCNF_X_16,skolemFOFtoCNF_Y_15)),
    inference(resolve,[$cnf( is_a_theorem(strict_implies(skolemFOFtoCNF_X_16,skolemFOFtoCNF_Y_15)) )],[refute_0_6,refute_0_25]) ).

cnf(refute_0_27,plain,
    ( ~ is_a_theorem(skolemFOFtoCNF_X_16)
    | is_a_theorem(skolemFOFtoCNF_Y_15) ),
    inference(resolve,[$cnf( is_a_theorem(implies(skolemFOFtoCNF_X_16,skolemFOFtoCNF_Y_15)) )],[refute_0_26,refute_0_3]) ).

cnf(refute_0_28,plain,
    ( is_a_theorem(skolemFOFtoCNF_X_16)
    | modus_ponens_strict_implies ),
    inference(canonicalize,[],[normalize_0_15]) ).

cnf(refute_0_29,plain,
    is_a_theorem(skolemFOFtoCNF_X_16),
    inference(resolve,[$cnf( modus_ponens_strict_implies )],[refute_0_28,refute_0_5]) ).

cnf(refute_0_30,plain,
    is_a_theorem(skolemFOFtoCNF_Y_15),
    inference(resolve,[$cnf( is_a_theorem(skolemFOFtoCNF_X_16) )],[refute_0_29,refute_0_27]) ).

cnf(refute_0_31,plain,
    ( ~ is_a_theorem(skolemFOFtoCNF_Y_15)
    | modus_ponens_strict_implies ),
    inference(canonicalize,[],[normalize_0_16]) ).

cnf(refute_0_32,plain,
    ~ is_a_theorem(skolemFOFtoCNF_Y_15),
    inference(resolve,[$cnf( modus_ponens_strict_implies )],[refute_0_31,refute_0_5]) ).

cnf(refute_0_33,plain,
    $false,
    inference(resolve,[$cnf( is_a_theorem(skolemFOFtoCNF_Y_15) )],[refute_0_30,refute_0_32]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : LCL538+1 : TPTP v8.1.0. Released v3.3.0.
% 0.10/0.13  % Command  : metis --show proof --show saturation %s
% 0.13/0.34  % Computer : n021.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Mon Jul  4 20:44:32 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.13/0.34  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2.15/2.32  % SZS status Theorem for /export/starexec/sandbox2/benchmark/theBenchmark.p
% 2.15/2.32  
% 2.15/2.32  % SZS output start CNFRefutation for /export/starexec/sandbox2/benchmark/theBenchmark.p
% See solution above
% 2.15/2.32  
%------------------------------------------------------------------------------