TSTP Solution File: LCL533+1 by ET---2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ET---2.0
% Problem  : LCL533+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_ET %s %d

% Computer : n021.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 10:11:44 EDT 2022

% Result   : Theorem 0.49s 33.68s
% Output   : CNFRefutation 0.49s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   20
%            Number of leaves      :   43
% Syntax   : Number of formulae    :  193 (  78 unt;   0 def)
%            Number of atoms       :  382 (  48 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  326 ( 137   ~; 134   |;  26   &)
%                                         (  20 <=>;   9  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :   28 (  26 usr;  26 prp; 0-2 aty)
%            Number of functors    :   38 (  38 usr;  30 con; 0-2 aty)
%            Number of variables   :  216 (   9 sgn  80   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',modus_ponens) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,and(X1,X2)))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',and_3) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_modus_ponens) ).

fof(hilbert_and_3,axiom,
    and_3,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_and_3) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_equiv) ).

fof(adjunction,axiom,
    ( adjunction
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(X2) )
       => is_a_theorem(and(X1,X2)) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',adjunction) ).

fof(hilbert_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_op_equiv) ).

fof(implies_2,axiom,
    ( implies_2
  <=> ! [X1,X2] : is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',implies_2) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',substitution_of_equivalents) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X1,X2] : strict_implies(X1,X2) = necessarily(implies(X1,X2)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+1.ax',op_strict_implies) ).

fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_implies_and) ).

fof(hilbert_implies_2,axiom,
    implies_2,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_implies_2) ).

fof(substitution_of_equivalents_001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',substitution_of_equivalents) ).

fof(and_2,axiom,
    ( and_2
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X2)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',and_2) ).

fof(axiom_m4,axiom,
    ( axiom_m4
  <=> ! [X1] : is_a_theorem(strict_implies(X1,and(X1,X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_m4) ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies,
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',s1_0_op_strict_implies) ).

fof(necessitation,axiom,
    ( necessitation
  <=> ! [X1] :
        ( is_a_theorem(X1)
       => is_a_theorem(necessarily(X1)) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',necessitation) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_or) ).

fof(hilbert_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_op_implies_and) ).

fof(and_1,axiom,
    ( and_1
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',and_1) ).

fof(implies_1,axiom,
    ( implies_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',implies_1) ).

fof(hilbert_and_2,axiom,
    and_2,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_and_2) ).

fof(km5_necessitation,axiom,
    necessitation,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+2.ax',km5_necessitation) ).

fof(or_1,axiom,
    ( or_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,or(X1,X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',or_1) ).

fof(hilbert_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_op_or) ).

fof(hilbert_and_1,axiom,
    and_1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_and_1) ).

fof(hilbert_implies_1,axiom,
    implies_1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_implies_1) ).

fof(or_3,axiom,
    ( or_3
  <=> ! [X1,X2,X3] : is_a_theorem(implies(implies(X1,X3),implies(implies(X2,X3),implies(or(X1,X2),X3)))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',or_3) ).

fof(cn3,axiom,
    ( cn3
  <=> ! [X4] : is_a_theorem(implies(implies(not(X4),X4),X4)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',cn3) ).

fof(hilbert_or_1,axiom,
    or_1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_or_1) ).

fof(r3,axiom,
    ( r3
  <=> ! [X4,X5] : is_a_theorem(implies(or(X4,X5),or(X5,X4))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',r3) ).

fof(hilbert_or_3,axiom,
    or_3,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_or_3) ).

fof(op_possibly,axiom,
    ( op_possibly
   => ! [X1] : possibly(X1) = not(necessarily(not(X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+1.ax',op_possibly) ).

fof(s1_0_m6s3m9b_axiom_m6,conjecture,
    axiom_m6,
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',s1_0_m6s3m9b_axiom_m6) ).

fof(axiom_5,axiom,
    ( axiom_5
  <=> ! [X1] : is_a_theorem(implies(possibly(X1),necessarily(possibly(X1)))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_5) ).

fof(km5_op_possibly,axiom,
    op_possibly,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+2.ax',km5_op_possibly) ).

fof(axiom_M,axiom,
    ( axiom_M
  <=> ! [X1] : is_a_theorem(implies(necessarily(X1),X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_M) ).

fof(axiom_m6,axiom,
    ( axiom_m6
  <=> ! [X1] : is_a_theorem(strict_implies(X1,possibly(X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_m6) ).

fof(axiom_B,axiom,
    ( axiom_B
  <=> ! [X1] : is_a_theorem(implies(X1,necessarily(possibly(X1)))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_B) ).

fof(km5_axiom_5,axiom,
    axiom_5,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+2.ax',km5_axiom_5) ).

fof(km5_axiom_M,axiom,
    axiom_M,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+2.ax',km5_axiom_M) ).

fof(c_0_41,plain,
    ! [X3,X4] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X3)
        | ~ is_a_theorem(implies(X3,X4))
        | is_a_theorem(X4) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])])])]) ).

fof(c_0_42,plain,
    ! [X3,X4] :
      ( ( ~ and_3
        | is_a_theorem(implies(X3,implies(X4,and(X3,X4)))) )
      & ( ~ is_a_theorem(implies(esk18_0,implies(esk19_0,and(esk18_0,esk19_0))))
        | and_3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_3])])])])])]) ).

cnf(c_0_43,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2)
    | ~ modus_ponens ),
    inference(split_conjunct,[status(thm)],[c_0_41]) ).

cnf(c_0_44,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_ponens]) ).

cnf(c_0_45,plain,
    ( is_a_theorem(implies(X1,implies(X2,and(X1,X2))))
    | ~ and_3 ),
    inference(split_conjunct,[status(thm)],[c_0_42]) ).

cnf(c_0_46,plain,
    and_3,
    inference(split_conjunct,[status(thm)],[hilbert_and_3]) ).

fof(c_0_47,plain,
    ! [X3,X4] :
      ( ~ op_equiv
      | equiv(X3,X4) = and(implies(X3,X4),implies(X4,X3)) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])])])]) ).

cnf(c_0_48,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_43,c_0_44])]) ).

cnf(c_0_49,plain,
    is_a_theorem(implies(X1,implies(X2,and(X1,X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_45,c_0_46])]) ).

fof(c_0_50,plain,
    ! [X3,X4] :
      ( ( ~ adjunction
        | ~ is_a_theorem(X3)
        | ~ is_a_theorem(X4)
        | is_a_theorem(and(X3,X4)) )
      & ( is_a_theorem(esk59_0)
        | adjunction )
      & ( is_a_theorem(esk60_0)
        | adjunction )
      & ( ~ is_a_theorem(and(esk59_0,esk60_0))
        | adjunction ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[adjunction])])])])])])]) ).

cnf(c_0_51,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_47]) ).

cnf(c_0_52,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[hilbert_op_equiv]) ).

cnf(c_0_53,plain,
    ( is_a_theorem(implies(X1,and(X2,X1)))
    | ~ is_a_theorem(X2) ),
    inference(pm,[status(thm)],[c_0_48,c_0_49]) ).

fof(c_0_54,plain,
    ! [X3,X4] :
      ( ( ~ implies_2
        | is_a_theorem(implies(implies(X3,implies(X3,X4)),implies(X3,X4))) )
      & ( ~ is_a_theorem(implies(implies(esk9_0,implies(esk9_0,esk10_0)),implies(esk9_0,esk10_0)))
        | implies_2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_2])])])])])]) ).

fof(c_0_55,plain,
    ! [X3,X4] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X3,X4))
        | X3 = X4 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])])])]) ).

cnf(c_0_56,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1)
    | ~ adjunction ),
    inference(split_conjunct,[status(thm)],[c_0_50]) ).

cnf(c_0_57,plain,
    and(implies(X1,X2),implies(X2,X1)) = equiv(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_51,c_0_52])]) ).

cnf(c_0_58,plain,
    ( adjunction
    | ~ is_a_theorem(and(esk59_0,esk60_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_50]) ).

cnf(c_0_59,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(pm,[status(thm)],[c_0_48,c_0_53]) ).

cnf(c_0_60,plain,
    ( adjunction
    | is_a_theorem(esk59_0) ),
    inference(split_conjunct,[status(thm)],[c_0_50]) ).

cnf(c_0_61,plain,
    ( adjunction
    | is_a_theorem(esk60_0) ),
    inference(split_conjunct,[status(thm)],[c_0_50]) ).

fof(c_0_62,plain,
    ! [X3,X4] :
      ( ~ op_strict_implies
      | strict_implies(X3,X4) = necessarily(implies(X3,X4)) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_implies])])])])]) ).

fof(c_0_63,plain,
    ! [X3,X4] :
      ( ~ op_implies_and
      | implies(X3,X4) = not(and(X3,not(X4))) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])])])]) ).

cnf(c_0_64,plain,
    ( is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2)))
    | ~ implies_2 ),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

cnf(c_0_65,plain,
    implies_2,
    inference(split_conjunct,[status(thm)],[hilbert_implies_2]) ).

cnf(c_0_66,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2))
    | ~ substitution_of_equivalents ),
    inference(split_conjunct,[status(thm)],[c_0_55]) ).

cnf(c_0_67,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents]) ).

cnf(c_0_68,plain,
    ( is_a_theorem(equiv(X1,X2))
    | ~ adjunction
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(pm,[status(thm)],[c_0_56,c_0_57]) ).

cnf(c_0_69,plain,
    adjunction,
    inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(pm,[status(thm)],[c_0_58,c_0_59]),c_0_60]),c_0_61]) ).

fof(c_0_70,plain,
    ! [X3,X4] :
      ( ( ~ and_2
        | is_a_theorem(implies(and(X3,X4),X4)) )
      & ( ~ is_a_theorem(implies(and(esk16_0,esk17_0),esk17_0))
        | and_2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_2])])])])])]) ).

fof(c_0_71,plain,
    ! [X2] :
      ( ( ~ axiom_m4
        | is_a_theorem(strict_implies(X2,and(X2,X2))) )
      & ( ~ is_a_theorem(strict_implies(esk84_0,and(esk84_0,esk84_0)))
        | axiom_m4 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m4])])])])])]) ).

cnf(c_0_72,plain,
    ( strict_implies(X1,X2) = necessarily(implies(X1,X2))
    | ~ op_strict_implies ),
    inference(split_conjunct,[status(thm)],[c_0_62]) ).

cnf(c_0_73,plain,
    op_strict_implies,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_implies]) ).

fof(c_0_74,plain,
    ! [X2] :
      ( ( ~ necessitation
        | ~ is_a_theorem(X2)
        | is_a_theorem(necessarily(X2)) )
      & ( is_a_theorem(esk56_0)
        | necessitation )
      & ( ~ is_a_theorem(necessarily(esk56_0))
        | necessitation ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[necessitation])])])])])])]) ).

fof(c_0_75,plain,
    ! [X3,X4] :
      ( ~ op_or
      | or(X3,X4) = not(and(not(X3),not(X4))) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])])])]) ).

cnf(c_0_76,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_63]) ).

cnf(c_0_77,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[hilbert_op_implies_and]) ).

cnf(c_0_78,plain,
    is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_64,c_0_65])]) ).

fof(c_0_79,plain,
    ! [X3,X4] :
      ( ( ~ and_1
        | is_a_theorem(implies(and(X3,X4),X3)) )
      & ( ~ is_a_theorem(implies(and(esk14_0,esk15_0),esk14_0))
        | and_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_1])])])])])]) ).

fof(c_0_80,plain,
    ! [X3,X4] :
      ( ( ~ implies_1
        | is_a_theorem(implies(X3,implies(X4,X3))) )
      & ( ~ is_a_theorem(implies(esk7_0,implies(esk8_0,esk7_0)))
        | implies_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_1])])])])])]) ).

cnf(c_0_81,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_66,c_0_67])]) ).

cnf(c_0_82,plain,
    ( is_a_theorem(equiv(X1,X2))
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_68,c_0_69])]) ).

cnf(c_0_83,plain,
    ( is_a_theorem(implies(and(X1,X2),X2))
    | ~ and_2 ),
    inference(split_conjunct,[status(thm)],[c_0_70]) ).

cnf(c_0_84,plain,
    and_2,
    inference(split_conjunct,[status(thm)],[hilbert_and_2]) ).

cnf(c_0_85,plain,
    ( axiom_m4
    | ~ is_a_theorem(strict_implies(esk84_0,and(esk84_0,esk84_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_71]) ).

cnf(c_0_86,plain,
    strict_implies(X1,X2) = necessarily(implies(X1,X2)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_72,c_0_73])]) ).

cnf(c_0_87,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ is_a_theorem(X1)
    | ~ necessitation ),
    inference(split_conjunct,[status(thm)],[c_0_74]) ).

cnf(c_0_88,plain,
    necessitation,
    inference(split_conjunct,[status(thm)],[km5_necessitation]) ).

fof(c_0_89,plain,
    ! [X3,X4] :
      ( ( ~ or_1
        | is_a_theorem(implies(X3,or(X3,X4))) )
      & ( ~ is_a_theorem(implies(esk20_0,or(esk20_0,esk21_0)))
        | or_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[or_1])])])])])]) ).

cnf(c_0_90,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_75]) ).

cnf(c_0_91,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_76,c_0_77])]) ).

cnf(c_0_92,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[hilbert_op_or]) ).

cnf(c_0_93,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X1,implies(X1,X2))) ),
    inference(pm,[status(thm)],[c_0_48,c_0_78]) ).

cnf(c_0_94,plain,
    ( is_a_theorem(implies(and(X1,X2),X1))
    | ~ and_1 ),
    inference(split_conjunct,[status(thm)],[c_0_79]) ).

cnf(c_0_95,plain,
    and_1,
    inference(split_conjunct,[status(thm)],[hilbert_and_1]) ).

cnf(c_0_96,plain,
    ( is_a_theorem(implies(X1,implies(X2,X1)))
    | ~ implies_1 ),
    inference(split_conjunct,[status(thm)],[c_0_80]) ).

cnf(c_0_97,plain,
    implies_1,
    inference(split_conjunct,[status(thm)],[hilbert_implies_1]) ).

cnf(c_0_98,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(pm,[status(thm)],[c_0_81,c_0_82]) ).

cnf(c_0_99,plain,
    is_a_theorem(implies(and(X1,X2),X2)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_83,c_0_84])]) ).

cnf(c_0_100,plain,
    ( axiom_m4
    | ~ is_a_theorem(necessarily(implies(esk84_0,and(esk84_0,esk84_0)))) ),
    inference(rw,[status(thm)],[c_0_85,c_0_86]) ).

cnf(c_0_101,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_87,c_0_88])]) ).

fof(c_0_102,plain,
    ! [X4,X5,X6] :
      ( ( ~ or_3
        | is_a_theorem(implies(implies(X4,X6),implies(implies(X5,X6),implies(or(X4,X5),X6)))) )
      & ( ~ is_a_theorem(implies(implies(esk24_0,esk26_0),implies(implies(esk25_0,esk26_0),implies(or(esk24_0,esk25_0),esk26_0))))
        | or_3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[or_3])])])])])]) ).

fof(c_0_103,plain,
    ! [X5] :
      ( ( ~ cn3
        | is_a_theorem(implies(implies(not(X5),X5),X5)) )
      & ( ~ is_a_theorem(implies(implies(not(esk44_0),esk44_0),esk44_0))
        | cn3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[cn3])])])])])]) ).

cnf(c_0_104,plain,
    ( is_a_theorem(implies(X1,or(X1,X2)))
    | ~ or_1 ),
    inference(split_conjunct,[status(thm)],[c_0_89]) ).

cnf(c_0_105,plain,
    or(X1,X2) = implies(not(X1),X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_90,c_0_91]),c_0_92])]) ).

cnf(c_0_106,plain,
    or_1,
    inference(split_conjunct,[status(thm)],[hilbert_or_1]) ).

cnf(c_0_107,plain,
    is_a_theorem(implies(X1,and(X1,X1))),
    inference(pm,[status(thm)],[c_0_93,c_0_49]) ).

cnf(c_0_108,plain,
    is_a_theorem(implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_94,c_0_95])]) ).

fof(c_0_109,plain,
    ! [X6,X7] :
      ( ( ~ r3
        | is_a_theorem(implies(or(X6,X7),or(X7,X6))) )
      & ( ~ is_a_theorem(implies(or(esk48_0,esk49_0),or(esk49_0,esk48_0)))
        | r3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[r3])])])])])]) ).

cnf(c_0_110,plain,
    is_a_theorem(implies(X1,implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_96,c_0_97])]) ).

cnf(c_0_111,plain,
    ( and(X1,X2) = X2
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_98,c_0_53]),c_0_99])]) ).

cnf(c_0_112,plain,
    ( is_a_theorem(strict_implies(X1,and(X1,X1)))
    | ~ axiom_m4 ),
    inference(split_conjunct,[status(thm)],[c_0_71]) ).

cnf(c_0_113,plain,
    ( axiom_m4
    | ~ is_a_theorem(implies(esk84_0,and(esk84_0,esk84_0))) ),
    inference(pm,[status(thm)],[c_0_100,c_0_101]) ).

cnf(c_0_114,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(implies(X3,X2),implies(or(X1,X3),X2))))
    | ~ or_3 ),
    inference(split_conjunct,[status(thm)],[c_0_102]) ).

cnf(c_0_115,plain,
    or_3,
    inference(split_conjunct,[status(thm)],[hilbert_or_3]) ).

cnf(c_0_116,plain,
    ( is_a_theorem(implies(implies(not(X1),X1),X1))
    | ~ cn3 ),
    inference(split_conjunct,[status(thm)],[c_0_103]) ).

cnf(c_0_117,plain,
    is_a_theorem(implies(X1,implies(not(X1),X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_104,c_0_105]),c_0_106])]) ).

cnf(c_0_118,plain,
    and(X1,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_98,c_0_107]),c_0_108])]) ).

cnf(c_0_119,plain,
    ( is_a_theorem(implies(or(X1,X2),or(X2,X1)))
    | ~ r3 ),
    inference(split_conjunct,[status(thm)],[c_0_109]) ).

cnf(c_0_120,plain,
    implies(X1,implies(X1,X2)) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_98,c_0_78]),c_0_110])]) ).

cnf(c_0_121,plain,
    ( implies(X1,X2) = not(not(X2))
    | ~ is_a_theorem(X1) ),
    inference(pm,[status(thm)],[c_0_91,c_0_111]) ).

cnf(c_0_122,plain,
    ( is_a_theorem(necessarily(implies(X1,and(X1,X1))))
    | ~ axiom_m4 ),
    inference(rw,[status(thm)],[c_0_112,c_0_86]) ).

cnf(c_0_123,plain,
    axiom_m4,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_113,c_0_107])]) ).

cnf(c_0_124,plain,
    is_a_theorem(implies(implies(X1,X2),implies(implies(X3,X2),implies(implies(not(X1),X3),X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_114,c_0_105]),c_0_115])]) ).

cnf(c_0_125,plain,
    ( implies(not(X1),X1) = X1
    | ~ cn3 ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_98,c_0_116]),c_0_117])]) ).

cnf(c_0_126,plain,
    implies(not(X1),X1) = not(not(X1)),
    inference(pm,[status(thm)],[c_0_91,c_0_118]) ).

cnf(c_0_127,plain,
    not(and(X1,implies(X2,X3))) = implies(X1,and(X2,not(X3))),
    inference(pm,[status(thm)],[c_0_91,c_0_91]) ).

cnf(c_0_128,plain,
    ( is_a_theorem(implies(implies(not(X1),X2),implies(not(X2),X1)))
    | ~ r3 ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_119,c_0_105]),c_0_105]) ).

cnf(c_0_129,plain,
    ( not(not(implies(X1,X2))) = implies(X1,X2)
    | ~ is_a_theorem(X1) ),
    inference(pm,[status(thm)],[c_0_120,c_0_121]) ).

fof(c_0_130,plain,
    ( ~ epred4_0
  <=> ! [X1] : ~ is_a_theorem(X1) ),
    introduced(definition) ).

cnf(c_0_131,plain,
    is_a_theorem(necessarily(implies(X1,and(X1,X1)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_122,c_0_123])]) ).

cnf(c_0_132,plain,
    ( r3
    | ~ is_a_theorem(implies(or(esk48_0,esk49_0),or(esk49_0,esk48_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_109]) ).

cnf(c_0_133,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(implies(not(X3),X1),X2)))
    | ~ is_a_theorem(implies(X3,X2)) ),
    inference(pm,[status(thm)],[c_0_48,c_0_124]) ).

cnf(c_0_134,plain,
    ( not(not(X1)) = X1
    | ~ cn3 ),
    inference(pm,[status(thm)],[c_0_125,c_0_126]) ).

cnf(c_0_135,plain,
    ( not(and(X1,X2)) = implies(X1,not(X2))
    | ~ cn3 ),
    inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_127,c_0_125]),c_0_118]) ).

cnf(c_0_136,plain,
    ( cn3
    | ~ is_a_theorem(implies(implies(not(esk44_0),esk44_0),esk44_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_103]) ).

cnf(c_0_137,plain,
    ( is_a_theorem(implies(not(X1),X2))
    | ~ r3
    | ~ is_a_theorem(implies(not(X2),X1)) ),
    inference(pm,[status(thm)],[c_0_48,c_0_128]) ).

cnf(c_0_138,plain,
    is_a_theorem(implies(X1,X1)),
    inference(pm,[status(thm)],[c_0_93,c_0_110]) ).

fof(c_0_139,plain,
    ( ~ epred3_0
  <=> ! [X2] : not(not(not(not(X2)))) = not(not(X2)) ),
    introduced(definition) ).

cnf(c_0_140,plain,
    ( implies(X1,X2) = not(not(not(not(X2))))
    | ~ is_a_theorem(X1) ),
    inference(pm,[status(thm)],[c_0_129,c_0_121]) ).

cnf(c_0_141,plain,
    ( epred4_0
    | ~ is_a_theorem(X1) ),
    inference(split_equiv,[status(thm)],[c_0_130]) ).

cnf(c_0_142,plain,
    is_a_theorem(necessarily(implies(X1,X1))),
    inference(rw,[status(thm)],[c_0_131,c_0_118]) ).

cnf(c_0_143,plain,
    ( r3
    | ~ is_a_theorem(implies(implies(not(esk48_0),esk49_0),implies(not(esk49_0),esk48_0))) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_132,c_0_105]),c_0_105]) ).

cnf(c_0_144,plain,
    ( is_a_theorem(implies(implies(not(X1),X2),X3))
    | ~ is_a_theorem(implies(X2,X3))
    | ~ is_a_theorem(implies(X1,X3)) ),
    inference(pm,[status(thm)],[c_0_48,c_0_133]) ).

cnf(c_0_145,plain,
    ( and(X1,X2) = not(implies(X1,not(X2)))
    | ~ cn3 ),
    inference(pm,[status(thm)],[c_0_134,c_0_135]) ).

cnf(c_0_146,plain,
    ( cn3
    | ~ is_a_theorem(implies(not(not(esk44_0)),esk44_0)) ),
    inference(rw,[status(thm)],[c_0_136,c_0_126]) ).

cnf(c_0_147,plain,
    ( is_a_theorem(implies(not(not(X1)),X1))
    | ~ r3 ),
    inference(pm,[status(thm)],[c_0_137,c_0_138]) ).

cnf(c_0_148,plain,
    ( ~ epred4_0
    | ~ epred3_0 ),
    inference(apply_def,[status(thm)],[inference(apply_def,[status(thm)],[inference(pm,[status(thm)],[c_0_121,c_0_140]),c_0_139]),c_0_130]) ).

cnf(c_0_149,plain,
    epred4_0,
    inference(pm,[status(thm)],[c_0_141,c_0_142]) ).

fof(c_0_150,plain,
    ! [X2] :
      ( ~ op_possibly
      | possibly(X2) = not(necessarily(not(X2))) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_possibly])])])])]) ).

cnf(c_0_151,plain,
    r3,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_143,c_0_144]),c_0_117]),c_0_110])]) ).

cnf(c_0_152,plain,
    ( not(implies(X1,not(X1))) = X1
    | ~ cn3 ),
    inference(pm,[status(thm)],[c_0_118,c_0_145]) ).

cnf(c_0_153,plain,
    ( implies(X1,not(X1)) = not(not(not(X1)))
    | ~ cn3 ),
    inference(pm,[status(thm)],[c_0_126,c_0_134]) ).

cnf(c_0_154,plain,
    ( cn3
    | ~ r3 ),
    inference(pm,[status(thm)],[c_0_146,c_0_147]) ).

cnf(c_0_155,plain,
    ~ epred3_0,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_148,c_0_149])]) ).

fof(c_0_156,negated_conjecture,
    ~ axiom_m6,
    inference(assume_negation,[status(cth)],[s1_0_m6s3m9b_axiom_m6]) ).

fof(c_0_157,plain,
    ! [X2] :
      ( ( ~ axiom_5
        | is_a_theorem(implies(possibly(X2),necessarily(possibly(X2)))) )
      & ( ~ is_a_theorem(implies(possibly(esk68_0),necessarily(possibly(esk68_0))))
        | axiom_5 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_5])])])])])]) ).

cnf(c_0_158,plain,
    ( possibly(X1) = not(necessarily(not(X1)))
    | ~ op_possibly ),
    inference(split_conjunct,[status(thm)],[c_0_150]) ).

cnf(c_0_159,plain,
    op_possibly,
    inference(split_conjunct,[status(thm)],[km5_op_possibly]) ).

fof(c_0_160,plain,
    ! [X2] :
      ( ( ~ axiom_M
        | is_a_theorem(implies(necessarily(X2),X2)) )
      & ( ~ is_a_theorem(implies(necessarily(esk65_0),esk65_0))
        | axiom_M ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_M])])])])])]) ).

cnf(c_0_161,plain,
    is_a_theorem(implies(implies(not(X1),X2),implies(not(X2),X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_128,c_0_151])]) ).

cnf(c_0_162,plain,
    ( not(not(not(not(X1)))) = X1
    | ~ cn3 ),
    inference(pm,[status(thm)],[c_0_152,c_0_153]) ).

cnf(c_0_163,plain,
    cn3,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_154,c_0_151])]) ).

cnf(c_0_164,plain,
    not(not(not(not(X1)))) = not(not(X1)),
    inference(sr,[status(thm)],[inference(split_equiv,[status(thm)],[c_0_139]),c_0_155]) ).

fof(c_0_165,plain,
    ! [X2] :
      ( ( ~ axiom_m6
        | is_a_theorem(strict_implies(X2,possibly(X2))) )
      & ( ~ is_a_theorem(strict_implies(esk88_0,possibly(esk88_0)))
        | axiom_m6 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m6])])])])])]) ).

fof(c_0_166,negated_conjecture,
    ~ axiom_m6,
    inference(fof_simplification,[status(thm)],[c_0_156]) ).

fof(c_0_167,plain,
    ! [X2] :
      ( ( ~ axiom_B
        | is_a_theorem(implies(X2,necessarily(possibly(X2)))) )
      & ( ~ is_a_theorem(implies(esk67_0,necessarily(possibly(esk67_0))))
        | axiom_B ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_B])])])])])]) ).

cnf(c_0_168,plain,
    ( is_a_theorem(implies(possibly(X1),necessarily(possibly(X1))))
    | ~ axiom_5 ),
    inference(split_conjunct,[status(thm)],[c_0_157]) ).

cnf(c_0_169,plain,
    possibly(X1) = not(necessarily(not(X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_158,c_0_159])]) ).

cnf(c_0_170,plain,
    axiom_5,
    inference(split_conjunct,[status(thm)],[km5_axiom_5]) ).

cnf(c_0_171,plain,
    ( is_a_theorem(implies(necessarily(X1),X1))
    | ~ axiom_M ),
    inference(split_conjunct,[status(thm)],[c_0_160]) ).

cnf(c_0_172,plain,
    axiom_M,
    inference(split_conjunct,[status(thm)],[km5_axiom_M]) ).

cnf(c_0_173,plain,
    implies(not(X1),X2) = implies(not(X2),X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_98,c_0_161]),c_0_161])]) ).

cnf(c_0_174,plain,
    not(not(X1)) = X1,
    inference(rw,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_162,c_0_163])]),c_0_164]) ).

cnf(c_0_175,plain,
    ( axiom_m6
    | ~ is_a_theorem(strict_implies(esk88_0,possibly(esk88_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_165]) ).

cnf(c_0_176,negated_conjecture,
    ~ axiom_m6,
    inference(split_conjunct,[status(thm)],[c_0_166]) ).

cnf(c_0_177,plain,
    ( is_a_theorem(implies(X1,necessarily(possibly(X1))))
    | ~ axiom_B ),
    inference(split_conjunct,[status(thm)],[c_0_167]) ).

cnf(c_0_178,plain,
    is_a_theorem(implies(not(necessarily(not(X1))),necessarily(not(necessarily(not(X1)))))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_168,c_0_169]),c_0_169]),c_0_170])]) ).

cnf(c_0_179,plain,
    is_a_theorem(implies(necessarily(X1),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_171,c_0_172])]) ).

cnf(c_0_180,plain,
    ( axiom_B
    | ~ is_a_theorem(implies(esk67_0,necessarily(possibly(esk67_0)))) ),
    inference(split_conjunct,[status(thm)],[c_0_167]) ).

cnf(c_0_181,plain,
    implies(X1,X2) = implies(not(X2),not(X1)),
    inference(pm,[status(thm)],[c_0_173,c_0_174]) ).

cnf(c_0_182,plain,
    ~ is_a_theorem(necessarily(implies(esk88_0,not(necessarily(not(esk88_0)))))),
    inference(sr,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_175,c_0_169]),c_0_86]),c_0_176]) ).

cnf(c_0_183,plain,
    ( is_a_theorem(implies(X1,necessarily(not(necessarily(not(X1))))))
    | ~ axiom_B ),
    inference(rw,[status(thm)],[c_0_177,c_0_169]) ).

cnf(c_0_184,plain,
    necessarily(not(necessarily(not(X1)))) = not(necessarily(not(X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_98,c_0_178]),c_0_179])]) ).

cnf(c_0_185,plain,
    ( axiom_B
    | ~ is_a_theorem(implies(esk67_0,necessarily(not(necessarily(not(esk67_0)))))) ),
    inference(rw,[status(thm)],[c_0_180,c_0_169]) ).

cnf(c_0_186,plain,
    implies(X1,not(X2)) = implies(X2,not(X1)),
    inference(pm,[status(thm)],[c_0_181,c_0_174]) ).

cnf(c_0_187,plain,
    ~ is_a_theorem(implies(esk88_0,not(necessarily(not(esk88_0))))),
    inference(pm,[status(thm)],[c_0_182,c_0_101]) ).

cnf(c_0_188,plain,
    ( is_a_theorem(implies(X1,not(necessarily(not(X1)))))
    | ~ axiom_B ),
    inference(rw,[status(thm)],[c_0_183,c_0_184]) ).

cnf(c_0_189,plain,
    ( axiom_B
    | ~ is_a_theorem(implies(esk67_0,not(necessarily(not(esk67_0))))) ),
    inference(rw,[status(thm)],[c_0_185,c_0_184]) ).

cnf(c_0_190,plain,
    is_a_theorem(implies(X1,not(necessarily(not(X1))))),
    inference(pm,[status(thm)],[c_0_179,c_0_186]) ).

cnf(c_0_191,plain,
    ~ axiom_B,
    inference(pm,[status(thm)],[c_0_187,c_0_188]) ).

cnf(c_0_192,plain,
    $false,
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_189,c_0_190])]),c_0_191]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : LCL533+1 : TPTP v8.1.0. Released v3.3.0.
% 0.03/0.13  % Command  : run_ET %s %d
% 0.14/0.34  % Computer : n021.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 600
% 0.14/0.34  % DateTime : Sat Jul  2 20:12:15 EDT 2022
% 0.14/0.35  % CPUTime  : 
% 0.41/23.42  eprover: CPU time limit exceeded, terminating
% 0.41/23.43  eprover: CPU time limit exceeded, terminating
% 0.41/23.44  eprover: CPU time limit exceeded, terminating
% 0.41/23.49  eprover: CPU time limit exceeded, terminating
% 0.49/33.68  # Running protocol protocol_eprover_4a02c828a8cc55752123edbcc1ad40e453c11447 for 23 seconds:
% 0.49/33.68  # SinE strategy is GSinE(CountFormulas,hypos,1.4,,04,100,1.0)
% 0.49/33.68  # Preprocessing time       : 0.016 s
% 0.49/33.68  
% 0.49/33.68  # Failure: Out of unprocessed clauses!
% 0.49/33.68  # OLD status GaveUp
% 0.49/33.68  # Parsed axioms                        : 88
% 0.49/33.68  # Removed by relevancy pruning/SinE    : 86
% 0.49/33.68  # Initial clauses                      : 3
% 0.49/33.68  # Removed in clause preprocessing      : 0
% 0.49/33.68  # Initial clauses in saturation        : 3
% 0.49/33.68  # Processed clauses                    : 3
% 0.49/33.68  # ...of these trivial                  : 0
% 0.49/33.68  # ...subsumed                          : 1
% 0.49/33.68  # ...remaining for further processing  : 2
% 0.49/33.68  # Other redundant clauses eliminated   : 0
% 0.49/33.68  # Clauses deleted for lack of memory   : 0
% 0.49/33.68  # Backward-subsumed                    : 0
% 0.49/33.68  # Backward-rewritten                   : 0
% 0.49/33.68  # Generated clauses                    : 0
% 0.49/33.68  # ...of the previous two non-trivial   : 0
% 0.49/33.68  # Contextual simplify-reflections      : 0
% 0.49/33.68  # Paramodulations                      : 0
% 0.49/33.68  # Factorizations                       : 0
% 0.49/33.68  # Equation resolutions                 : 0
% 0.49/33.68  # Current number of processed clauses  : 2
% 0.49/33.68  #    Positive orientable unit clauses  : 0
% 0.49/33.68  #    Positive unorientable unit clauses: 0
% 0.49/33.68  #    Negative unit clauses             : 2
% 0.49/33.68  #    Non-unit-clauses                  : 0
% 0.49/33.68  # Current number of unprocessed clauses: 0
% 0.49/33.68  # ...number of literals in the above   : 0
% 0.49/33.68  # Current number of archived formulas  : 0
% 0.49/33.68  # Current number of archived clauses   : 0
% 0.49/33.68  # Clause-clause subsumption calls (NU) : 0
% 0.49/33.68  # Rec. Clause-clause subsumption calls : 0
% 0.49/33.68  # Non-unit clause-clause subsumptions  : 0
% 0.49/33.68  # Unit Clause-clause subsumption calls : 0
% 0.49/33.68  # Rewrite failures with RHS unbound    : 0
% 0.49/33.68  # BW rewrite match attempts            : 0
% 0.49/33.68  # BW rewrite match successes           : 0
% 0.49/33.68  # Condensation attempts                : 0
% 0.49/33.68  # Condensation successes               : 0
% 0.49/33.68  # Termbank termtop insertions          : 788
% 0.49/33.68  
% 0.49/33.68  # -------------------------------------------------
% 0.49/33.68  # User time                : 0.013 s
% 0.49/33.68  # System time              : 0.003 s
% 0.49/33.68  # Total time               : 0.016 s
% 0.49/33.68  # Maximum resident set size: 2848 pages
% 0.49/33.68  # Running protocol protocol_eprover_f171197f65f27d1ba69648a20c844832c84a5dd7 for 23 seconds:
% 0.49/33.68  
% 0.49/33.68  # Failure: Resource limit exceeded (time)
% 0.49/33.68  # OLD status Res
% 0.49/33.68  # Preprocessing time       : 0.023 s
% 0.49/33.68  # Running protocol protocol_eprover_eb48853eb71ccd2a6fdade56c25b63f5692e1a0c for 23 seconds:
% 0.49/33.68  # Preprocessing time       : 0.022 s
% 0.49/33.68  
% 0.49/33.68  # Proof found!
% 0.49/33.68  # SZS status Theorem
% 0.49/33.68  # SZS output start CNFRefutation
% See solution above
% 0.49/33.68  # Proof object total steps             : 193
% 0.49/33.68  # Proof object clause steps            : 125
% 0.49/33.68  # Proof object formula steps           : 68
% 0.49/33.68  # Proof object conjectures             : 4
% 0.49/33.68  # Proof object clause conjectures      : 1
% 0.49/33.68  # Proof object formula conjectures     : 3
% 0.49/33.68  # Proof object initial clauses used    : 49
% 0.49/33.68  # Proof object initial formulas used   : 41
% 0.49/33.68  # Proof object generating inferences   : 39
% 0.49/33.68  # Proof object simplifying inferences  : 93
% 0.49/33.68  # Training examples: 0 positive, 0 negative
% 0.49/33.68  # Parsed axioms                        : 88
% 0.49/33.68  # Removed by relevancy pruning/SinE    : 0
% 0.49/33.68  # Initial clauses                      : 146
% 0.49/33.68  # Removed in clause preprocessing      : 0
% 0.49/33.68  # Initial clauses in saturation        : 146
% 0.49/33.68  # Processed clauses                    : 9217
% 0.49/33.68  # ...of these trivial                  : 230
% 0.49/33.68  # ...subsumed                          : 5758
% 0.49/33.68  # ...remaining for further processing  : 3229
% 0.49/33.68  # Other redundant clauses eliminated   : 0
% 0.49/33.68  # Clauses deleted for lack of memory   : 399399
% 0.49/33.68  # Backward-subsumed                    : 347
% 0.49/33.68  # Backward-rewritten                   : 1575
% 0.49/33.68  # Generated clauses                    : 714034
% 0.49/33.68  # ...of the previous two non-trivial   : 686068
% 0.49/33.68  # Contextual simplify-reflections      : 2743
% 0.49/33.68  # Paramodulations                      : 713977
% 0.49/33.68  # Factorizations                       : 0
% 0.49/33.68  # Equation resolutions                 : 0
% 0.49/33.68  # Current number of processed clauses  : 1282
% 0.49/33.68  #    Positive orientable unit clauses  : 209
% 0.49/33.68  #    Positive unorientable unit clauses: 23
% 0.49/33.68  #    Negative unit clauses             : 25
% 0.49/33.68  #    Non-unit-clauses                  : 1025
% 0.49/33.68  # Current number of unprocessed clauses: 95740
% 0.49/33.68  # ...number of literals in the above   : 308458
% 0.49/33.68  # Current number of archived formulas  : 0
% 0.49/33.68  # Current number of archived clauses   : 1922
% 0.49/33.68  # Clause-clause subsumption calls (NU) : 560741
% 0.49/33.68  # Rec. Clause-clause subsumption calls : 458443
% 0.49/33.68  # Non-unit clause-clause subsumptions  : 7688
% 0.49/33.68  # Unit Clause-clause subsumption calls : 31709
% 0.49/33.68  # Rewrite failures with RHS unbound    : 551
% 0.49/33.68  # BW rewrite match attempts            : 36600
% 0.49/33.68  # BW rewrite match successes           : 1130
% 0.49/33.68  # Condensation attempts                : 0
% 0.49/33.68  # Condensation successes               : 0
% 0.49/33.68  # Termbank termtop insertions          : 10438440
% 0.49/33.68  
% 0.49/33.68  # -------------------------------------------------
% 0.49/33.68  # User time                : 9.637 s
% 0.49/33.68  # System time              : 0.138 s
% 0.49/33.68  # Total time               : 9.775 s
% 0.49/33.68  # Maximum resident set size: 168412 pages
% 0.49/46.46  eprover: CPU time limit exceeded, terminating
% 0.49/46.47  eprover: CPU time limit exceeded, terminating
% 0.49/46.48  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in
% 0.49/46.48  eprover: No such file or directory
% 0.49/46.48  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in
% 0.49/46.48  eprover: No such file or directory
% 0.49/46.49  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.49  eprover: No such file or directory
% 0.49/46.49  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in
% 0.49/46.49  eprover: No such file or directory
% 0.49/46.49  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.49  eprover: No such file or directory
% 0.49/46.50  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in
% 0.49/46.50  eprover: No such file or directory
% 0.49/46.50  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.50  eprover: No such file or directory
% 0.49/46.50  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.50  eprover: No such file or directory
% 0.49/46.50  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in
% 0.49/46.50  eprover: No such file or directory
% 0.49/46.50  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.50  eprover: No such file or directory
% 0.49/46.51  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in
% 0.49/46.51  eprover: No such file or directory
% 0.49/46.51  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.51  eprover: No such file or directory
% 0.49/46.51  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.51  eprover: No such file or directory
% 0.49/46.51  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in
% 0.49/46.51  eprover: No such file or directory
% 0.49/46.52  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.52  eprover: No such file or directory
% 0.49/46.52  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.52  eprover: No such file or directory
% 0.49/46.52  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in
% 0.49/46.52  eprover: No such file or directory
% 0.49/46.52  eprover: CPU time limit exceeded, terminating
% 0.49/46.53  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in
% 0.49/46.53  eprover: No such file or directory
% 0.49/46.54  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.54  eprover: No such file or directory
% 0.49/46.54  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.54  eprover: No such file or directory
% 0.49/46.54  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.54  eprover: No such file or directory
% 0.49/46.55  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.55  eprover: No such file or directory
% 0.49/46.55  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.55  eprover: No such file or directory
% 0.49/46.55  eprover: Cannot stat file /export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p
% 0.49/46.55  eprover: No such file or directory
%------------------------------------------------------------------------------