TSTP Solution File: LCL531+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : LCL531+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 12:52:57 EDT 2022

% Result   : Theorem 0.48s 0.65s
% Output   : CNFRefutation 0.48s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :   15
% Syntax   : Number of formulae    :   74 (  34 unt;   0 def)
%            Number of atoms       :  149 (  16 equ)
%            Maximal formula atoms :   10 (   2 avg)
%            Number of connectives :  136 (  61   ~;  50   |;  12   &)
%                                         (  10 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   3 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :   10 (   7 usr;   7 prp; 0-2 aty)
%            Number of functors    :   12 (  12 usr;   8 con; 0-2 aty)
%            Number of variables   :   78 (   0 sgn  29   !;   8   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X,Y] :
        ( ( is_a_theorem(X)
          & is_a_theorem(implies(X,Y)) )
       => is_a_theorem(Y) ) ) ).

fof(implies_2,axiom,
    ( implies_2
  <=> ! [X,Y] : is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) ) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X,Y] : is_a_theorem(implies(X,implies(Y,and(X,Y)))) ) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens ).

fof(hilbert_implies_2,axiom,
    implies_2 ).

fof(hilbert_and_3,axiom,
    and_3 ).

fof(necessitation,axiom,
    ( necessitation
  <=> ! [X] :
        ( is_a_theorem(X)
       => is_a_theorem(necessarily(X)) ) ) ).

fof(axiom_m4,axiom,
    ( axiom_m4
  <=> ! [X] : is_a_theorem(strict_implies(X,and(X,X))) ) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X,Y] : strict_implies(X,Y) = necessarily(implies(X,Y)) ) ).

fof(km5_necessitation,axiom,
    necessitation ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies ).

fof(s1_0_axiom_m4,conjecture,
    axiom_m4 ).

fof(subgoal_0,plain,
    axiom_m4,
    inference(strip,[],[s1_0_axiom_m4]) ).

fof(negate_0_0,plain,
    ~ axiom_m4,
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ( ~ axiom_m4
  <=> ? [X] : ~ is_a_theorem(strict_implies(X,and(X,X))) ),
    inference(canonicalize,[],[axiom_m4]) ).

fof(normalize_0_1,plain,
    ! [X] :
      ( ( ~ axiom_m4
        | is_a_theorem(strict_implies(X,and(X,X))) )
      & ( ~ is_a_theorem(strict_implies(skolemFOFtoCNF_X_30,and(skolemFOFtoCNF_X_30,skolemFOFtoCNF_X_30)))
        | axiom_m4 ) ),
    inference(clausify,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ( ~ is_a_theorem(strict_implies(skolemFOFtoCNF_X_30,and(skolemFOFtoCNF_X_30,skolemFOFtoCNF_X_30)))
    | axiom_m4 ),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    ~ axiom_m4,
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_4,plain,
    ( ~ necessitation
  <=> ? [X] :
        ( ~ is_a_theorem(necessarily(X))
        & is_a_theorem(X) ) ),
    inference(canonicalize,[],[necessitation]) ).

fof(normalize_0_5,plain,
    ! [X] :
      ( ( ~ is_a_theorem(necessarily(skolemFOFtoCNF_X_15))
        | necessitation )
      & ( is_a_theorem(skolemFOFtoCNF_X_15)
        | necessitation )
      & ( ~ is_a_theorem(X)
        | ~ necessitation
        | is_a_theorem(necessarily(X)) ) ),
    inference(clausify,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ! [X] :
      ( ~ is_a_theorem(X)
      | ~ necessitation
      | is_a_theorem(necessarily(X)) ),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    necessitation,
    inference(canonicalize,[],[km5_necessitation]) ).

fof(normalize_0_8,plain,
    ( ~ and_3
  <=> ? [X,Y] : ~ is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(canonicalize,[],[and_3]) ).

fof(normalize_0_9,plain,
    ! [X,Y] :
      ( ( ~ and_3
        | is_a_theorem(implies(X,implies(Y,and(X,Y)))) )
      & ( ~ is_a_theorem(implies(skolemFOFtoCNF_X_8,implies(skolemFOFtoCNF_Y_8,and(skolemFOFtoCNF_X_8,skolemFOFtoCNF_Y_8))))
        | and_3 ) ),
    inference(clausify,[],[normalize_0_8]) ).

fof(normalize_0_10,plain,
    ! [X,Y] :
      ( ~ and_3
      | is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(conjunct,[],[normalize_0_9]) ).

fof(normalize_0_11,plain,
    and_3,
    inference(canonicalize,[],[hilbert_and_3]) ).

fof(normalize_0_12,plain,
    ( ~ implies_2
  <=> ? [X,Y] : ~ is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) ),
    inference(canonicalize,[],[implies_2]) ).

fof(normalize_0_13,plain,
    ! [X,Y] :
      ( ( ~ implies_2
        | is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) )
      & ( ~ is_a_theorem(implies(implies(skolemFOFtoCNF_X_4,implies(skolemFOFtoCNF_X_4,skolemFOFtoCNF_Y_4)),implies(skolemFOFtoCNF_X_4,skolemFOFtoCNF_Y_4)))
        | implies_2 ) ),
    inference(clausify,[],[normalize_0_12]) ).

fof(normalize_0_14,plain,
    ! [X,Y] :
      ( ~ implies_2
      | is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) ),
    inference(conjunct,[],[normalize_0_13]) ).

fof(normalize_0_15,plain,
    implies_2,
    inference(canonicalize,[],[hilbert_implies_2]) ).

fof(normalize_0_16,plain,
    ( ~ modus_ponens
  <=> ? [X,Y] :
        ( ~ is_a_theorem(Y)
        & is_a_theorem(X)
        & is_a_theorem(implies(X,Y)) ) ),
    inference(canonicalize,[],[modus_ponens]) ).

fof(normalize_0_17,plain,
    ! [X,Y] :
      ( ( ~ is_a_theorem(skolemFOFtoCNF_Y)
        | modus_ponens )
      & ( is_a_theorem(implies(skolemFOFtoCNF_X,skolemFOFtoCNF_Y))
        | modus_ponens )
      & ( is_a_theorem(skolemFOFtoCNF_X)
        | modus_ponens )
      & ( ~ is_a_theorem(X)
        | ~ is_a_theorem(implies(X,Y))
        | ~ modus_ponens
        | is_a_theorem(Y) ) ),
    inference(clausify,[],[normalize_0_16]) ).

fof(normalize_0_18,plain,
    ! [X,Y] :
      ( ~ is_a_theorem(X)
      | ~ is_a_theorem(implies(X,Y))
      | ~ modus_ponens
      | is_a_theorem(Y) ),
    inference(conjunct,[],[normalize_0_17]) ).

fof(normalize_0_19,plain,
    modus_ponens,
    inference(canonicalize,[],[hilbert_modus_ponens]) ).

fof(normalize_0_20,plain,
    ( ~ op_strict_implies
    | ! [X,Y] : strict_implies(X,Y) = necessarily(implies(X,Y)) ),
    inference(canonicalize,[],[op_strict_implies]) ).

fof(normalize_0_21,plain,
    ! [X,Y] :
      ( ~ op_strict_implies
      | strict_implies(X,Y) = necessarily(implies(X,Y)) ),
    inference(clausify,[],[normalize_0_20]) ).

fof(normalize_0_22,plain,
    op_strict_implies,
    inference(canonicalize,[],[s1_0_op_strict_implies]) ).

cnf(refute_0_0,plain,
    ( ~ is_a_theorem(strict_implies(skolemFOFtoCNF_X_30,and(skolemFOFtoCNF_X_30,skolemFOFtoCNF_X_30)))
    | axiom_m4 ),
    inference(canonicalize,[],[normalize_0_2]) ).

cnf(refute_0_1,plain,
    ~ axiom_m4,
    inference(canonicalize,[],[normalize_0_3]) ).

cnf(refute_0_2,plain,
    ~ is_a_theorem(strict_implies(skolemFOFtoCNF_X_30,and(skolemFOFtoCNF_X_30,skolemFOFtoCNF_X_30))),
    inference(resolve,[$cnf( axiom_m4 )],[refute_0_0,refute_0_1]) ).

cnf(refute_0_3,plain,
    ( ~ is_a_theorem(X)
    | ~ necessitation
    | is_a_theorem(necessarily(X)) ),
    inference(canonicalize,[],[normalize_0_6]) ).

cnf(refute_0_4,plain,
    necessitation,
    inference(canonicalize,[],[normalize_0_7]) ).

cnf(refute_0_5,plain,
    ( ~ is_a_theorem(X)
    | is_a_theorem(necessarily(X)) ),
    inference(resolve,[$cnf( necessitation )],[refute_0_4,refute_0_3]) ).

cnf(refute_0_6,plain,
    ( ~ is_a_theorem(implies(X_397,and(X_397,X_397)))
    | is_a_theorem(necessarily(implies(X_397,and(X_397,X_397)))) ),
    inference(subst,[],[refute_0_5:[bind(X,$fot(implies(X_397,and(X_397,X_397))))]]) ).

cnf(refute_0_7,plain,
    ( ~ and_3
    | is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(canonicalize,[],[normalize_0_10]) ).

cnf(refute_0_8,plain,
    and_3,
    inference(canonicalize,[],[normalize_0_11]) ).

cnf(refute_0_9,plain,
    is_a_theorem(implies(X,implies(Y,and(X,Y)))),
    inference(resolve,[$cnf( and_3 )],[refute_0_8,refute_0_7]) ).

cnf(refute_0_10,plain,
    is_a_theorem(implies(X_392,implies(X_392,and(X_392,X_392)))),
    inference(subst,[],[refute_0_9:[bind(X,$fot(X_392)),bind(Y,$fot(X_392))]]) ).

cnf(refute_0_11,plain,
    ( ~ implies_2
    | is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) ),
    inference(canonicalize,[],[normalize_0_14]) ).

cnf(refute_0_12,plain,
    implies_2,
    inference(canonicalize,[],[normalize_0_15]) ).

cnf(refute_0_13,plain,
    is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))),
    inference(resolve,[$cnf( implies_2 )],[refute_0_12,refute_0_11]) ).

cnf(refute_0_14,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | ~ modus_ponens
    | is_a_theorem(Y) ),
    inference(canonicalize,[],[normalize_0_18]) ).

cnf(refute_0_15,plain,
    modus_ponens,
    inference(canonicalize,[],[normalize_0_19]) ).

cnf(refute_0_16,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | is_a_theorem(Y) ),
    inference(resolve,[$cnf( modus_ponens )],[refute_0_15,refute_0_14]) ).

cnf(refute_0_17,plain,
    ( ~ is_a_theorem(implies(X,implies(X,Y)))
    | ~ is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y)))
    | is_a_theorem(implies(X,Y)) ),
    inference(subst,[],[refute_0_16:[bind(X,$fot(implies(X,implies(X,Y)))),bind(Y,$fot(implies(X,Y)))]]) ).

cnf(refute_0_18,plain,
    ( ~ is_a_theorem(implies(X,implies(X,Y)))
    | is_a_theorem(implies(X,Y)) ),
    inference(resolve,[$cnf( is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) )],[refute_0_13,refute_0_17]) ).

cnf(refute_0_19,plain,
    ( ~ is_a_theorem(implies(X_392,implies(X_392,and(X_392,X_392))))
    | is_a_theorem(implies(X_392,and(X_392,X_392))) ),
    inference(subst,[],[refute_0_18:[bind(X,$fot(X_392)),bind(Y,$fot(and(X_392,X_392)))]]) ).

cnf(refute_0_20,plain,
    is_a_theorem(implies(X_392,and(X_392,X_392))),
    inference(resolve,[$cnf( is_a_theorem(implies(X_392,implies(X_392,and(X_392,X_392)))) )],[refute_0_10,refute_0_19]) ).

cnf(refute_0_21,plain,
    is_a_theorem(implies(X_397,and(X_397,X_397))),
    inference(subst,[],[refute_0_20:[bind(X_392,$fot(X_397))]]) ).

cnf(refute_0_22,plain,
    is_a_theorem(necessarily(implies(X_397,and(X_397,X_397)))),
    inference(resolve,[$cnf( is_a_theorem(implies(X_397,and(X_397,X_397))) )],[refute_0_21,refute_0_6]) ).

cnf(refute_0_23,plain,
    ( ~ op_strict_implies
    | strict_implies(X,Y) = necessarily(implies(X,Y)) ),
    inference(canonicalize,[],[normalize_0_21]) ).

cnf(refute_0_24,plain,
    op_strict_implies,
    inference(canonicalize,[],[normalize_0_22]) ).

cnf(refute_0_25,plain,
    strict_implies(X,Y) = necessarily(implies(X,Y)),
    inference(resolve,[$cnf( op_strict_implies )],[refute_0_24,refute_0_23]) ).

cnf(refute_0_26,plain,
    X0 = X0,
    introduced(tautology,[refl,[$fot(X0)]]) ).

cnf(refute_0_27,plain,
    ( X0 != X0
    | X0 != Y0
    | Y0 = X0 ),
    introduced(tautology,[equality,[$cnf( $equal(X0,X0) ),[0],$fot(Y0)]]) ).

cnf(refute_0_28,plain,
    ( X0 != Y0
    | Y0 = X0 ),
    inference(resolve,[$cnf( $equal(X0,X0) )],[refute_0_26,refute_0_27]) ).

cnf(refute_0_29,plain,
    ( strict_implies(X,Y) != necessarily(implies(X,Y))
    | necessarily(implies(X,Y)) = strict_implies(X,Y) ),
    inference(subst,[],[refute_0_28:[bind(X0,$fot(strict_implies(X,Y))),bind(Y0,$fot(necessarily(implies(X,Y))))]]) ).

cnf(refute_0_30,plain,
    necessarily(implies(X,Y)) = strict_implies(X,Y),
    inference(resolve,[$cnf( $equal(strict_implies(X,Y),necessarily(implies(X,Y))) )],[refute_0_25,refute_0_29]) ).

cnf(refute_0_31,plain,
    necessarily(implies(X_397,and(X_397,X_397))) = strict_implies(X_397,and(X_397,X_397)),
    inference(subst,[],[refute_0_30:[bind(X,$fot(X_397)),bind(Y,$fot(and(X_397,X_397)))]]) ).

cnf(refute_0_32,plain,
    ( necessarily(implies(X_397,and(X_397,X_397))) != strict_implies(X_397,and(X_397,X_397))
    | ~ is_a_theorem(necessarily(implies(X_397,and(X_397,X_397))))
    | is_a_theorem(strict_implies(X_397,and(X_397,X_397))) ),
    introduced(tautology,[equality,[$cnf( is_a_theorem(necessarily(implies(X_397,and(X_397,X_397)))) ),[0],$fot(strict_implies(X_397,and(X_397,X_397)))]]) ).

cnf(refute_0_33,plain,
    ( ~ is_a_theorem(necessarily(implies(X_397,and(X_397,X_397))))
    | is_a_theorem(strict_implies(X_397,and(X_397,X_397))) ),
    inference(resolve,[$cnf( $equal(necessarily(implies(X_397,and(X_397,X_397))),strict_implies(X_397,and(X_397,X_397))) )],[refute_0_31,refute_0_32]) ).

cnf(refute_0_34,plain,
    is_a_theorem(strict_implies(X_397,and(X_397,X_397))),
    inference(resolve,[$cnf( is_a_theorem(necessarily(implies(X_397,and(X_397,X_397)))) )],[refute_0_22,refute_0_33]) ).

cnf(refute_0_35,plain,
    is_a_theorem(strict_implies(skolemFOFtoCNF_X_30,and(skolemFOFtoCNF_X_30,skolemFOFtoCNF_X_30))),
    inference(subst,[],[refute_0_34:[bind(X_397,$fot(skolemFOFtoCNF_X_30))]]) ).

cnf(refute_0_36,plain,
    $false,
    inference(resolve,[$cnf( is_a_theorem(strict_implies(skolemFOFtoCNF_X_30,and(skolemFOFtoCNF_X_30,skolemFOFtoCNF_X_30))) )],[refute_0_35,refute_0_2]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : LCL531+1 : TPTP v8.1.0. Released v3.3.0.
% 0.11/0.12  % Command  : metis --show proof --show saturation %s
% 0.13/0.33  % Computer : n026.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Sun Jul  3 18:35:36 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.13/0.34  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.48/0.65  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.48/0.65  
% 0.48/0.65  % SZS output start CNFRefutation for /export/starexec/sandbox/benchmark/theBenchmark.p
% See solution above
% 0.48/0.65  
%------------------------------------------------------------------------------