TSTP Solution File: LCL528+1 by ET---2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ET---2.0
% Problem  : LCL528+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_ET %s %d

% Computer : n029.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 10:11:42 EDT 2022

% Result   : Theorem 0.41s 25.60s
% Output   : CNFRefutation 0.41s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   18
%            Number of leaves      :   31
% Syntax   : Number of formulae    :  133 (  58 unt;   0 def)
%            Number of atoms       :  272 (  32 equ)
%            Maximal formula atoms :   10 (   2 avg)
%            Number of connectives :  234 (  95   ~;  97   |;  21   &)
%                                         (  13 <=>;   8  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :   20 (  18 usr;  18 prp; 0-2 aty)
%            Number of functors    :   32 (  32 usr;  25 con; 0-2 aty)
%            Number of variables   :  165 (   6 sgn  66   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',modus_ponens) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,and(X1,X2)))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',and_3) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_modus_ponens) ).

fof(hilbert_and_3,axiom,
    and_3,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_and_3) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_equiv) ).

fof(adjunction,axiom,
    ( adjunction
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(X2) )
       => is_a_theorem(and(X1,X2)) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',adjunction) ).

fof(hilbert_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_op_equiv) ).

fof(implies_2,axiom,
    ( implies_2
  <=> ! [X1,X2] : is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',implies_2) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',substitution_of_equivalents) ).

fof(hilbert_implies_2,axiom,
    implies_2,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_implies_2) ).

fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_implies_and) ).

fof(substitution_of_equivalents_001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',substitution_of_equivalents) ).

fof(and_1,axiom,
    ( and_1
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',and_1) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_or) ).

fof(hilbert_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_op_implies_and) ).

fof(hilbert_and_1,axiom,
    and_1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_and_1) ).

fof(r3,axiom,
    ( r3
  <=> ! [X4,X5] : is_a_theorem(implies(or(X4,X5),or(X5,X4))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',r3) ).

fof(hilbert_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_op_or) ).

fof(implies_1,axiom,
    ( implies_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',implies_1) ).

fof(or_3,axiom,
    ( or_3
  <=> ! [X1,X2,X3] : is_a_theorem(implies(implies(X1,X3),implies(implies(X2,X3),implies(or(X1,X2),X3)))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',or_3) ).

fof(hilbert_implies_1,axiom,
    implies_1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_implies_1) ).

fof(hilbert_or_3,axiom,
    or_3,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_or_3) ).

fof(or_1,axiom,
    ( or_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,or(X1,X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',or_1) ).

fof(cn3,axiom,
    ( cn3
  <=> ! [X4] : is_a_theorem(implies(implies(not(X4),X4),X4)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',cn3) ).

fof(hilbert_or_1,axiom,
    or_1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+2.ax',hilbert_or_1) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X1,X2] : strict_implies(X1,X2) = necessarily(implies(X1,X2)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+1.ax',op_strict_implies) ).

fof(s1_0_axiom_m1,conjecture,
    axiom_m1,
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',s1_0_axiom_m1) ).

fof(axiom_m1,axiom,
    ( axiom_m1
  <=> ! [X1,X2] : is_a_theorem(strict_implies(and(X1,X2),and(X2,X1))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',axiom_m1) ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies,
    file('/export/starexec/sandbox/solver/bin/../tmp/theBenchmark.p.mepo_128.in',s1_0_op_strict_implies) ).

fof(necessitation,axiom,
    ( necessitation
  <=> ! [X1] :
        ( is_a_theorem(X1)
       => is_a_theorem(necessarily(X1)) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+0.ax',necessitation) ).

fof(km5_necessitation,axiom,
    necessitation,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL007+2.ax',km5_necessitation) ).

fof(c_0_31,plain,
    ! [X3,X4] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X3)
        | ~ is_a_theorem(implies(X3,X4))
        | is_a_theorem(X4) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])])])]) ).

fof(c_0_32,plain,
    ! [X3,X4] :
      ( ( ~ and_3
        | is_a_theorem(implies(X3,implies(X4,and(X3,X4)))) )
      & ( ~ is_a_theorem(implies(esk18_0,implies(esk19_0,and(esk18_0,esk19_0))))
        | and_3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_3])])])])])]) ).

cnf(c_0_33,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2)
    | ~ modus_ponens ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_34,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_ponens]) ).

cnf(c_0_35,plain,
    ( is_a_theorem(implies(X1,implies(X2,and(X1,X2))))
    | ~ and_3 ),
    inference(split_conjunct,[status(thm)],[c_0_32]) ).

cnf(c_0_36,plain,
    and_3,
    inference(split_conjunct,[status(thm)],[hilbert_and_3]) ).

fof(c_0_37,plain,
    ! [X3,X4] :
      ( ~ op_equiv
      | equiv(X3,X4) = and(implies(X3,X4),implies(X4,X3)) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])])])]) ).

cnf(c_0_38,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_33,c_0_34])]) ).

cnf(c_0_39,plain,
    is_a_theorem(implies(X1,implies(X2,and(X1,X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_35,c_0_36])]) ).

fof(c_0_40,plain,
    ! [X3,X4] :
      ( ( ~ adjunction
        | ~ is_a_theorem(X3)
        | ~ is_a_theorem(X4)
        | is_a_theorem(and(X3,X4)) )
      & ( is_a_theorem(esk59_0)
        | adjunction )
      & ( is_a_theorem(esk60_0)
        | adjunction )
      & ( ~ is_a_theorem(and(esk59_0,esk60_0))
        | adjunction ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[adjunction])])])])])])]) ).

cnf(c_0_41,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_42,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[hilbert_op_equiv]) ).

cnf(c_0_43,plain,
    ( is_a_theorem(implies(X1,and(X2,X1)))
    | ~ is_a_theorem(X2) ),
    inference(pm,[status(thm)],[c_0_38,c_0_39]) ).

fof(c_0_44,plain,
    ! [X3,X4] :
      ( ( ~ implies_2
        | is_a_theorem(implies(implies(X3,implies(X3,X4)),implies(X3,X4))) )
      & ( ~ is_a_theorem(implies(implies(esk9_0,implies(esk9_0,esk10_0)),implies(esk9_0,esk10_0)))
        | implies_2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_2])])])])])]) ).

fof(c_0_45,plain,
    ! [X3,X4] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X3,X4))
        | X3 = X4 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])])])]) ).

cnf(c_0_46,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1)
    | ~ adjunction ),
    inference(split_conjunct,[status(thm)],[c_0_40]) ).

cnf(c_0_47,plain,
    and(implies(X1,X2),implies(X2,X1)) = equiv(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_41,c_0_42])]) ).

cnf(c_0_48,plain,
    ( adjunction
    | ~ is_a_theorem(and(esk59_0,esk60_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_40]) ).

cnf(c_0_49,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(pm,[status(thm)],[c_0_38,c_0_43]) ).

cnf(c_0_50,plain,
    ( adjunction
    | is_a_theorem(esk59_0) ),
    inference(split_conjunct,[status(thm)],[c_0_40]) ).

cnf(c_0_51,plain,
    ( adjunction
    | is_a_theorem(esk60_0) ),
    inference(split_conjunct,[status(thm)],[c_0_40]) ).

cnf(c_0_52,plain,
    ( is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2)))
    | ~ implies_2 ),
    inference(split_conjunct,[status(thm)],[c_0_44]) ).

cnf(c_0_53,plain,
    implies_2,
    inference(split_conjunct,[status(thm)],[hilbert_implies_2]) ).

fof(c_0_54,plain,
    ! [X3,X4] :
      ( ~ op_implies_and
      | implies(X3,X4) = not(and(X3,not(X4))) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])])])]) ).

cnf(c_0_55,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2))
    | ~ substitution_of_equivalents ),
    inference(split_conjunct,[status(thm)],[c_0_45]) ).

cnf(c_0_56,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents]) ).

cnf(c_0_57,plain,
    ( is_a_theorem(equiv(X1,X2))
    | ~ adjunction
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(pm,[status(thm)],[c_0_46,c_0_47]) ).

cnf(c_0_58,plain,
    adjunction,
    inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(pm,[status(thm)],[c_0_48,c_0_49]),c_0_50]),c_0_51]) ).

cnf(c_0_59,plain,
    is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_52,c_0_53])]) ).

fof(c_0_60,plain,
    ! [X3,X4] :
      ( ( ~ and_1
        | is_a_theorem(implies(and(X3,X4),X3)) )
      & ( ~ is_a_theorem(implies(and(esk14_0,esk15_0),esk14_0))
        | and_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_1])])])])])]) ).

fof(c_0_61,plain,
    ! [X3,X4] :
      ( ~ op_or
      | or(X3,X4) = not(and(not(X3),not(X4))) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])])])]) ).

cnf(c_0_62,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

cnf(c_0_63,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[hilbert_op_implies_and]) ).

cnf(c_0_64,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_55,c_0_56])]) ).

cnf(c_0_65,plain,
    ( is_a_theorem(equiv(X1,X2))
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_57,c_0_58])]) ).

cnf(c_0_66,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X1,implies(X1,X2))) ),
    inference(pm,[status(thm)],[c_0_38,c_0_59]) ).

cnf(c_0_67,plain,
    ( is_a_theorem(implies(and(X1,X2),X1))
    | ~ and_1 ),
    inference(split_conjunct,[status(thm)],[c_0_60]) ).

cnf(c_0_68,plain,
    and_1,
    inference(split_conjunct,[status(thm)],[hilbert_and_1]) ).

fof(c_0_69,plain,
    ! [X6,X7] :
      ( ( ~ r3
        | is_a_theorem(implies(or(X6,X7),or(X7,X6))) )
      & ( ~ is_a_theorem(implies(or(esk48_0,esk49_0),or(esk49_0,esk48_0)))
        | r3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[r3])])])])])]) ).

cnf(c_0_70,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_61]) ).

cnf(c_0_71,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_62,c_0_63])]) ).

cnf(c_0_72,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[hilbert_op_or]) ).

fof(c_0_73,plain,
    ! [X3,X4] :
      ( ( ~ implies_1
        | is_a_theorem(implies(X3,implies(X4,X3))) )
      & ( ~ is_a_theorem(implies(esk7_0,implies(esk8_0,esk7_0)))
        | implies_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_1])])])])])]) ).

fof(c_0_74,plain,
    ! [X4,X5,X6] :
      ( ( ~ or_3
        | is_a_theorem(implies(implies(X4,X6),implies(implies(X5,X6),implies(or(X4,X5),X6)))) )
      & ( ~ is_a_theorem(implies(implies(esk24_0,esk26_0),implies(implies(esk25_0,esk26_0),implies(or(esk24_0,esk25_0),esk26_0))))
        | or_3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[or_3])])])])])]) ).

cnf(c_0_75,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(pm,[status(thm)],[c_0_64,c_0_65]) ).

cnf(c_0_76,plain,
    is_a_theorem(implies(X1,and(X1,X1))),
    inference(pm,[status(thm)],[c_0_66,c_0_39]) ).

cnf(c_0_77,plain,
    is_a_theorem(implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_67,c_0_68])]) ).

cnf(c_0_78,plain,
    ( is_a_theorem(implies(or(X1,X2),or(X2,X1)))
    | ~ r3 ),
    inference(split_conjunct,[status(thm)],[c_0_69]) ).

cnf(c_0_79,plain,
    or(X1,X2) = implies(not(X1),X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_70,c_0_71]),c_0_72])]) ).

cnf(c_0_80,plain,
    ( is_a_theorem(implies(X1,implies(X2,X1)))
    | ~ implies_1 ),
    inference(split_conjunct,[status(thm)],[c_0_73]) ).

cnf(c_0_81,plain,
    implies_1,
    inference(split_conjunct,[status(thm)],[hilbert_implies_1]) ).

cnf(c_0_82,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(implies(X3,X2),implies(or(X1,X3),X2))))
    | ~ or_3 ),
    inference(split_conjunct,[status(thm)],[c_0_74]) ).

cnf(c_0_83,plain,
    or_3,
    inference(split_conjunct,[status(thm)],[hilbert_or_3]) ).

fof(c_0_84,plain,
    ! [X3,X4] :
      ( ( ~ or_1
        | is_a_theorem(implies(X3,or(X3,X4))) )
      & ( ~ is_a_theorem(implies(esk20_0,or(esk20_0,esk21_0)))
        | or_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[or_1])])])])])]) ).

fof(c_0_85,plain,
    ! [X5] :
      ( ( ~ cn3
        | is_a_theorem(implies(implies(not(X5),X5),X5)) )
      & ( ~ is_a_theorem(implies(implies(not(esk44_0),esk44_0),esk44_0))
        | cn3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[cn3])])])])])]) ).

cnf(c_0_86,plain,
    and(X1,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_75,c_0_76]),c_0_77])]) ).

cnf(c_0_87,plain,
    ( is_a_theorem(implies(implies(not(X1),X2),implies(not(X2),X1)))
    | ~ r3 ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_78,c_0_79]),c_0_79]) ).

cnf(c_0_88,plain,
    is_a_theorem(implies(X1,implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_80,c_0_81])]) ).

cnf(c_0_89,plain,
    is_a_theorem(implies(implies(X1,X2),implies(implies(X3,X2),implies(implies(not(X1),X3),X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_82,c_0_79]),c_0_83])]) ).

cnf(c_0_90,plain,
    ( is_a_theorem(implies(X1,or(X1,X2)))
    | ~ or_1 ),
    inference(split_conjunct,[status(thm)],[c_0_84]) ).

cnf(c_0_91,plain,
    or_1,
    inference(split_conjunct,[status(thm)],[hilbert_or_1]) ).

cnf(c_0_92,plain,
    ( cn3
    | ~ is_a_theorem(implies(implies(not(esk44_0),esk44_0),esk44_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_85]) ).

cnf(c_0_93,plain,
    implies(not(X1),X1) = not(not(X1)),
    inference(pm,[status(thm)],[c_0_71,c_0_86]) ).

cnf(c_0_94,plain,
    ( is_a_theorem(implies(not(X1),X2))
    | ~ r3
    | ~ is_a_theorem(implies(not(X2),X1)) ),
    inference(pm,[status(thm)],[c_0_38,c_0_87]) ).

cnf(c_0_95,plain,
    is_a_theorem(implies(X1,X1)),
    inference(pm,[status(thm)],[c_0_66,c_0_88]) ).

cnf(c_0_96,plain,
    ( r3
    | ~ is_a_theorem(implies(or(esk48_0,esk49_0),or(esk49_0,esk48_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_69]) ).

cnf(c_0_97,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(implies(not(X3),X1),X2)))
    | ~ is_a_theorem(implies(X3,X2)) ),
    inference(pm,[status(thm)],[c_0_38,c_0_89]) ).

cnf(c_0_98,plain,
    ( is_a_theorem(implies(implies(not(X1),X1),X1))
    | ~ cn3 ),
    inference(split_conjunct,[status(thm)],[c_0_85]) ).

cnf(c_0_99,plain,
    is_a_theorem(implies(X1,implies(not(X1),X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_90,c_0_79]),c_0_91])]) ).

cnf(c_0_100,plain,
    ( cn3
    | ~ is_a_theorem(implies(not(not(esk44_0)),esk44_0)) ),
    inference(rw,[status(thm)],[c_0_92,c_0_93]) ).

cnf(c_0_101,plain,
    ( is_a_theorem(implies(not(not(X1)),X1))
    | ~ r3 ),
    inference(pm,[status(thm)],[c_0_94,c_0_95]) ).

cnf(c_0_102,plain,
    ( r3
    | ~ is_a_theorem(implies(implies(not(esk48_0),esk49_0),implies(not(esk49_0),esk48_0))) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_96,c_0_79]),c_0_79]) ).

cnf(c_0_103,plain,
    ( is_a_theorem(implies(implies(not(X1),X2),X3))
    | ~ is_a_theorem(implies(X2,X3))
    | ~ is_a_theorem(implies(X1,X3)) ),
    inference(pm,[status(thm)],[c_0_38,c_0_97]) ).

fof(c_0_104,plain,
    ! [X3,X4] :
      ( ~ op_strict_implies
      | strict_implies(X3,X4) = necessarily(implies(X3,X4)) ),
    inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_implies])])])])]) ).

fof(c_0_105,negated_conjecture,
    ~ axiom_m1,
    inference(assume_negation,[status(cth)],[s1_0_axiom_m1]) ).

cnf(c_0_106,plain,
    ( implies(not(X1),X1) = X1
    | ~ cn3 ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_75,c_0_98]),c_0_99])]) ).

cnf(c_0_107,plain,
    ( cn3
    | ~ r3 ),
    inference(pm,[status(thm)],[c_0_100,c_0_101]) ).

cnf(c_0_108,plain,
    r3,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_102,c_0_103]),c_0_99]),c_0_88])]) ).

fof(c_0_109,plain,
    ! [X3,X4] :
      ( ( ~ axiom_m1
        | is_a_theorem(strict_implies(and(X3,X4),and(X4,X3))) )
      & ( ~ is_a_theorem(strict_implies(and(esk77_0,esk78_0),and(esk78_0,esk77_0)))
        | axiom_m1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m1])])])])])]) ).

cnf(c_0_110,plain,
    ( strict_implies(X1,X2) = necessarily(implies(X1,X2))
    | ~ op_strict_implies ),
    inference(split_conjunct,[status(thm)],[c_0_104]) ).

cnf(c_0_111,plain,
    op_strict_implies,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_implies]) ).

fof(c_0_112,negated_conjecture,
    ~ axiom_m1,
    inference(fof_simplification,[status(thm)],[c_0_105]) ).

fof(c_0_113,plain,
    ! [X2] :
      ( ( ~ necessitation
        | ~ is_a_theorem(X2)
        | is_a_theorem(necessarily(X2)) )
      & ( is_a_theorem(esk56_0)
        | necessitation )
      & ( ~ is_a_theorem(necessarily(esk56_0))
        | necessitation ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[necessitation])])])])])])]) ).

cnf(c_0_114,plain,
    ( not(not(X1)) = X1
    | ~ cn3 ),
    inference(pm,[status(thm)],[c_0_106,c_0_93]) ).

cnf(c_0_115,plain,
    cn3,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_107,c_0_108])]) ).

cnf(c_0_116,plain,
    ( axiom_m1
    | ~ is_a_theorem(strict_implies(and(esk77_0,esk78_0),and(esk78_0,esk77_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_109]) ).

cnf(c_0_117,plain,
    strict_implies(X1,X2) = necessarily(implies(X1,X2)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_110,c_0_111])]) ).

cnf(c_0_118,negated_conjecture,
    ~ axiom_m1,
    inference(split_conjunct,[status(thm)],[c_0_112]) ).

cnf(c_0_119,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ is_a_theorem(X1)
    | ~ necessitation ),
    inference(split_conjunct,[status(thm)],[c_0_113]) ).

cnf(c_0_120,plain,
    necessitation,
    inference(split_conjunct,[status(thm)],[km5_necessitation]) ).

cnf(c_0_121,plain,
    not(not(X1)) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_114,c_0_115])]) ).

cnf(c_0_122,plain,
    is_a_theorem(implies(implies(not(X1),X2),implies(not(X2),X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_87,c_0_108])]) ).

cnf(c_0_123,plain,
    ~ is_a_theorem(necessarily(implies(and(esk77_0,esk78_0),and(esk78_0,esk77_0)))),
    inference(sr,[status(thm)],[inference(rw,[status(thm)],[c_0_116,c_0_117]),c_0_118]) ).

cnf(c_0_124,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_119,c_0_120])]) ).

cnf(c_0_125,plain,
    not(and(X1,X2)) = implies(X1,not(X2)),
    inference(pm,[status(thm)],[c_0_71,c_0_121]) ).

cnf(c_0_126,plain,
    implies(not(X1),X2) = implies(not(X2),X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_75,c_0_122]),c_0_122])]) ).

cnf(c_0_127,plain,
    ~ is_a_theorem(implies(and(esk77_0,esk78_0),and(esk78_0,esk77_0))),
    inference(pm,[status(thm)],[c_0_123,c_0_124]) ).

cnf(c_0_128,plain,
    and(X1,X2) = not(implies(X1,not(X2))),
    inference(pm,[status(thm)],[c_0_121,c_0_125]) ).

cnf(c_0_129,plain,
    implies(X1,X2) = implies(not(X2),not(X1)),
    inference(pm,[status(thm)],[c_0_126,c_0_121]) ).

cnf(c_0_130,plain,
    ~ is_a_theorem(implies(not(implies(esk77_0,not(esk78_0))),not(implies(esk78_0,not(esk77_0))))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_127,c_0_128]),c_0_128]) ).

cnf(c_0_131,plain,
    implies(X1,not(X2)) = implies(X2,not(X1)),
    inference(pm,[status(thm)],[c_0_129,c_0_121]) ).

cnf(c_0_132,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_130,c_0_131]),c_0_129]),c_0_95])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : LCL528+1 : TPTP v8.1.0. Released v3.3.0.
% 0.07/0.13  % Command  : run_ET %s %d
% 0.13/0.35  % Computer : n029.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 600
% 0.13/0.35  % DateTime : Sun Jul  3 03:44:10 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 0.40/23.43  eprover: CPU time limit exceeded, terminating
% 0.40/23.44  eprover: CPU time limit exceeded, terminating
% 0.40/23.45  eprover: CPU time limit exceeded, terminating
% 0.40/23.50  eprover: CPU time limit exceeded, terminating
% 0.41/25.60  # Running protocol protocol_eprover_4a02c828a8cc55752123edbcc1ad40e453c11447 for 23 seconds:
% 0.41/25.60  # SinE strategy is GSinE(CountFormulas,hypos,1.4,,04,100,1.0)
% 0.41/25.60  # Preprocessing time       : 0.016 s
% 0.41/25.60  
% 0.41/25.60  # Failure: Out of unprocessed clauses!
% 0.41/25.60  # OLD status GaveUp
% 0.41/25.60  # Parsed axioms                        : 88
% 0.41/25.60  # Removed by relevancy pruning/SinE    : 86
% 0.41/25.60  # Initial clauses                      : 3
% 0.41/25.60  # Removed in clause preprocessing      : 0
% 0.41/25.60  # Initial clauses in saturation        : 3
% 0.41/25.60  # Processed clauses                    : 3
% 0.41/25.60  # ...of these trivial                  : 0
% 0.41/25.60  # ...subsumed                          : 1
% 0.41/25.60  # ...remaining for further processing  : 2
% 0.41/25.60  # Other redundant clauses eliminated   : 0
% 0.41/25.60  # Clauses deleted for lack of memory   : 0
% 0.41/25.60  # Backward-subsumed                    : 0
% 0.41/25.60  # Backward-rewritten                   : 0
% 0.41/25.60  # Generated clauses                    : 0
% 0.41/25.60  # ...of the previous two non-trivial   : 0
% 0.41/25.60  # Contextual simplify-reflections      : 0
% 0.41/25.60  # Paramodulations                      : 0
% 0.41/25.60  # Factorizations                       : 0
% 0.41/25.60  # Equation resolutions                 : 0
% 0.41/25.60  # Current number of processed clauses  : 2
% 0.41/25.60  #    Positive orientable unit clauses  : 0
% 0.41/25.60  #    Positive unorientable unit clauses: 0
% 0.41/25.60  #    Negative unit clauses             : 2
% 0.41/25.60  #    Non-unit-clauses                  : 0
% 0.41/25.60  # Current number of unprocessed clauses: 0
% 0.41/25.60  # ...number of literals in the above   : 0
% 0.41/25.60  # Current number of archived formulas  : 0
% 0.41/25.60  # Current number of archived clauses   : 0
% 0.41/25.60  # Clause-clause subsumption calls (NU) : 0
% 0.41/25.60  # Rec. Clause-clause subsumption calls : 0
% 0.41/25.60  # Non-unit clause-clause subsumptions  : 0
% 0.41/25.60  # Unit Clause-clause subsumption calls : 0
% 0.41/25.60  # Rewrite failures with RHS unbound    : 0
% 0.41/25.60  # BW rewrite match attempts            : 0
% 0.41/25.60  # BW rewrite match successes           : 0
% 0.41/25.60  # Condensation attempts                : 0
% 0.41/25.60  # Condensation successes               : 0
% 0.41/25.60  # Termbank termtop insertions          : 819
% 0.41/25.60  
% 0.41/25.60  # -------------------------------------------------
% 0.41/25.60  # User time                : 0.012 s
% 0.41/25.60  # System time              : 0.004 s
% 0.41/25.60  # Total time               : 0.016 s
% 0.41/25.60  # Maximum resident set size: 2852 pages
% 0.41/25.60  # Running protocol protocol_eprover_f171197f65f27d1ba69648a20c844832c84a5dd7 for 23 seconds:
% 0.41/25.60  
% 0.41/25.60  # Failure: Resource limit exceeded (time)
% 0.41/25.60  # OLD status Res
% 0.41/25.60  # Preprocessing time       : 0.023 s
% 0.41/25.60  # Running protocol protocol_eprover_eb48853eb71ccd2a6fdade56c25b63f5692e1a0c for 23 seconds:
% 0.41/25.60  # Preprocessing time       : 0.023 s
% 0.41/25.60  
% 0.41/25.60  # Proof found!
% 0.41/25.60  # SZS status Theorem
% 0.41/25.60  # SZS output start CNFRefutation
% See solution above
% 0.41/25.60  # Proof object total steps             : 133
% 0.41/25.60  # Proof object clause steps            : 83
% 0.41/25.60  # Proof object formula steps           : 50
% 0.41/25.60  # Proof object conjectures             : 4
% 0.41/25.60  # Proof object clause conjectures      : 1
% 0.41/25.60  # Proof object formula conjectures     : 3
% 0.41/25.60  # Proof object initial clauses used    : 36
% 0.41/25.60  # Proof object initial formulas used   : 31
% 0.41/25.60  # Proof object generating inferences   : 24
% 0.41/25.60  # Proof object simplifying inferences  : 61
% 0.41/25.60  # Training examples: 0 positive, 0 negative
% 0.41/25.60  # Parsed axioms                        : 88
% 0.41/25.60  # Removed by relevancy pruning/SinE    : 0
% 0.41/25.60  # Initial clauses                      : 146
% 0.41/25.60  # Removed in clause preprocessing      : 0
% 0.41/25.60  # Initial clauses in saturation        : 146
% 0.41/25.60  # Processed clauses                    : 3658
% 0.41/25.60  # ...of these trivial                  : 71
% 0.41/25.60  # ...subsumed                          : 1763
% 0.41/25.60  # ...remaining for further processing  : 1824
% 0.41/25.60  # Other redundant clauses eliminated   : 0
% 0.41/25.60  # Clauses deleted for lack of memory   : 0
% 0.41/25.60  # Backward-subsumed                    : 85
% 0.41/25.60  # Backward-rewritten                   : 1343
% 0.41/25.60  # Generated clauses                    : 98855
% 0.41/25.60  # ...of the previous two non-trivial   : 96340
% 0.41/25.60  # Contextual simplify-reflections      : 1192
% 0.41/25.60  # Paramodulations                      : 98852
% 0.41/25.60  # Factorizations                       : 0
% 0.41/25.60  # Equation resolutions                 : 0
% 0.41/25.60  # Current number of processed clauses  : 395
% 0.41/25.60  #    Positive orientable unit clauses  : 79
% 0.41/25.60  #    Positive unorientable unit clauses: 4
% 0.41/25.60  #    Negative unit clauses             : 8
% 0.41/25.60  #    Non-unit-clauses                  : 304
% 0.41/25.60  # Current number of unprocessed clauses: 5267
% 0.41/25.60  # ...number of literals in the above   : 14966
% 0.41/25.60  # Current number of archived formulas  : 0
% 0.41/25.60  # Current number of archived clauses   : 1428
% 0.41/25.60  # Clause-clause subsumption calls (NU) : 257255
% 0.41/25.60  # Rec. Clause-clause subsumption calls : 190623
% 0.41/25.60  # Non-unit clause-clause subsumptions  : 2836
% 0.41/25.60  # Unit Clause-clause subsumption calls : 14150
% 0.41/25.60  # Rewrite failures with RHS unbound    : 0
% 0.41/25.60  # BW rewrite match attempts            : 11801
% 0.41/25.60  # BW rewrite match successes           : 1464
% 0.41/25.60  # Condensation attempts                : 0
% 0.41/25.60  # Condensation successes               : 0
% 0.41/25.60  # Termbank termtop insertions          : 1753450
% 0.41/25.60  
% 0.41/25.60  # -------------------------------------------------
% 0.41/25.60  # User time                : 1.671 s
% 0.41/25.60  # System time              : 0.040 s
% 0.41/25.60  # Total time               : 1.711 s
% 0.41/25.60  # Maximum resident set size: 90864 pages
%------------------------------------------------------------------------------