TSTP Solution File: LCL528+1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : LCL528+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 06:54:31 EDT 2023

% Result   : Theorem 1.19s 1.27s
% Output   : CNFRefutation 1.19s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   20
%            Number of leaves      :  199
% Syntax   : Number of formulae    :  314 (  76 unt; 163 typ;   0 def)
%            Number of atoms       :  280 (  51 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  217 (  88   ~;  89   |;  19   &)
%                                         (  14 <=>;   7  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   16 (  10   >;   6   *;   0   +;   0  <<)
%            Number of predicates  :   62 (  60 usr;  60 prp; 0-2 aty)
%            Number of functors    :  103 ( 103 usr;  94 con; 0-2 aty)
%            Number of variables   :  203 (  12 sgn;  68   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    modus_ponens: $o ).

tff(decl_23,type,
    is_a_theorem: $i > $o ).

tff(decl_24,type,
    implies: ( $i * $i ) > $i ).

tff(decl_25,type,
    substitution_of_equivalents: $o ).

tff(decl_26,type,
    equiv: ( $i * $i ) > $i ).

tff(decl_27,type,
    modus_tollens: $o ).

tff(decl_28,type,
    not: $i > $i ).

tff(decl_29,type,
    implies_1: $o ).

tff(decl_30,type,
    implies_2: $o ).

tff(decl_31,type,
    implies_3: $o ).

tff(decl_32,type,
    and_1: $o ).

tff(decl_33,type,
    and: ( $i * $i ) > $i ).

tff(decl_34,type,
    and_2: $o ).

tff(decl_35,type,
    and_3: $o ).

tff(decl_36,type,
    or_1: $o ).

tff(decl_37,type,
    or: ( $i * $i ) > $i ).

tff(decl_38,type,
    or_2: $o ).

tff(decl_39,type,
    or_3: $o ).

tff(decl_40,type,
    equivalence_1: $o ).

tff(decl_41,type,
    equivalence_2: $o ).

tff(decl_42,type,
    equivalence_3: $o ).

tff(decl_43,type,
    kn1: $o ).

tff(decl_44,type,
    kn2: $o ).

tff(decl_45,type,
    kn3: $o ).

tff(decl_46,type,
    cn1: $o ).

tff(decl_47,type,
    cn2: $o ).

tff(decl_48,type,
    cn3: $o ).

tff(decl_49,type,
    r1: $o ).

tff(decl_50,type,
    r2: $o ).

tff(decl_51,type,
    r3: $o ).

tff(decl_52,type,
    r4: $o ).

tff(decl_53,type,
    r5: $o ).

tff(decl_54,type,
    op_or: $o ).

tff(decl_55,type,
    op_and: $o ).

tff(decl_56,type,
    op_implies_and: $o ).

tff(decl_57,type,
    op_implies_or: $o ).

tff(decl_58,type,
    op_equiv: $o ).

tff(decl_59,type,
    necessitation: $o ).

tff(decl_60,type,
    necessarily: $i > $i ).

tff(decl_61,type,
    modus_ponens_strict_implies: $o ).

tff(decl_62,type,
    strict_implies: ( $i * $i ) > $i ).

tff(decl_63,type,
    adjunction: $o ).

tff(decl_64,type,
    substitution_strict_equiv: $o ).

tff(decl_65,type,
    strict_equiv: ( $i * $i ) > $i ).

tff(decl_66,type,
    axiom_K: $o ).

tff(decl_67,type,
    axiom_M: $o ).

tff(decl_68,type,
    axiom_4: $o ).

tff(decl_69,type,
    axiom_B: $o ).

tff(decl_70,type,
    possibly: $i > $i ).

tff(decl_71,type,
    axiom_5: $o ).

tff(decl_72,type,
    axiom_s1: $o ).

tff(decl_73,type,
    axiom_s2: $o ).

tff(decl_74,type,
    axiom_s3: $o ).

tff(decl_75,type,
    axiom_s4: $o ).

tff(decl_76,type,
    axiom_m1: $o ).

tff(decl_77,type,
    axiom_m2: $o ).

tff(decl_78,type,
    axiom_m3: $o ).

tff(decl_79,type,
    axiom_m4: $o ).

tff(decl_80,type,
    axiom_m5: $o ).

tff(decl_81,type,
    axiom_m6: $o ).

tff(decl_82,type,
    axiom_m7: $o ).

tff(decl_83,type,
    axiom_m8: $o ).

tff(decl_84,type,
    axiom_m9: $o ).

tff(decl_85,type,
    axiom_m10: $o ).

tff(decl_86,type,
    op_possibly: $o ).

tff(decl_87,type,
    op_necessarily: $o ).

tff(decl_88,type,
    op_strict_implies: $o ).

tff(decl_89,type,
    op_strict_equiv: $o ).

tff(decl_90,type,
    op_implies: $o ).

tff(decl_91,type,
    esk1_0: $i ).

tff(decl_92,type,
    esk2_0: $i ).

tff(decl_93,type,
    esk3_0: $i ).

tff(decl_94,type,
    esk4_0: $i ).

tff(decl_95,type,
    esk5_0: $i ).

tff(decl_96,type,
    esk6_0: $i ).

tff(decl_97,type,
    esk7_0: $i ).

tff(decl_98,type,
    esk8_0: $i ).

tff(decl_99,type,
    esk9_0: $i ).

tff(decl_100,type,
    esk10_0: $i ).

tff(decl_101,type,
    esk11_0: $i ).

tff(decl_102,type,
    esk12_0: $i ).

tff(decl_103,type,
    esk13_0: $i ).

tff(decl_104,type,
    esk14_0: $i ).

tff(decl_105,type,
    esk15_0: $i ).

tff(decl_106,type,
    esk16_0: $i ).

tff(decl_107,type,
    esk17_0: $i ).

tff(decl_108,type,
    esk18_0: $i ).

tff(decl_109,type,
    esk19_0: $i ).

tff(decl_110,type,
    esk20_0: $i ).

tff(decl_111,type,
    esk21_0: $i ).

tff(decl_112,type,
    esk22_0: $i ).

tff(decl_113,type,
    esk23_0: $i ).

tff(decl_114,type,
    esk24_0: $i ).

tff(decl_115,type,
    esk25_0: $i ).

tff(decl_116,type,
    esk26_0: $i ).

tff(decl_117,type,
    esk27_0: $i ).

tff(decl_118,type,
    esk28_0: $i ).

tff(decl_119,type,
    esk29_0: $i ).

tff(decl_120,type,
    esk30_0: $i ).

tff(decl_121,type,
    esk31_0: $i ).

tff(decl_122,type,
    esk32_0: $i ).

tff(decl_123,type,
    esk33_0: $i ).

tff(decl_124,type,
    esk34_0: $i ).

tff(decl_125,type,
    esk35_0: $i ).

tff(decl_126,type,
    esk36_0: $i ).

tff(decl_127,type,
    esk37_0: $i ).

tff(decl_128,type,
    esk38_0: $i ).

tff(decl_129,type,
    esk39_0: $i ).

tff(decl_130,type,
    esk40_0: $i ).

tff(decl_131,type,
    esk41_0: $i ).

tff(decl_132,type,
    esk42_0: $i ).

tff(decl_133,type,
    esk43_0: $i ).

tff(decl_134,type,
    esk44_0: $i ).

tff(decl_135,type,
    esk45_0: $i ).

tff(decl_136,type,
    esk46_0: $i ).

tff(decl_137,type,
    esk47_0: $i ).

tff(decl_138,type,
    esk48_0: $i ).

tff(decl_139,type,
    esk49_0: $i ).

tff(decl_140,type,
    esk50_0: $i ).

tff(decl_141,type,
    esk51_0: $i ).

tff(decl_142,type,
    esk52_0: $i ).

tff(decl_143,type,
    esk53_0: $i ).

tff(decl_144,type,
    esk54_0: $i ).

tff(decl_145,type,
    esk55_0: $i ).

tff(decl_146,type,
    esk56_0: $i ).

tff(decl_147,type,
    esk57_0: $i ).

tff(decl_148,type,
    esk58_0: $i ).

tff(decl_149,type,
    esk59_0: $i ).

tff(decl_150,type,
    esk60_0: $i ).

tff(decl_151,type,
    esk61_0: $i ).

tff(decl_152,type,
    esk62_0: $i ).

tff(decl_153,type,
    esk63_0: $i ).

tff(decl_154,type,
    esk64_0: $i ).

tff(decl_155,type,
    esk65_0: $i ).

tff(decl_156,type,
    esk66_0: $i ).

tff(decl_157,type,
    esk67_0: $i ).

tff(decl_158,type,
    esk68_0: $i ).

tff(decl_159,type,
    esk69_0: $i ).

tff(decl_160,type,
    esk70_0: $i ).

tff(decl_161,type,
    esk71_0: $i ).

tff(decl_162,type,
    esk72_0: $i ).

tff(decl_163,type,
    esk73_0: $i ).

tff(decl_164,type,
    esk74_0: $i ).

tff(decl_165,type,
    esk75_0: $i ).

tff(decl_166,type,
    esk76_0: $i ).

tff(decl_167,type,
    esk77_0: $i ).

tff(decl_168,type,
    esk78_0: $i ).

tff(decl_169,type,
    esk79_0: $i ).

tff(decl_170,type,
    esk80_0: $i ).

tff(decl_171,type,
    esk81_0: $i ).

tff(decl_172,type,
    esk82_0: $i ).

tff(decl_173,type,
    esk83_0: $i ).

tff(decl_174,type,
    esk84_0: $i ).

tff(decl_175,type,
    esk85_0: $i ).

tff(decl_176,type,
    esk86_0: $i ).

tff(decl_177,type,
    esk87_0: $i ).

tff(decl_178,type,
    esk88_0: $i ).

tff(decl_179,type,
    esk89_0: $i ).

tff(decl_180,type,
    esk90_0: $i ).

tff(decl_181,type,
    esk91_0: $i ).

tff(decl_182,type,
    esk92_0: $i ).

tff(decl_183,type,
    esk93_0: $i ).

tff(decl_184,type,
    esk94_0: $i ).

fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',modus_ponens) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,and(X1,X2)))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',and_3) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',substitution_of_equivalents) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_equiv) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_modus_ponens) ).

fof(hilbert_and_3,axiom,
    and_3,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_and_3) ).

fof(implies_2,axiom,
    ( implies_2
  <=> ! [X1,X2] : is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',implies_2) ).

fof(substitution_of_equivalents_001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',substitution_of_equivalents) ).

fof(hilbert_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_op_equiv) ).

fof(hilbert_implies_2,axiom,
    implies_2,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_implies_2) ).

fof(and_1,axiom,
    ( and_1
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X1)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',and_1) ).

fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_implies_and) ).

fof(hilbert_and_1,axiom,
    and_1,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_and_1) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_or) ).

fof(hilbert_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_op_implies_and) ).

fof(or_1,axiom,
    ( or_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,or(X1,X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',or_1) ).

fof(hilbert_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_op_or) ).

fof(modus_tollens,axiom,
    ( modus_tollens
  <=> ! [X1,X2] : is_a_theorem(implies(implies(not(X2),not(X1)),implies(X1,X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',modus_tollens) ).

fof(hilbert_or_1,axiom,
    or_1,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_or_1) ).

fof(implies_1,axiom,
    ( implies_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,X1))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',implies_1) ).

fof(hilbert_modus_tollens,axiom,
    modus_tollens,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_modus_tollens) ).

fof(hilbert_implies_1,axiom,
    implies_1,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_implies_1) ).

fof(and_2,axiom,
    ( and_2
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X2)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',and_2) ).

fof(axiom_M,axiom,
    ( axiom_M
  <=> ! [X1] : is_a_theorem(implies(necessarily(X1),X1)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL007+0.ax',axiom_M) ).

fof(hilbert_and_2,axiom,
    and_2,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_and_2) ).

fof(necessitation,axiom,
    ( necessitation
  <=> ! [X1] :
        ( is_a_theorem(X1)
       => is_a_theorem(necessarily(X1)) ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL007+0.ax',necessitation) ).

fof(km5_axiom_M,axiom,
    axiom_M,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL007+2.ax',km5_axiom_M) ).

fof(km5_necessitation,axiom,
    necessitation,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL007+2.ax',km5_necessitation) ).

fof(axiom_5,axiom,
    ( axiom_5
  <=> ! [X1] : is_a_theorem(implies(possibly(X1),necessarily(possibly(X1)))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL007+0.ax',axiom_5) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X1,X2] : strict_implies(X1,X2) = necessarily(implies(X1,X2)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL007+1.ax',op_strict_implies) ).

fof(km5_axiom_5,axiom,
    axiom_5,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL007+2.ax',km5_axiom_5) ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',s1_0_op_strict_implies) ).

fof(implies_3,axiom,
    ( implies_3
  <=> ! [X1,X2,X3] : is_a_theorem(implies(implies(X1,X2),implies(implies(X2,X3),implies(X1,X3)))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',implies_3) ).

fof(hilbert_implies_3,axiom,
    implies_3,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+2.ax',hilbert_implies_3) ).

fof(axiom_m1,axiom,
    ( axiom_m1
  <=> ! [X1,X2] : is_a_theorem(strict_implies(and(X1,X2),and(X2,X1))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL007+0.ax',axiom_m1) ).

fof(s1_0_axiom_m1,conjecture,
    axiom_m1,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',s1_0_axiom_m1) ).

fof(c_0_36,plain,
    ! [X7,X8] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X7)
        | ~ is_a_theorem(implies(X7,X8))
        | is_a_theorem(X8) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])]) ).

fof(c_0_37,plain,
    ! [X41,X42] :
      ( ( ~ and_3
        | is_a_theorem(implies(X41,implies(X42,and(X41,X42)))) )
      & ( ~ is_a_theorem(implies(esk18_0,implies(esk19_0,and(esk18_0,esk19_0))))
        | and_3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_3])])])]) ).

fof(c_0_38,plain,
    ! [X11,X12] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X11,X12))
        | X11 = X12 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])]) ).

fof(c_0_39,plain,
    ! [X125,X126] :
      ( ~ op_equiv
      | equiv(X125,X126) = and(implies(X125,X126),implies(X126,X125)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])]) ).

cnf(c_0_40,plain,
    ( is_a_theorem(X2)
    | ~ modus_ponens
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_36]) ).

cnf(c_0_41,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_ponens]) ).

cnf(c_0_42,plain,
    ( is_a_theorem(implies(X1,implies(X2,and(X1,X2))))
    | ~ and_3 ),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_43,plain,
    and_3,
    inference(split_conjunct,[status(thm)],[hilbert_and_3]) ).

fof(c_0_44,plain,
    ! [X23,X24] :
      ( ( ~ implies_2
        | is_a_theorem(implies(implies(X23,implies(X23,X24)),implies(X23,X24))) )
      & ( ~ is_a_theorem(implies(implies(esk9_0,implies(esk9_0,esk10_0)),implies(esk9_0,esk10_0)))
        | implies_2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_2])])])]) ).

cnf(c_0_45,plain,
    ( X1 = X2
    | ~ substitution_of_equivalents
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

cnf(c_0_46,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents]) ).

cnf(c_0_47,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_48,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[hilbert_op_equiv]) ).

cnf(c_0_49,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_40,c_0_41])]) ).

cnf(c_0_50,plain,
    is_a_theorem(implies(X1,implies(X2,and(X1,X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_42,c_0_43])]) ).

cnf(c_0_51,plain,
    ( is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2)))
    | ~ implies_2 ),
    inference(split_conjunct,[status(thm)],[c_0_44]) ).

cnf(c_0_52,plain,
    implies_2,
    inference(split_conjunct,[status(thm)],[hilbert_implies_2]) ).

cnf(c_0_53,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_45,c_0_46])]) ).

cnf(c_0_54,plain,
    equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_47,c_0_48])]) ).

cnf(c_0_55,plain,
    ( is_a_theorem(implies(X1,and(X2,X1)))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_49,c_0_50]) ).

cnf(c_0_56,plain,
    is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_51,c_0_52])]) ).

fof(c_0_57,plain,
    ! [X33,X34] :
      ( ( ~ and_1
        | is_a_theorem(implies(and(X33,X34),X33)) )
      & ( ~ is_a_theorem(implies(and(esk14_0,esk15_0),esk14_0))
        | and_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_1])])])]) ).

fof(c_0_58,plain,
    ! [X121,X122] :
      ( ~ op_implies_and
      | implies(X121,X122) = not(and(X121,not(X122))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])]) ).

cnf(c_0_59,plain,
    ( X1 = X2
    | ~ is_a_theorem(and(implies(X1,X2),implies(X2,X1))) ),
    inference(spm,[status(thm)],[c_0_53,c_0_54]) ).

cnf(c_0_60,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_49,c_0_55]) ).

cnf(c_0_61,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X1,implies(X1,X2))) ),
    inference(spm,[status(thm)],[c_0_49,c_0_56]) ).

cnf(c_0_62,plain,
    ( is_a_theorem(implies(and(X1,X2),X1))
    | ~ and_1 ),
    inference(split_conjunct,[status(thm)],[c_0_57]) ).

cnf(c_0_63,plain,
    and_1,
    inference(split_conjunct,[status(thm)],[hilbert_and_1]) ).

fof(c_0_64,plain,
    ! [X117,X118] :
      ( ~ op_or
      | or(X117,X118) = not(and(not(X117),not(X118))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])]) ).

cnf(c_0_65,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_58]) ).

cnf(c_0_66,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[hilbert_op_implies_and]) ).

fof(c_0_67,plain,
    ! [X45,X46] :
      ( ( ~ or_1
        | is_a_theorem(implies(X45,or(X45,X46))) )
      & ( ~ is_a_theorem(implies(esk20_0,or(esk20_0,esk21_0)))
        | or_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[or_1])])])]) ).

cnf(c_0_68,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_59,c_0_60]) ).

cnf(c_0_69,plain,
    is_a_theorem(implies(X1,and(X1,X1))),
    inference(spm,[status(thm)],[c_0_61,c_0_50]) ).

cnf(c_0_70,plain,
    is_a_theorem(implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_62,c_0_63])]) ).

cnf(c_0_71,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_64]) ).

cnf(c_0_72,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_65,c_0_66])]) ).

cnf(c_0_73,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[hilbert_op_or]) ).

fof(c_0_74,plain,
    ! [X15,X16] :
      ( ( ~ modus_tollens
        | is_a_theorem(implies(implies(not(X16),not(X15)),implies(X15,X16))) )
      & ( ~ is_a_theorem(implies(implies(not(esk6_0),not(esk5_0)),implies(esk5_0,esk6_0)))
        | modus_tollens ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_tollens])])])]) ).

cnf(c_0_75,plain,
    ( is_a_theorem(implies(X1,or(X1,X2)))
    | ~ or_1 ),
    inference(split_conjunct,[status(thm)],[c_0_67]) ).

cnf(c_0_76,plain,
    or_1,
    inference(split_conjunct,[status(thm)],[hilbert_or_1]) ).

fof(c_0_77,plain,
    ! [X19,X20] :
      ( ( ~ implies_1
        | is_a_theorem(implies(X19,implies(X20,X19))) )
      & ( ~ is_a_theorem(implies(esk7_0,implies(esk8_0,esk7_0)))
        | implies_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_1])])])]) ).

cnf(c_0_78,plain,
    and(X1,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_68,c_0_69]),c_0_70])]) ).

cnf(c_0_79,plain,
    implies(not(X1),X2) = or(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_71,c_0_72]),c_0_73])]) ).

cnf(c_0_80,plain,
    ( is_a_theorem(implies(implies(not(X1),not(X2)),implies(X2,X1)))
    | ~ modus_tollens ),
    inference(split_conjunct,[status(thm)],[c_0_74]) ).

cnf(c_0_81,plain,
    modus_tollens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_tollens]) ).

cnf(c_0_82,plain,
    is_a_theorem(implies(X1,or(X1,X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_75,c_0_76])]) ).

cnf(c_0_83,plain,
    ( is_a_theorem(implies(X1,implies(X2,X1)))
    | ~ implies_1 ),
    inference(split_conjunct,[status(thm)],[c_0_77]) ).

cnf(c_0_84,plain,
    implies_1,
    inference(split_conjunct,[status(thm)],[hilbert_implies_1]) ).

cnf(c_0_85,plain,
    not(not(X1)) = or(X1,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_72,c_0_78]),c_0_79]) ).

cnf(c_0_86,plain,
    is_a_theorem(implies(or(X1,not(X2)),implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_80,c_0_79]),c_0_81])]) ).

cnf(c_0_87,plain,
    is_a_theorem(or(X1,or(not(X1),X2))),
    inference(spm,[status(thm)],[c_0_82,c_0_79]) ).

fof(c_0_88,plain,
    ! [X37,X38] :
      ( ( ~ and_2
        | is_a_theorem(implies(and(X37,X38),X38)) )
      & ( ~ is_a_theorem(implies(and(esk16_0,esk17_0),esk17_0))
        | and_2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_2])])])]) ).

cnf(c_0_89,plain,
    is_a_theorem(implies(X1,implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_83,c_0_84])]) ).

fof(c_0_90,plain,
    ! [X145] :
      ( ( ~ axiom_M
        | is_a_theorem(implies(necessarily(X145),X145)) )
      & ( ~ is_a_theorem(implies(necessarily(esk65_0),esk65_0))
        | axiom_M ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_M])])])]) ).

cnf(c_0_91,plain,
    is_a_theorem(implies(X1,not(not(X1)))),
    inference(spm,[status(thm)],[c_0_82,c_0_85]) ).

cnf(c_0_92,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(or(X2,not(X1))) ),
    inference(spm,[status(thm)],[c_0_49,c_0_86]) ).

cnf(c_0_93,plain,
    is_a_theorem(or(X1,not(not(not(X1))))),
    inference(spm,[status(thm)],[c_0_87,c_0_85]) ).

cnf(c_0_94,plain,
    ( is_a_theorem(implies(and(X1,X2),X2))
    | ~ and_2 ),
    inference(split_conjunct,[status(thm)],[c_0_88]) ).

cnf(c_0_95,plain,
    and_2,
    inference(split_conjunct,[status(thm)],[hilbert_and_2]) ).

cnf(c_0_96,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_49,c_0_89]) ).

fof(c_0_97,plain,
    ! [X127] :
      ( ( ~ necessitation
        | ~ is_a_theorem(X127)
        | is_a_theorem(necessarily(X127)) )
      & ( is_a_theorem(esk56_0)
        | necessitation )
      & ( ~ is_a_theorem(necessarily(esk56_0))
        | necessitation ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[necessitation])])])])]) ).

cnf(c_0_98,plain,
    ( is_a_theorem(implies(necessarily(X1),X1))
    | ~ axiom_M ),
    inference(split_conjunct,[status(thm)],[c_0_90]) ).

cnf(c_0_99,plain,
    axiom_M,
    inference(split_conjunct,[status(thm)],[km5_axiom_M]) ).

cnf(c_0_100,plain,
    ( not(not(X1)) = X1
    | ~ is_a_theorem(or(not(X1),X1)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_68,c_0_91]),c_0_79]) ).

cnf(c_0_101,plain,
    is_a_theorem(or(not(X1),X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92,c_0_93]),c_0_79]) ).

cnf(c_0_102,plain,
    is_a_theorem(implies(and(X1,X2),X2)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_94,c_0_95])]) ).

cnf(c_0_103,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_68,c_0_96]) ).

cnf(c_0_104,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ necessitation
    | ~ is_a_theorem(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_97]) ).

cnf(c_0_105,plain,
    necessitation,
    inference(split_conjunct,[status(thm)],[km5_necessitation]) ).

fof(c_0_106,plain,
    ! [X151] :
      ( ( ~ axiom_5
        | is_a_theorem(implies(possibly(X151),necessarily(possibly(X151)))) )
      & ( ~ is_a_theorem(implies(possibly(esk68_0),necessarily(possibly(esk68_0))))
        | axiom_5 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_5])])])]) ).

cnf(c_0_107,plain,
    is_a_theorem(implies(necessarily(X1),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_98,c_0_99])]) ).

fof(c_0_108,plain,
    ! [X207,X208] :
      ( ~ op_strict_implies
      | strict_implies(X207,X208) = necessarily(implies(X207,X208)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_implies])])]) ).

cnf(c_0_109,plain,
    not(not(X1)) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_100,c_0_101])]) ).

cnf(c_0_110,plain,
    ( and(X1,X2) = X2
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_68,c_0_55]),c_0_102])]) ).

cnf(c_0_111,plain,
    ( X1 = X2
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_103,c_0_96]) ).

cnf(c_0_112,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_104,c_0_105])]) ).

cnf(c_0_113,plain,
    ( is_a_theorem(implies(possibly(X1),necessarily(possibly(X1))))
    | ~ axiom_5 ),
    inference(split_conjunct,[status(thm)],[c_0_106]) ).

cnf(c_0_114,plain,
    axiom_5,
    inference(split_conjunct,[status(thm)],[km5_axiom_5]) ).

cnf(c_0_115,plain,
    ( necessarily(X1) = X1
    | ~ is_a_theorem(necessarily(X1)) ),
    inference(spm,[status(thm)],[c_0_103,c_0_107]) ).

cnf(c_0_116,plain,
    ( strict_implies(X1,X2) = necessarily(implies(X1,X2))
    | ~ op_strict_implies ),
    inference(split_conjunct,[status(thm)],[c_0_108]) ).

cnf(c_0_117,plain,
    op_strict_implies,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_implies]) ).

cnf(c_0_118,plain,
    not(and(X1,X2)) = implies(X1,not(X2)),
    inference(spm,[status(thm)],[c_0_72,c_0_109]) ).

cnf(c_0_119,plain,
    and(implies(X1,X1),X2) = X2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_110,c_0_69]),c_0_78]) ).

cnf(c_0_120,plain,
    ( necessarily(X1) = X2
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_111,c_0_112]) ).

cnf(c_0_121,plain,
    is_a_theorem(implies(possibly(X1),necessarily(possibly(X1)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_113,c_0_114])]) ).

cnf(c_0_122,plain,
    ( implies(X1,X1) = X2
    | ~ is_a_theorem(X2) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_111,c_0_69]),c_0_78]) ).

cnf(c_0_123,plain,
    ( necessarily(X1) = X1
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_115,c_0_112]) ).

cnf(c_0_124,plain,
    necessarily(implies(X1,X2)) = strict_implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_116,c_0_117])]) ).

fof(c_0_125,plain,
    ! [X27,X28,X29] :
      ( ( ~ implies_3
        | is_a_theorem(implies(implies(X27,X28),implies(implies(X28,X29),implies(X27,X29)))) )
      & ( ~ is_a_theorem(implies(implies(esk11_0,esk12_0),implies(implies(esk12_0,esk13_0),implies(esk11_0,esk13_0))))
        | implies_3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_3])])])]) ).

cnf(c_0_126,plain,
    implies(implies(X1,X1),not(X2)) = not(X2),
    inference(spm,[status(thm)],[c_0_118,c_0_119]) ).

cnf(c_0_127,plain,
    ( necessarily(X1) = implies(and(X2,X3),X2)
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_120,c_0_70]) ).

cnf(c_0_128,plain,
    necessarily(possibly(X1)) = possibly(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_68,c_0_121]),c_0_107])]) ).

cnf(c_0_129,plain,
    implies(X1,X1) = implies(X2,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_122,c_0_69]),c_0_78]) ).

cnf(c_0_130,plain,
    strict_implies(X1,X1) = implies(X1,X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_123,c_0_69]),c_0_78]),c_0_124]),c_0_78]) ).

cnf(c_0_131,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(implies(X2,X3),implies(X1,X3))))
    | ~ implies_3 ),
    inference(split_conjunct,[status(thm)],[c_0_125]) ).

cnf(c_0_132,plain,
    implies_3,
    inference(split_conjunct,[status(thm)],[hilbert_implies_3]) ).

cnf(c_0_133,plain,
    ( implies(X1,and(X2,X1)) = X2
    | ~ is_a_theorem(implies(implies(X1,and(X2,X1)),X2)) ),
    inference(spm,[status(thm)],[c_0_68,c_0_50]) ).

cnf(c_0_134,plain,
    implies(implies(X1,X1),X2) = X2,
    inference(spm,[status(thm)],[c_0_126,c_0_109]) ).

cnf(c_0_135,plain,
    implies(and(X1,X2),X1) = implies(esk1_0,esk1_0),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_127,c_0_121]),c_0_128]),c_0_129]),c_0_124]),c_0_130]) ).

cnf(c_0_136,plain,
    is_a_theorem(implies(X1,X1)),
    inference(spm,[status(thm)],[c_0_61,c_0_89]) ).

cnf(c_0_137,plain,
    is_a_theorem(implies(implies(X1,X2),implies(implies(X2,X3),implies(X1,X3)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_131,c_0_132])]) ).

cnf(c_0_138,plain,
    and(X1,implies(X2,X2)) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_133,c_0_134]),c_0_135]),c_0_136])]) ).

cnf(c_0_139,plain,
    ( implies(implies(X1,X2),implies(X3,X2)) = implies(X3,X1)
    | ~ is_a_theorem(implies(implies(implies(X1,X2),implies(X3,X2)),implies(X3,X1))) ),
    inference(spm,[status(thm)],[c_0_68,c_0_137]) ).

cnf(c_0_140,plain,
    implies(X1,not(implies(X2,X2))) = not(X1),
    inference(spm,[status(thm)],[c_0_118,c_0_138]) ).

fof(c_0_141,plain,
    ! [X169,X170] :
      ( ( ~ axiom_m1
        | is_a_theorem(strict_implies(and(X169,X170),and(X170,X169))) )
      & ( ~ is_a_theorem(strict_implies(and(esk77_0,esk78_0),and(esk78_0,esk77_0)))
        | axiom_m1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m1])])])]) ).

fof(c_0_142,negated_conjecture,
    ~ axiom_m1,
    inference(fof_simplification,[status(thm)],[inference(assume_negation,[status(cth)],[s1_0_axiom_m1])]) ).

cnf(c_0_143,plain,
    not(implies(X1,not(X2))) = and(X1,X2),
    inference(spm,[status(thm)],[c_0_109,c_0_118]) ).

cnf(c_0_144,plain,
    or(X1,not(X2)) = implies(X2,X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_139,c_0_140]),c_0_140]),c_0_79]),c_0_140]),c_0_79]),c_0_86])]) ).

cnf(c_0_145,plain,
    ( axiom_m1
    | ~ is_a_theorem(strict_implies(and(esk77_0,esk78_0),and(esk78_0,esk77_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_141]) ).

cnf(c_0_146,negated_conjecture,
    ~ axiom_m1,
    inference(split_conjunct,[status(thm)],[c_0_142]) ).

cnf(c_0_147,plain,
    and(not(X1),X2) = not(implies(X2,X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_143,c_0_79]),c_0_144]) ).

cnf(c_0_148,plain,
    ~ is_a_theorem(strict_implies(and(esk77_0,esk78_0),and(esk78_0,esk77_0))),
    inference(sr,[status(thm)],[c_0_145,c_0_146]) ).

cnf(c_0_149,plain,
    and(X1,X2) = and(X2,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_147,c_0_109]),c_0_143]) ).

cnf(c_0_150,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_148,c_0_149]),c_0_130]),c_0_136])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : LCL528+1 : TPTP v8.1.2. Released v3.3.0.
% 0.00/0.12  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.12/0.33  % Computer : n007.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit   : 300
% 0.12/0.33  % WCLimit    : 300
% 0.12/0.33  % DateTime   : Thu Aug 24 19:12:40 EDT 2023
% 0.12/0.34  % CPUTime  : 
% 0.18/0.56  start to proof: theBenchmark
% 1.19/1.27  % Version  : CSE_E---1.5
% 1.19/1.27  % Problem  : theBenchmark.p
% 1.19/1.27  % Proof found
% 1.19/1.27  % SZS status Theorem for theBenchmark.p
% 1.19/1.27  % SZS output start Proof
% See solution above
% 1.19/1.28  % Total time : 0.693000 s
% 1.19/1.28  % SZS output end Proof
% 1.19/1.28  % Total time : 0.698000 s
%------------------------------------------------------------------------------