TSTP Solution File: LCL527+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : LCL527+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 12:52:56 EDT 2022

% Result   : Theorem 2.38s 2.58s
% Output   : CNFRefutation 2.38s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :    6
% Syntax   : Number of formulae    :   46 (  20 unt;   0 def)
%            Number of atoms       :  105 (   0 equ)
%            Maximal formula atoms :   10 (   2 avg)
%            Number of connectives :   99 (  40   ~;  38   |;  13   &)
%                                         (   6 <=>;   2  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   3 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    5 (   4 usr;   4 prp; 0-1 aty)
%            Number of functors    :    8 (   8 usr;   6 con; 0-2 aty)
%            Number of variables   :   41 (   0 sgn  16   !;   6   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X,Y] :
        ( ( is_a_theorem(X)
          & is_a_theorem(implies(X,Y)) )
       => is_a_theorem(Y) ) ) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X,Y] : is_a_theorem(implies(X,implies(Y,and(X,Y)))) ) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens ).

fof(hilbert_and_3,axiom,
    and_3 ).

fof(adjunction,axiom,
    ( adjunction
  <=> ! [X,Y] :
        ( ( is_a_theorem(X)
          & is_a_theorem(Y) )
       => is_a_theorem(and(X,Y)) ) ) ).

fof(s1_0_adjunction,conjecture,
    adjunction ).

fof(subgoal_0,plain,
    adjunction,
    inference(strip,[],[s1_0_adjunction]) ).

fof(negate_0_0,plain,
    ~ adjunction,
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ( ~ adjunction
  <=> ? [X,Y] :
        ( ~ is_a_theorem(and(X,Y))
        & is_a_theorem(X)
        & is_a_theorem(Y) ) ),
    inference(canonicalize,[],[adjunction]) ).

fof(normalize_0_1,plain,
    ! [X,Y] :
      ( ( ~ is_a_theorem(and(skolemFOFtoCNF_X_17,skolemFOFtoCNF_Y_16))
        | adjunction )
      & ( adjunction
        | is_a_theorem(skolemFOFtoCNF_X_17) )
      & ( adjunction
        | is_a_theorem(skolemFOFtoCNF_Y_16) )
      & ( ~ adjunction
        | ~ is_a_theorem(X)
        | ~ is_a_theorem(Y)
        | is_a_theorem(and(X,Y)) ) ),
    inference(clausify,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ( adjunction
    | is_a_theorem(skolemFOFtoCNF_Y_16) ),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    ~ adjunction,
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_4,plain,
    ( ~ modus_ponens
  <=> ? [X,Y] :
        ( ~ is_a_theorem(Y)
        & is_a_theorem(X)
        & is_a_theorem(implies(X,Y)) ) ),
    inference(canonicalize,[],[modus_ponens]) ).

fof(normalize_0_5,plain,
    ! [X,Y] :
      ( ( ~ is_a_theorem(skolemFOFtoCNF_Y)
        | modus_ponens )
      & ( is_a_theorem(implies(skolemFOFtoCNF_X,skolemFOFtoCNF_Y))
        | modus_ponens )
      & ( is_a_theorem(skolemFOFtoCNF_X)
        | modus_ponens )
      & ( ~ is_a_theorem(X)
        | ~ is_a_theorem(implies(X,Y))
        | ~ modus_ponens
        | is_a_theorem(Y) ) ),
    inference(clausify,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ! [X,Y] :
      ( ~ is_a_theorem(X)
      | ~ is_a_theorem(implies(X,Y))
      | ~ modus_ponens
      | is_a_theorem(Y) ),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    modus_ponens,
    inference(canonicalize,[],[hilbert_modus_ponens]) ).

fof(normalize_0_8,plain,
    ( adjunction
    | is_a_theorem(skolemFOFtoCNF_X_17) ),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_9,plain,
    ( ~ and_3
  <=> ? [X,Y] : ~ is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(canonicalize,[],[and_3]) ).

fof(normalize_0_10,plain,
    ! [X,Y] :
      ( ( ~ and_3
        | is_a_theorem(implies(X,implies(Y,and(X,Y)))) )
      & ( ~ is_a_theorem(implies(skolemFOFtoCNF_X_8,implies(skolemFOFtoCNF_Y_8,and(skolemFOFtoCNF_X_8,skolemFOFtoCNF_Y_8))))
        | and_3 ) ),
    inference(clausify,[],[normalize_0_9]) ).

fof(normalize_0_11,plain,
    ! [X,Y] :
      ( ~ and_3
      | is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(conjunct,[],[normalize_0_10]) ).

fof(normalize_0_12,plain,
    and_3,
    inference(canonicalize,[],[hilbert_and_3]) ).

fof(normalize_0_13,plain,
    ( ~ is_a_theorem(and(skolemFOFtoCNF_X_17,skolemFOFtoCNF_Y_16))
    | adjunction ),
    inference(conjunct,[],[normalize_0_1]) ).

cnf(refute_0_0,plain,
    ( adjunction
    | is_a_theorem(skolemFOFtoCNF_Y_16) ),
    inference(canonicalize,[],[normalize_0_2]) ).

cnf(refute_0_1,plain,
    ~ adjunction,
    inference(canonicalize,[],[normalize_0_3]) ).

cnf(refute_0_2,plain,
    is_a_theorem(skolemFOFtoCNF_Y_16),
    inference(resolve,[$cnf( adjunction )],[refute_0_0,refute_0_1]) ).

cnf(refute_0_3,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | ~ modus_ponens
    | is_a_theorem(Y) ),
    inference(canonicalize,[],[normalize_0_6]) ).

cnf(refute_0_4,plain,
    modus_ponens,
    inference(canonicalize,[],[normalize_0_7]) ).

cnf(refute_0_5,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | is_a_theorem(Y) ),
    inference(resolve,[$cnf( modus_ponens )],[refute_0_4,refute_0_3]) ).

cnf(refute_0_6,plain,
    ( ~ is_a_theorem(X_2083)
    | ~ is_a_theorem(implies(X_2083,and(skolemFOFtoCNF_X_17,X_2083)))
    | is_a_theorem(and(skolemFOFtoCNF_X_17,X_2083)) ),
    inference(subst,[],[refute_0_5:[bind(X,$fot(X_2083)),bind(Y,$fot(and(skolemFOFtoCNF_X_17,X_2083)))]]) ).

cnf(refute_0_7,plain,
    ( adjunction
    | is_a_theorem(skolemFOFtoCNF_X_17) ),
    inference(canonicalize,[],[normalize_0_8]) ).

cnf(refute_0_8,plain,
    is_a_theorem(skolemFOFtoCNF_X_17),
    inference(resolve,[$cnf( adjunction )],[refute_0_7,refute_0_1]) ).

cnf(refute_0_9,plain,
    ( ~ and_3
    | is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(canonicalize,[],[normalize_0_11]) ).

cnf(refute_0_10,plain,
    and_3,
    inference(canonicalize,[],[normalize_0_12]) ).

cnf(refute_0_11,plain,
    is_a_theorem(implies(X,implies(Y,and(X,Y)))),
    inference(resolve,[$cnf( and_3 )],[refute_0_10,refute_0_9]) ).

cnf(refute_0_12,plain,
    is_a_theorem(implies(X_624,implies(Y,and(X_624,Y)))),
    inference(subst,[],[refute_0_11:[bind(X,$fot(X_624))]]) ).

cnf(refute_0_13,plain,
    ( ~ is_a_theorem(X_624)
    | ~ is_a_theorem(implies(X_624,implies(Y,and(X_624,Y))))
    | is_a_theorem(implies(Y,and(X_624,Y))) ),
    inference(subst,[],[refute_0_5:[bind(X,$fot(X_624)),bind(Y,$fot(implies(Y,and(X_624,Y))))]]) ).

cnf(refute_0_14,plain,
    ( ~ is_a_theorem(X_624)
    | is_a_theorem(implies(Y,and(X_624,Y))) ),
    inference(resolve,[$cnf( is_a_theorem(implies(X_624,implies(Y,and(X_624,Y)))) )],[refute_0_12,refute_0_13]) ).

cnf(refute_0_15,plain,
    ( ~ is_a_theorem(skolemFOFtoCNF_X_17)
    | is_a_theorem(implies(X_2081,and(skolemFOFtoCNF_X_17,X_2081))) ),
    inference(subst,[],[refute_0_14:[bind(Y,$fot(X_2081)),bind(X_624,$fot(skolemFOFtoCNF_X_17))]]) ).

cnf(refute_0_16,plain,
    is_a_theorem(implies(X_2081,and(skolemFOFtoCNF_X_17,X_2081))),
    inference(resolve,[$cnf( is_a_theorem(skolemFOFtoCNF_X_17) )],[refute_0_8,refute_0_15]) ).

cnf(refute_0_17,plain,
    is_a_theorem(implies(X_2083,and(skolemFOFtoCNF_X_17,X_2083))),
    inference(subst,[],[refute_0_16:[bind(X_2081,$fot(X_2083))]]) ).

cnf(refute_0_18,plain,
    ( ~ is_a_theorem(X_2083)
    | is_a_theorem(and(skolemFOFtoCNF_X_17,X_2083)) ),
    inference(resolve,[$cnf( is_a_theorem(implies(X_2083,and(skolemFOFtoCNF_X_17,X_2083))) )],[refute_0_17,refute_0_6]) ).

cnf(refute_0_19,plain,
    ( ~ is_a_theorem(skolemFOFtoCNF_Y_16)
    | is_a_theorem(and(skolemFOFtoCNF_X_17,skolemFOFtoCNF_Y_16)) ),
    inference(subst,[],[refute_0_18:[bind(X_2083,$fot(skolemFOFtoCNF_Y_16))]]) ).

cnf(refute_0_20,plain,
    is_a_theorem(and(skolemFOFtoCNF_X_17,skolemFOFtoCNF_Y_16)),
    inference(resolve,[$cnf( is_a_theorem(skolemFOFtoCNF_Y_16) )],[refute_0_2,refute_0_19]) ).

cnf(refute_0_21,plain,
    ( ~ is_a_theorem(and(skolemFOFtoCNF_X_17,skolemFOFtoCNF_Y_16))
    | adjunction ),
    inference(canonicalize,[],[normalize_0_13]) ).

cnf(refute_0_22,plain,
    ~ is_a_theorem(and(skolemFOFtoCNF_X_17,skolemFOFtoCNF_Y_16)),
    inference(resolve,[$cnf( adjunction )],[refute_0_21,refute_0_1]) ).

cnf(refute_0_23,plain,
    $false,
    inference(resolve,[$cnf( is_a_theorem(and(skolemFOFtoCNF_X_17,skolemFOFtoCNF_Y_16)) )],[refute_0_20,refute_0_22]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : LCL527+1 : TPTP v8.1.0. Released v3.3.0.
% 0.03/0.12  % Command  : metis --show proof --show saturation %s
% 0.12/0.33  % Computer : n005.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Sun Jul  3 14:24:07 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.12/0.33  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2.38/2.58  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 2.38/2.58  
% 2.38/2.58  % SZS output start CNFRefutation for /export/starexec/sandbox/benchmark/theBenchmark.p
% See solution above
% 2.38/2.58  
%------------------------------------------------------------------------------