TSTP Solution File: LCL526+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : LCL526+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 12:52:55 EDT 2022

% Result   : Theorem 3.26s 3.50s
% Output   : CNFRefutation 3.26s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   18
%            Number of leaves      :   27
% Syntax   : Number of formulae    :  147 (  66 unt;   0 def)
%            Number of atoms       :  279 (  55 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  241 ( 109   ~;  96   |;  16   &)
%                                         (  14 <=>;   6  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   3 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :   14 (  11 usr;  11 prp; 0-2 aty)
%            Number of functors    :   19 (  19 usr;  13 con; 0-2 aty)
%            Number of variables   :  161 (   4 sgn  55   !;  13   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X,Y] :
        ( ( is_a_theorem(X)
          & is_a_theorem(implies(X,Y)) )
       => is_a_theorem(Y) ) ) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X,Y] :
        ( is_a_theorem(equiv(X,Y))
       => X = Y ) ) ).

fof(and_1,axiom,
    ( and_1
  <=> ! [X,Y] : is_a_theorem(implies(and(X,Y),X)) ) ).

fof(and_2,axiom,
    ( and_2
  <=> ! [X,Y] : is_a_theorem(implies(and(X,Y),Y)) ) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X,Y] : is_a_theorem(implies(X,implies(Y,and(X,Y)))) ) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X,Y] : equiv(X,Y) = and(implies(X,Y),implies(Y,X)) ) ).

fof(hilbert_op_equiv,axiom,
    op_equiv ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens ).

fof(hilbert_and_1,axiom,
    and_1 ).

fof(hilbert_and_2,axiom,
    and_2 ).

fof(hilbert_and_3,axiom,
    and_3 ).

fof(substitution_of_equivalents_001,axiom,
    substitution_of_equivalents ).

fof(substitution_strict_equiv,axiom,
    ( substitution_strict_equiv
  <=> ! [X,Y] :
        ( is_a_theorem(strict_equiv(X,Y))
       => X = Y ) ) ).

fof(axiom_M,axiom,
    ( axiom_M
  <=> ! [X] : is_a_theorem(implies(necessarily(X),X)) ) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X,Y] : strict_implies(X,Y) = necessarily(implies(X,Y)) ) ).

fof(op_strict_equiv,axiom,
    ( op_strict_equiv
   => ! [X,Y] : strict_equiv(X,Y) = and(strict_implies(X,Y),strict_implies(Y,X)) ) ).

fof(km5_axiom_M,axiom,
    axiom_M ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies ).

fof(s1_0_op_equiv,axiom,
    op_equiv ).

fof(s1_0_op_strict_equiv,axiom,
    op_strict_equiv ).

fof(s1_0_substitution_strict_equiv,conjecture,
    substitution_strict_equiv ).

fof(subgoal_0,plain,
    substitution_strict_equiv,
    inference(strip,[],[s1_0_substitution_strict_equiv]) ).

fof(negate_0_0,plain,
    ~ substitution_strict_equiv,
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ( ~ substitution_of_equivalents
  <=> ? [X,Y] :
        ( X != Y
        & is_a_theorem(equiv(X,Y)) ) ),
    inference(canonicalize,[],[substitution_of_equivalents]) ).

fof(normalize_0_1,plain,
    ! [X,Y] :
      ( ( skolemFOFtoCNF_X_1 != skolemFOFtoCNF_Y_1
        | substitution_of_equivalents )
      & ( is_a_theorem(equiv(skolemFOFtoCNF_X_1,skolemFOFtoCNF_Y_1))
        | substitution_of_equivalents )
      & ( ~ is_a_theorem(equiv(X,Y))
        | ~ substitution_of_equivalents
        | X = Y ) ),
    inference(clausify,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ! [X,Y] :
      ( ~ is_a_theorem(equiv(X,Y))
      | ~ substitution_of_equivalents
      | X = Y ),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    substitution_of_equivalents,
    inference(canonicalize,[],[substitution_of_equivalents]) ).

fof(normalize_0_4,plain,
    ( ~ modus_ponens
  <=> ? [X,Y] :
        ( ~ is_a_theorem(Y)
        & is_a_theorem(X)
        & is_a_theorem(implies(X,Y)) ) ),
    inference(canonicalize,[],[modus_ponens]) ).

fof(normalize_0_5,plain,
    ! [X,Y] :
      ( ( ~ is_a_theorem(skolemFOFtoCNF_Y)
        | modus_ponens )
      & ( is_a_theorem(implies(skolemFOFtoCNF_X,skolemFOFtoCNF_Y))
        | modus_ponens )
      & ( is_a_theorem(skolemFOFtoCNF_X)
        | modus_ponens )
      & ( ~ is_a_theorem(X)
        | ~ is_a_theorem(implies(X,Y))
        | ~ modus_ponens
        | is_a_theorem(Y) ) ),
    inference(clausify,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ! [X,Y] :
      ( ~ is_a_theorem(X)
      | ~ is_a_theorem(implies(X,Y))
      | ~ modus_ponens
      | is_a_theorem(Y) ),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    modus_ponens,
    inference(canonicalize,[],[hilbert_modus_ponens]) ).

fof(normalize_0_8,plain,
    ( ~ substitution_strict_equiv
  <=> ? [X,Y] :
        ( X != Y
        & is_a_theorem(strict_equiv(X,Y)) ) ),
    inference(canonicalize,[],[substitution_strict_equiv]) ).

fof(normalize_0_9,plain,
    ! [X,Y] :
      ( ( skolemFOFtoCNF_X_18 != skolemFOFtoCNF_Y_17
        | substitution_strict_equiv )
      & ( is_a_theorem(strict_equiv(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))
        | substitution_strict_equiv )
      & ( ~ is_a_theorem(strict_equiv(X,Y))
        | ~ substitution_strict_equiv
        | X = Y ) ),
    inference(clausify,[],[normalize_0_8]) ).

fof(normalize_0_10,plain,
    ( is_a_theorem(strict_equiv(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))
    | substitution_strict_equiv ),
    inference(conjunct,[],[normalize_0_9]) ).

fof(normalize_0_11,plain,
    ~ substitution_strict_equiv,
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_12,plain,
    ( ~ and_2
  <=> ? [X,Y] : ~ is_a_theorem(implies(and(X,Y),Y)) ),
    inference(canonicalize,[],[and_2]) ).

fof(normalize_0_13,plain,
    ! [X,Y] :
      ( ( ~ and_2
        | is_a_theorem(implies(and(X,Y),Y)) )
      & ( ~ is_a_theorem(implies(and(skolemFOFtoCNF_X_7,skolemFOFtoCNF_Y_7),skolemFOFtoCNF_Y_7))
        | and_2 ) ),
    inference(clausify,[],[normalize_0_12]) ).

fof(normalize_0_14,plain,
    ! [X,Y] :
      ( ~ and_2
      | is_a_theorem(implies(and(X,Y),Y)) ),
    inference(conjunct,[],[normalize_0_13]) ).

fof(normalize_0_15,plain,
    and_2,
    inference(canonicalize,[],[hilbert_and_2]) ).

fof(normalize_0_16,plain,
    ( ~ op_strict_equiv
    | ! [X,Y] : strict_equiv(X,Y) = and(strict_implies(X,Y),strict_implies(Y,X)) ),
    inference(canonicalize,[],[op_strict_equiv]) ).

fof(normalize_0_17,plain,
    ! [X,Y] :
      ( ~ op_strict_equiv
      | strict_equiv(X,Y) = and(strict_implies(X,Y),strict_implies(Y,X)) ),
    inference(clausify,[],[normalize_0_16]) ).

fof(normalize_0_18,plain,
    op_strict_equiv,
    inference(canonicalize,[],[s1_0_op_strict_equiv]) ).

fof(normalize_0_19,plain,
    ( ~ axiom_M
  <=> ? [X] : ~ is_a_theorem(implies(necessarily(X),X)) ),
    inference(canonicalize,[],[axiom_M]) ).

fof(normalize_0_20,plain,
    ! [X] :
      ( ( ~ axiom_M
        | is_a_theorem(implies(necessarily(X),X)) )
      & ( ~ is_a_theorem(implies(necessarily(skolemFOFtoCNF_X_20),skolemFOFtoCNF_X_20))
        | axiom_M ) ),
    inference(clausify,[],[normalize_0_19]) ).

fof(normalize_0_21,plain,
    ! [X] :
      ( ~ axiom_M
      | is_a_theorem(implies(necessarily(X),X)) ),
    inference(conjunct,[],[normalize_0_20]) ).

fof(normalize_0_22,plain,
    axiom_M,
    inference(canonicalize,[],[km5_axiom_M]) ).

fof(normalize_0_23,plain,
    ( ~ op_strict_implies
    | ! [X,Y] : strict_implies(X,Y) = necessarily(implies(X,Y)) ),
    inference(canonicalize,[],[op_strict_implies]) ).

fof(normalize_0_24,plain,
    ! [X,Y] :
      ( ~ op_strict_implies
      | strict_implies(X,Y) = necessarily(implies(X,Y)) ),
    inference(clausify,[],[normalize_0_23]) ).

fof(normalize_0_25,plain,
    op_strict_implies,
    inference(canonicalize,[],[s1_0_op_strict_implies]) ).

fof(normalize_0_26,plain,
    ( ~ and_3
  <=> ? [X,Y] : ~ is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(canonicalize,[],[and_3]) ).

fof(normalize_0_27,plain,
    ! [X,Y] :
      ( ( ~ and_3
        | is_a_theorem(implies(X,implies(Y,and(X,Y)))) )
      & ( ~ is_a_theorem(implies(skolemFOFtoCNF_X_8,implies(skolemFOFtoCNF_Y_8,and(skolemFOFtoCNF_X_8,skolemFOFtoCNF_Y_8))))
        | and_3 ) ),
    inference(clausify,[],[normalize_0_26]) ).

fof(normalize_0_28,plain,
    ! [X,Y] :
      ( ~ and_3
      | is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(conjunct,[],[normalize_0_27]) ).

fof(normalize_0_29,plain,
    and_3,
    inference(canonicalize,[],[hilbert_and_3]) ).

fof(normalize_0_30,plain,
    ( ~ op_equiv
    | ! [X,Y] : equiv(X,Y) = and(implies(X,Y),implies(Y,X)) ),
    inference(canonicalize,[],[op_equiv]) ).

fof(normalize_0_31,plain,
    ! [X,Y] :
      ( ~ op_equiv
      | equiv(X,Y) = and(implies(X,Y),implies(Y,X)) ),
    inference(clausify,[],[normalize_0_30]) ).

fof(normalize_0_32,plain,
    op_equiv,
    inference(canonicalize,[],[s1_0_op_equiv]) ).

fof(normalize_0_33,plain,
    ( ~ and_1
  <=> ? [X,Y] : ~ is_a_theorem(implies(and(X,Y),X)) ),
    inference(canonicalize,[],[and_1]) ).

fof(normalize_0_34,plain,
    ! [X,Y] :
      ( ( ~ and_1
        | is_a_theorem(implies(and(X,Y),X)) )
      & ( ~ is_a_theorem(implies(and(skolemFOFtoCNF_X_6,skolemFOFtoCNF_Y_6),skolemFOFtoCNF_X_6))
        | and_1 ) ),
    inference(clausify,[],[normalize_0_33]) ).

fof(normalize_0_35,plain,
    ! [X,Y] :
      ( ~ and_1
      | is_a_theorem(implies(and(X,Y),X)) ),
    inference(conjunct,[],[normalize_0_34]) ).

fof(normalize_0_36,plain,
    and_1,
    inference(canonicalize,[],[hilbert_and_1]) ).

fof(normalize_0_37,plain,
    ( skolemFOFtoCNF_X_18 != skolemFOFtoCNF_Y_17
    | substitution_strict_equiv ),
    inference(conjunct,[],[normalize_0_9]) ).

cnf(refute_0_0,plain,
    ( ~ is_a_theorem(equiv(X,Y))
    | ~ substitution_of_equivalents
    | X = Y ),
    inference(canonicalize,[],[normalize_0_2]) ).

cnf(refute_0_1,plain,
    substitution_of_equivalents,
    inference(canonicalize,[],[normalize_0_3]) ).

cnf(refute_0_2,plain,
    ( ~ is_a_theorem(equiv(X,Y))
    | X = Y ),
    inference(resolve,[$cnf( substitution_of_equivalents )],[refute_0_1,refute_0_0]) ).

cnf(refute_0_3,plain,
    ( ~ is_a_theorem(equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18))
    | skolemFOFtoCNF_Y_17 = skolemFOFtoCNF_X_18 ),
    inference(subst,[],[refute_0_2:[bind(X,$fot(skolemFOFtoCNF_Y_17)),bind(Y,$fot(skolemFOFtoCNF_X_18))]]) ).

cnf(refute_0_4,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | ~ modus_ponens
    | is_a_theorem(Y) ),
    inference(canonicalize,[],[normalize_0_6]) ).

cnf(refute_0_5,plain,
    modus_ponens,
    inference(canonicalize,[],[normalize_0_7]) ).

cnf(refute_0_6,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | is_a_theorem(Y) ),
    inference(resolve,[$cnf( modus_ponens )],[refute_0_5,refute_0_4]) ).

cnf(refute_0_7,plain,
    ( ~ is_a_theorem(implies(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17),equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)))
    | ~ is_a_theorem(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))
    | is_a_theorem(equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)) ),
    inference(subst,[],[refute_0_6:[bind(X,$fot(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))),bind(Y,$fot(equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)))]]) ).

cnf(refute_0_8,plain,
    ( is_a_theorem(strict_equiv(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))
    | substitution_strict_equiv ),
    inference(canonicalize,[],[normalize_0_10]) ).

cnf(refute_0_9,plain,
    ~ substitution_strict_equiv,
    inference(canonicalize,[],[normalize_0_11]) ).

cnf(refute_0_10,plain,
    is_a_theorem(strict_equiv(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)),
    inference(resolve,[$cnf( substitution_strict_equiv )],[refute_0_8,refute_0_9]) ).

cnf(refute_0_11,plain,
    ( ~ and_2
    | is_a_theorem(implies(and(X,Y),Y)) ),
    inference(canonicalize,[],[normalize_0_14]) ).

cnf(refute_0_12,plain,
    and_2,
    inference(canonicalize,[],[normalize_0_15]) ).

cnf(refute_0_13,plain,
    is_a_theorem(implies(and(X,Y),Y)),
    inference(resolve,[$cnf( and_2 )],[refute_0_12,refute_0_11]) ).

cnf(refute_0_14,plain,
    is_a_theorem(implies(and(strict_implies(X,Y),strict_implies(Y,X)),strict_implies(Y,X))),
    inference(subst,[],[refute_0_13:[bind(X,$fot(strict_implies(X,Y))),bind(Y,$fot(strict_implies(Y,X)))]]) ).

cnf(refute_0_15,plain,
    ( ~ op_strict_equiv
    | strict_equiv(X,Y) = and(strict_implies(X,Y),strict_implies(Y,X)) ),
    inference(canonicalize,[],[normalize_0_17]) ).

cnf(refute_0_16,plain,
    op_strict_equiv,
    inference(canonicalize,[],[normalize_0_18]) ).

cnf(refute_0_17,plain,
    strict_equiv(X,Y) = and(strict_implies(X,Y),strict_implies(Y,X)),
    inference(resolve,[$cnf( op_strict_equiv )],[refute_0_16,refute_0_15]) ).

cnf(refute_0_18,plain,
    X0 = X0,
    introduced(tautology,[refl,[$fot(X0)]]) ).

cnf(refute_0_19,plain,
    ( X0 != X0
    | X0 != Y0
    | Y0 = X0 ),
    introduced(tautology,[equality,[$cnf( $equal(X0,X0) ),[0],$fot(Y0)]]) ).

cnf(refute_0_20,plain,
    ( X0 != Y0
    | Y0 = X0 ),
    inference(resolve,[$cnf( $equal(X0,X0) )],[refute_0_18,refute_0_19]) ).

cnf(refute_0_21,plain,
    ( strict_equiv(X,Y) != and(strict_implies(X,Y),strict_implies(Y,X))
    | and(strict_implies(X,Y),strict_implies(Y,X)) = strict_equiv(X,Y) ),
    inference(subst,[],[refute_0_20:[bind(X0,$fot(strict_equiv(X,Y))),bind(Y0,$fot(and(strict_implies(X,Y),strict_implies(Y,X))))]]) ).

cnf(refute_0_22,plain,
    and(strict_implies(X,Y),strict_implies(Y,X)) = strict_equiv(X,Y),
    inference(resolve,[$cnf( $equal(strict_equiv(X,Y),and(strict_implies(X,Y),strict_implies(Y,X))) )],[refute_0_17,refute_0_21]) ).

cnf(refute_0_23,plain,
    ( and(strict_implies(X,Y),strict_implies(Y,X)) != strict_equiv(X,Y)
    | ~ is_a_theorem(implies(and(strict_implies(X,Y),strict_implies(Y,X)),strict_implies(Y,X)))
    | is_a_theorem(implies(strict_equiv(X,Y),strict_implies(Y,X))) ),
    introduced(tautology,[equality,[$cnf( is_a_theorem(implies(and(strict_implies(X,Y),strict_implies(Y,X)),strict_implies(Y,X))) ),[0,0],$fot(strict_equiv(X,Y))]]) ).

cnf(refute_0_24,plain,
    ( ~ is_a_theorem(implies(and(strict_implies(X,Y),strict_implies(Y,X)),strict_implies(Y,X)))
    | is_a_theorem(implies(strict_equiv(X,Y),strict_implies(Y,X))) ),
    inference(resolve,[$cnf( $equal(and(strict_implies(X,Y),strict_implies(Y,X)),strict_equiv(X,Y)) )],[refute_0_22,refute_0_23]) ).

cnf(refute_0_25,plain,
    is_a_theorem(implies(strict_equiv(X,Y),strict_implies(Y,X))),
    inference(resolve,[$cnf( is_a_theorem(implies(and(strict_implies(X,Y),strict_implies(Y,X)),strict_implies(Y,X))) )],[refute_0_14,refute_0_24]) ).

cnf(refute_0_26,plain,
    ( ~ is_a_theorem(implies(strict_equiv(X,Y),strict_implies(Y,X)))
    | ~ is_a_theorem(strict_equiv(X,Y))
    | is_a_theorem(strict_implies(Y,X)) ),
    inference(subst,[],[refute_0_6:[bind(X,$fot(strict_equiv(X,Y))),bind(Y,$fot(strict_implies(Y,X)))]]) ).

cnf(refute_0_27,plain,
    ( ~ is_a_theorem(strict_equiv(X,Y))
    | is_a_theorem(strict_implies(Y,X)) ),
    inference(resolve,[$cnf( is_a_theorem(implies(strict_equiv(X,Y),strict_implies(Y,X))) )],[refute_0_25,refute_0_26]) ).

cnf(refute_0_28,plain,
    ( ~ is_a_theorem(strict_equiv(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))
    | is_a_theorem(strict_implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)) ),
    inference(subst,[],[refute_0_27:[bind(X,$fot(skolemFOFtoCNF_X_18)),bind(Y,$fot(skolemFOFtoCNF_Y_17))]]) ).

cnf(refute_0_29,plain,
    is_a_theorem(strict_implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)),
    inference(resolve,[$cnf( is_a_theorem(strict_equiv(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)) )],[refute_0_10,refute_0_28]) ).

cnf(refute_0_30,plain,
    ( ~ axiom_M
    | is_a_theorem(implies(necessarily(X),X)) ),
    inference(canonicalize,[],[normalize_0_21]) ).

cnf(refute_0_31,plain,
    axiom_M,
    inference(canonicalize,[],[normalize_0_22]) ).

cnf(refute_0_32,plain,
    is_a_theorem(implies(necessarily(X),X)),
    inference(resolve,[$cnf( axiom_M )],[refute_0_31,refute_0_30]) ).

cnf(refute_0_33,plain,
    is_a_theorem(implies(necessarily(implies(X_28,X_29)),implies(X_28,X_29))),
    inference(subst,[],[refute_0_32:[bind(X,$fot(implies(X_28,X_29)))]]) ).

cnf(refute_0_34,plain,
    ( ~ op_strict_implies
    | strict_implies(X,Y) = necessarily(implies(X,Y)) ),
    inference(canonicalize,[],[normalize_0_24]) ).

cnf(refute_0_35,plain,
    op_strict_implies,
    inference(canonicalize,[],[normalize_0_25]) ).

cnf(refute_0_36,plain,
    strict_implies(X,Y) = necessarily(implies(X,Y)),
    inference(resolve,[$cnf( op_strict_implies )],[refute_0_35,refute_0_34]) ).

cnf(refute_0_37,plain,
    strict_implies(X_28,X_29) = necessarily(implies(X_28,X_29)),
    inference(subst,[],[refute_0_36:[bind(X,$fot(X_28)),bind(Y,$fot(X_29))]]) ).

cnf(refute_0_38,plain,
    ( strict_implies(X_28,X_29) != necessarily(implies(X_28,X_29))
    | necessarily(implies(X_28,X_29)) = strict_implies(X_28,X_29) ),
    inference(subst,[],[refute_0_20:[bind(X0,$fot(strict_implies(X_28,X_29))),bind(Y0,$fot(necessarily(implies(X_28,X_29))))]]) ).

cnf(refute_0_39,plain,
    necessarily(implies(X_28,X_29)) = strict_implies(X_28,X_29),
    inference(resolve,[$cnf( $equal(strict_implies(X_28,X_29),necessarily(implies(X_28,X_29))) )],[refute_0_37,refute_0_38]) ).

cnf(refute_0_40,plain,
    ( necessarily(implies(X_28,X_29)) != strict_implies(X_28,X_29)
    | ~ is_a_theorem(implies(necessarily(implies(X_28,X_29)),implies(X_28,X_29)))
    | is_a_theorem(implies(strict_implies(X_28,X_29),implies(X_28,X_29))) ),
    introduced(tautology,[equality,[$cnf( is_a_theorem(implies(necessarily(implies(X_28,X_29)),implies(X_28,X_29))) ),[0,0],$fot(strict_implies(X_28,X_29))]]) ).

cnf(refute_0_41,plain,
    ( ~ is_a_theorem(implies(necessarily(implies(X_28,X_29)),implies(X_28,X_29)))
    | is_a_theorem(implies(strict_implies(X_28,X_29),implies(X_28,X_29))) ),
    inference(resolve,[$cnf( $equal(necessarily(implies(X_28,X_29)),strict_implies(X_28,X_29)) )],[refute_0_39,refute_0_40]) ).

cnf(refute_0_42,plain,
    is_a_theorem(implies(strict_implies(X_28,X_29),implies(X_28,X_29))),
    inference(resolve,[$cnf( is_a_theorem(implies(necessarily(implies(X_28,X_29)),implies(X_28,X_29))) )],[refute_0_33,refute_0_41]) ).

cnf(refute_0_43,plain,
    ( ~ is_a_theorem(implies(strict_implies(X_28,X_29),implies(X_28,X_29)))
    | ~ is_a_theorem(strict_implies(X_28,X_29))
    | is_a_theorem(implies(X_28,X_29)) ),
    inference(subst,[],[refute_0_6:[bind(X,$fot(strict_implies(X_28,X_29))),bind(Y,$fot(implies(X_28,X_29)))]]) ).

cnf(refute_0_44,plain,
    ( ~ is_a_theorem(strict_implies(X_28,X_29))
    | is_a_theorem(implies(X_28,X_29)) ),
    inference(resolve,[$cnf( is_a_theorem(implies(strict_implies(X_28,X_29),implies(X_28,X_29))) )],[refute_0_42,refute_0_43]) ).

cnf(refute_0_45,plain,
    ( ~ is_a_theorem(strict_implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18))
    | is_a_theorem(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)) ),
    inference(subst,[],[refute_0_44:[bind(X_28,$fot(skolemFOFtoCNF_Y_17)),bind(X_29,$fot(skolemFOFtoCNF_X_18))]]) ).

cnf(refute_0_46,plain,
    is_a_theorem(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)),
    inference(resolve,[$cnf( is_a_theorem(strict_implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)) )],[refute_0_29,refute_0_45]) ).

cnf(refute_0_47,plain,
    ( ~ and_3
    | is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(canonicalize,[],[normalize_0_28]) ).

cnf(refute_0_48,plain,
    and_3,
    inference(canonicalize,[],[normalize_0_29]) ).

cnf(refute_0_49,plain,
    is_a_theorem(implies(X,implies(Y,and(X,Y)))),
    inference(resolve,[$cnf( and_3 )],[refute_0_48,refute_0_47]) ).

cnf(refute_0_50,plain,
    is_a_theorem(implies(X_818,implies(Y,and(X_818,Y)))),
    inference(subst,[],[refute_0_49:[bind(X,$fot(X_818))]]) ).

cnf(refute_0_51,plain,
    ( ~ is_a_theorem(X_818)
    | ~ is_a_theorem(implies(X_818,implies(Y,and(X_818,Y))))
    | is_a_theorem(implies(Y,and(X_818,Y))) ),
    inference(subst,[],[refute_0_6:[bind(X,$fot(X_818)),bind(Y,$fot(implies(Y,and(X_818,Y))))]]) ).

cnf(refute_0_52,plain,
    ( ~ is_a_theorem(X_818)
    | is_a_theorem(implies(Y,and(X_818,Y))) ),
    inference(resolve,[$cnf( is_a_theorem(implies(X_818,implies(Y,and(X_818,Y)))) )],[refute_0_50,refute_0_51]) ).

cnf(refute_0_53,plain,
    ( ~ is_a_theorem(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18))
    | is_a_theorem(implies(X_3123,and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),X_3123))) ),
    inference(subst,[],[refute_0_52:[bind(Y,$fot(X_3123)),bind(X_818,$fot(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)))]]) ).

cnf(refute_0_54,plain,
    is_a_theorem(implies(X_3123,and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),X_3123))),
    inference(resolve,[$cnf( is_a_theorem(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)) )],[refute_0_46,refute_0_53]) ).

cnf(refute_0_55,plain,
    is_a_theorem(implies(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17),and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)))),
    inference(subst,[],[refute_0_54:[bind(X_3123,$fot(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)))]]) ).

cnf(refute_0_56,plain,
    ( ~ op_equiv
    | equiv(X,Y) = and(implies(X,Y),implies(Y,X)) ),
    inference(canonicalize,[],[normalize_0_31]) ).

cnf(refute_0_57,plain,
    op_equiv,
    inference(canonicalize,[],[normalize_0_32]) ).

cnf(refute_0_58,plain,
    equiv(X,Y) = and(implies(X,Y),implies(Y,X)),
    inference(resolve,[$cnf( op_equiv )],[refute_0_57,refute_0_56]) ).

cnf(refute_0_59,plain,
    equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18) = and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)),
    inference(subst,[],[refute_0_58:[bind(X,$fot(skolemFOFtoCNF_Y_17)),bind(Y,$fot(skolemFOFtoCNF_X_18))]]) ).

cnf(refute_0_60,plain,
    ( equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18) != and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))
    | and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)) = equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18) ),
    inference(subst,[],[refute_0_20:[bind(X0,$fot(equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18))),bind(Y0,$fot(and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))))]]) ).

cnf(refute_0_61,plain,
    and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)) = equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),
    inference(resolve,[$cnf( $equal(equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))) )],[refute_0_59,refute_0_60]) ).

cnf(refute_0_62,plain,
    ( and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)) != equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)
    | ~ is_a_theorem(implies(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17),and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))))
    | is_a_theorem(implies(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17),equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18))) ),
    introduced(tautology,[equality,[$cnf( is_a_theorem(implies(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17),and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)))) ),[0,1],$fot(equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18))]]) ).

cnf(refute_0_63,plain,
    ( ~ is_a_theorem(implies(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17),and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))))
    | is_a_theorem(implies(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17),equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18))) ),
    inference(resolve,[$cnf( $equal(and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)),equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)) )],[refute_0_61,refute_0_62]) ).

cnf(refute_0_64,plain,
    is_a_theorem(implies(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17),equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18))),
    inference(resolve,[$cnf( is_a_theorem(implies(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17),and(implies(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18),implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)))) )],[refute_0_55,refute_0_63]) ).

cnf(refute_0_65,plain,
    ( ~ is_a_theorem(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))
    | is_a_theorem(equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)) ),
    inference(resolve,[$cnf( is_a_theorem(implies(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17),equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18))) )],[refute_0_64,refute_0_7]) ).

cnf(refute_0_66,plain,
    ( ~ and_1
    | is_a_theorem(implies(and(X,Y),X)) ),
    inference(canonicalize,[],[normalize_0_35]) ).

cnf(refute_0_67,plain,
    and_1,
    inference(canonicalize,[],[normalize_0_36]) ).

cnf(refute_0_68,plain,
    is_a_theorem(implies(and(X,Y),X)),
    inference(resolve,[$cnf( and_1 )],[refute_0_67,refute_0_66]) ).

cnf(refute_0_69,plain,
    is_a_theorem(implies(and(strict_implies(X,Y),strict_implies(Y,X)),strict_implies(X,Y))),
    inference(subst,[],[refute_0_68:[bind(X,$fot(strict_implies(X,Y))),bind(Y,$fot(strict_implies(Y,X)))]]) ).

cnf(refute_0_70,plain,
    ( and(strict_implies(X,Y),strict_implies(Y,X)) != strict_equiv(X,Y)
    | ~ is_a_theorem(implies(and(strict_implies(X,Y),strict_implies(Y,X)),strict_implies(X,Y)))
    | is_a_theorem(implies(strict_equiv(X,Y),strict_implies(X,Y))) ),
    introduced(tautology,[equality,[$cnf( is_a_theorem(implies(and(strict_implies(X,Y),strict_implies(Y,X)),strict_implies(X,Y))) ),[0,0],$fot(strict_equiv(X,Y))]]) ).

cnf(refute_0_71,plain,
    ( ~ is_a_theorem(implies(and(strict_implies(X,Y),strict_implies(Y,X)),strict_implies(X,Y)))
    | is_a_theorem(implies(strict_equiv(X,Y),strict_implies(X,Y))) ),
    inference(resolve,[$cnf( $equal(and(strict_implies(X,Y),strict_implies(Y,X)),strict_equiv(X,Y)) )],[refute_0_22,refute_0_70]) ).

cnf(refute_0_72,plain,
    is_a_theorem(implies(strict_equiv(X,Y),strict_implies(X,Y))),
    inference(resolve,[$cnf( is_a_theorem(implies(and(strict_implies(X,Y),strict_implies(Y,X)),strict_implies(X,Y))) )],[refute_0_69,refute_0_71]) ).

cnf(refute_0_73,plain,
    ( ~ is_a_theorem(implies(strict_equiv(X,Y),strict_implies(X,Y)))
    | ~ is_a_theorem(strict_equiv(X,Y))
    | is_a_theorem(strict_implies(X,Y)) ),
    inference(subst,[],[refute_0_6:[bind(X,$fot(strict_equiv(X,Y))),bind(Y,$fot(strict_implies(X,Y)))]]) ).

cnf(refute_0_74,plain,
    ( ~ is_a_theorem(strict_equiv(X,Y))
    | is_a_theorem(strict_implies(X,Y)) ),
    inference(resolve,[$cnf( is_a_theorem(implies(strict_equiv(X,Y),strict_implies(X,Y))) )],[refute_0_72,refute_0_73]) ).

cnf(refute_0_75,plain,
    ( ~ is_a_theorem(strict_equiv(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))
    | is_a_theorem(strict_implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)) ),
    inference(subst,[],[refute_0_74:[bind(X,$fot(skolemFOFtoCNF_X_18)),bind(Y,$fot(skolemFOFtoCNF_Y_17))]]) ).

cnf(refute_0_76,plain,
    is_a_theorem(strict_implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)),
    inference(resolve,[$cnf( is_a_theorem(strict_equiv(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)) )],[refute_0_10,refute_0_75]) ).

cnf(refute_0_77,plain,
    ( ~ is_a_theorem(strict_implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17))
    | is_a_theorem(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)) ),
    inference(subst,[],[refute_0_44:[bind(X_28,$fot(skolemFOFtoCNF_X_18)),bind(X_29,$fot(skolemFOFtoCNF_Y_17))]]) ).

cnf(refute_0_78,plain,
    is_a_theorem(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)),
    inference(resolve,[$cnf( is_a_theorem(strict_implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)) )],[refute_0_76,refute_0_77]) ).

cnf(refute_0_79,plain,
    is_a_theorem(equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)),
    inference(resolve,[$cnf( is_a_theorem(implies(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17)) )],[refute_0_78,refute_0_65]) ).

cnf(refute_0_80,plain,
    skolemFOFtoCNF_Y_17 = skolemFOFtoCNF_X_18,
    inference(resolve,[$cnf( is_a_theorem(equiv(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18)) )],[refute_0_79,refute_0_3]) ).

cnf(refute_0_81,plain,
    ( skolemFOFtoCNF_X_18 != skolemFOFtoCNF_Y_17
    | substitution_strict_equiv ),
    inference(canonicalize,[],[normalize_0_37]) ).

cnf(refute_0_82,plain,
    skolemFOFtoCNF_X_18 != skolemFOFtoCNF_Y_17,
    inference(resolve,[$cnf( substitution_strict_equiv )],[refute_0_81,refute_0_9]) ).

cnf(refute_0_83,plain,
    ( skolemFOFtoCNF_Y_17 != skolemFOFtoCNF_X_18
    | skolemFOFtoCNF_X_18 = skolemFOFtoCNF_Y_17 ),
    inference(subst,[],[refute_0_20:[bind(X0,$fot(skolemFOFtoCNF_Y_17)),bind(Y0,$fot(skolemFOFtoCNF_X_18))]]) ).

cnf(refute_0_84,plain,
    skolemFOFtoCNF_Y_17 != skolemFOFtoCNF_X_18,
    inference(resolve,[$cnf( $equal(skolemFOFtoCNF_X_18,skolemFOFtoCNF_Y_17) )],[refute_0_83,refute_0_82]) ).

cnf(refute_0_85,plain,
    $false,
    inference(resolve,[$cnf( $equal(skolemFOFtoCNF_Y_17,skolemFOFtoCNF_X_18) )],[refute_0_80,refute_0_84]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.12  % Problem  : LCL526+1 : TPTP v8.1.0. Released v3.3.0.
% 0.12/0.13  % Command  : metis --show proof --show saturation %s
% 0.12/0.34  % Computer : n023.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 600
% 0.12/0.34  % DateTime : Sun Jul  3 22:15:43 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.12/0.34  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3.26/3.50  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 3.26/3.50  
% 3.26/3.50  % SZS output start CNFRefutation for /export/starexec/sandbox/benchmark/theBenchmark.p
% See solution above
% 3.26/3.51  
%------------------------------------------------------------------------------