TSTP Solution File: LCL525+1 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : LCL525+1 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art06.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Wed Dec 29 13:49:03 EST 2010

% Result   : Theorem 1.15s
% Output   : Solution 1.15s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP21536/LCL525+1.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... 
% found
% SZS status THM for /tmp/SystemOnTPTP21536/LCL525+1.tptp
% SZS output start Solution for /tmp/SystemOnTPTP21536/LCL525+1.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 21632
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.02 WC
% # Preprocessing time     : 0.023 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(1, axiom,(modus_ponens_strict_implies<=>![X1]:![X2]:((is_a_theorem(X1)&is_a_theorem(strict_implies(X1,X2)))=>is_a_theorem(X2))),file('/tmp/SRASS.s.p', modus_ponens_strict_implies)).
% fof(9, axiom,axiom_M,file('/tmp/SRASS.s.p', km5_axiom_M)).
% fof(12, axiom,op_strict_implies,file('/tmp/SRASS.s.p', s1_0_op_strict_implies)).
% fof(22, axiom,modus_ponens,file('/tmp/SRASS.s.p', hilbert_modus_ponens)).
% fof(49, axiom,(axiom_M<=>![X1]:is_a_theorem(implies(necessarily(X1),X1))),file('/tmp/SRASS.s.p', axiom_M)).
% fof(57, axiom,(op_strict_implies=>![X1]:![X2]:strict_implies(X1,X2)=necessarily(implies(X1,X2))),file('/tmp/SRASS.s.p', op_strict_implies)).
% fof(58, axiom,(modus_ponens<=>![X1]:![X2]:((is_a_theorem(X1)&is_a_theorem(implies(X1,X2)))=>is_a_theorem(X2))),file('/tmp/SRASS.s.p', modus_ponens)).
% fof(88, conjecture,modus_ponens_strict_implies,file('/tmp/SRASS.s.p', s1_0_modus_ponens_strict_implies)).
% fof(89, negated_conjecture,~(modus_ponens_strict_implies),inference(assume_negation,[status(cth)],[88])).
% fof(90, negated_conjecture,~(modus_ponens_strict_implies),inference(fof_simplification,[status(thm)],[89,theory(equality)])).
% fof(91, plain,((~(modus_ponens_strict_implies)|![X1]:![X2]:((~(is_a_theorem(X1))|~(is_a_theorem(strict_implies(X1,X2))))|is_a_theorem(X2)))&(?[X1]:?[X2]:((is_a_theorem(X1)&is_a_theorem(strict_implies(X1,X2)))&~(is_a_theorem(X2)))|modus_ponens_strict_implies)),inference(fof_nnf,[status(thm)],[1])).
% fof(92, plain,((~(modus_ponens_strict_implies)|![X3]:![X4]:((~(is_a_theorem(X3))|~(is_a_theorem(strict_implies(X3,X4))))|is_a_theorem(X4)))&(?[X5]:?[X6]:((is_a_theorem(X5)&is_a_theorem(strict_implies(X5,X6)))&~(is_a_theorem(X6)))|modus_ponens_strict_implies)),inference(variable_rename,[status(thm)],[91])).
% fof(93, plain,((~(modus_ponens_strict_implies)|![X3]:![X4]:((~(is_a_theorem(X3))|~(is_a_theorem(strict_implies(X3,X4))))|is_a_theorem(X4)))&(((is_a_theorem(esk1_0)&is_a_theorem(strict_implies(esk1_0,esk2_0)))&~(is_a_theorem(esk2_0)))|modus_ponens_strict_implies)),inference(skolemize,[status(esa)],[92])).
% fof(94, plain,![X3]:![X4]:((((~(is_a_theorem(X3))|~(is_a_theorem(strict_implies(X3,X4))))|is_a_theorem(X4))|~(modus_ponens_strict_implies))&(((is_a_theorem(esk1_0)&is_a_theorem(strict_implies(esk1_0,esk2_0)))&~(is_a_theorem(esk2_0)))|modus_ponens_strict_implies)),inference(shift_quantors,[status(thm)],[93])).
% fof(95, plain,![X3]:![X4]:((((~(is_a_theorem(X3))|~(is_a_theorem(strict_implies(X3,X4))))|is_a_theorem(X4))|~(modus_ponens_strict_implies))&(((is_a_theorem(esk1_0)|modus_ponens_strict_implies)&(is_a_theorem(strict_implies(esk1_0,esk2_0))|modus_ponens_strict_implies))&(~(is_a_theorem(esk2_0))|modus_ponens_strict_implies))),inference(distribute,[status(thm)],[94])).
% cnf(96,plain,(modus_ponens_strict_implies|~is_a_theorem(esk2_0)),inference(split_conjunct,[status(thm)],[95])).
% cnf(97,plain,(modus_ponens_strict_implies|is_a_theorem(strict_implies(esk1_0,esk2_0))),inference(split_conjunct,[status(thm)],[95])).
% cnf(98,plain,(modus_ponens_strict_implies|is_a_theorem(esk1_0)),inference(split_conjunct,[status(thm)],[95])).
% cnf(107,plain,(axiom_M),inference(split_conjunct,[status(thm)],[9])).
% cnf(110,plain,(op_strict_implies),inference(split_conjunct,[status(thm)],[12])).
% cnf(145,plain,(modus_ponens),inference(split_conjunct,[status(thm)],[22])).
% fof(247, plain,((~(axiom_M)|![X1]:is_a_theorem(implies(necessarily(X1),X1)))&(?[X1]:~(is_a_theorem(implies(necessarily(X1),X1)))|axiom_M)),inference(fof_nnf,[status(thm)],[49])).
% fof(248, plain,((~(axiom_M)|![X2]:is_a_theorem(implies(necessarily(X2),X2)))&(?[X3]:~(is_a_theorem(implies(necessarily(X3),X3)))|axiom_M)),inference(variable_rename,[status(thm)],[247])).
% fof(249, plain,((~(axiom_M)|![X2]:is_a_theorem(implies(necessarily(X2),X2)))&(~(is_a_theorem(implies(necessarily(esk36_0),esk36_0)))|axiom_M)),inference(skolemize,[status(esa)],[248])).
% fof(250, plain,![X2]:((is_a_theorem(implies(necessarily(X2),X2))|~(axiom_M))&(~(is_a_theorem(implies(necessarily(esk36_0),esk36_0)))|axiom_M)),inference(shift_quantors,[status(thm)],[249])).
% cnf(252,plain,(is_a_theorem(implies(necessarily(X1),X1))|~axiom_M),inference(split_conjunct,[status(thm)],[250])).
% fof(297, plain,(~(op_strict_implies)|![X1]:![X2]:strict_implies(X1,X2)=necessarily(implies(X1,X2))),inference(fof_nnf,[status(thm)],[57])).
% fof(298, plain,(~(op_strict_implies)|![X3]:![X4]:strict_implies(X3,X4)=necessarily(implies(X3,X4))),inference(variable_rename,[status(thm)],[297])).
% fof(299, plain,![X3]:![X4]:(strict_implies(X3,X4)=necessarily(implies(X3,X4))|~(op_strict_implies)),inference(shift_quantors,[status(thm)],[298])).
% cnf(300,plain,(strict_implies(X1,X2)=necessarily(implies(X1,X2))|~op_strict_implies),inference(split_conjunct,[status(thm)],[299])).
% fof(301, plain,((~(modus_ponens)|![X1]:![X2]:((~(is_a_theorem(X1))|~(is_a_theorem(implies(X1,X2))))|is_a_theorem(X2)))&(?[X1]:?[X2]:((is_a_theorem(X1)&is_a_theorem(implies(X1,X2)))&~(is_a_theorem(X2)))|modus_ponens)),inference(fof_nnf,[status(thm)],[58])).
% fof(302, plain,((~(modus_ponens)|![X3]:![X4]:((~(is_a_theorem(X3))|~(is_a_theorem(implies(X3,X4))))|is_a_theorem(X4)))&(?[X5]:?[X6]:((is_a_theorem(X5)&is_a_theorem(implies(X5,X6)))&~(is_a_theorem(X6)))|modus_ponens)),inference(variable_rename,[status(thm)],[301])).
% fof(303, plain,((~(modus_ponens)|![X3]:![X4]:((~(is_a_theorem(X3))|~(is_a_theorem(implies(X3,X4))))|is_a_theorem(X4)))&(((is_a_theorem(esk49_0)&is_a_theorem(implies(esk49_0,esk50_0)))&~(is_a_theorem(esk50_0)))|modus_ponens)),inference(skolemize,[status(esa)],[302])).
% fof(304, plain,![X3]:![X4]:((((~(is_a_theorem(X3))|~(is_a_theorem(implies(X3,X4))))|is_a_theorem(X4))|~(modus_ponens))&(((is_a_theorem(esk49_0)&is_a_theorem(implies(esk49_0,esk50_0)))&~(is_a_theorem(esk50_0)))|modus_ponens)),inference(shift_quantors,[status(thm)],[303])).
% fof(305, plain,![X3]:![X4]:((((~(is_a_theorem(X3))|~(is_a_theorem(implies(X3,X4))))|is_a_theorem(X4))|~(modus_ponens))&(((is_a_theorem(esk49_0)|modus_ponens)&(is_a_theorem(implies(esk49_0,esk50_0))|modus_ponens))&(~(is_a_theorem(esk50_0))|modus_ponens))),inference(distribute,[status(thm)],[304])).
% cnf(309,plain,(is_a_theorem(X1)|~modus_ponens|~is_a_theorem(implies(X2,X1))|~is_a_theorem(X2)),inference(split_conjunct,[status(thm)],[305])).
% cnf(465,negated_conjecture,(~modus_ponens_strict_implies),inference(split_conjunct,[status(thm)],[90])).
% cnf(469,plain,(~is_a_theorem(esk2_0)),inference(sr,[status(thm)],[96,465,theory(equality)])).
% cnf(470,plain,(is_a_theorem(esk1_0)),inference(sr,[status(thm)],[98,465,theory(equality)])).
% cnf(476,plain,(is_a_theorem(strict_implies(esk1_0,esk2_0))),inference(sr,[status(thm)],[97,465,theory(equality)])).
% cnf(489,plain,(is_a_theorem(implies(necessarily(X1),X1))|$false),inference(rw,[status(thm)],[252,107,theory(equality)])).
% cnf(490,plain,(is_a_theorem(implies(necessarily(X1),X1))),inference(cn,[status(thm)],[489,theory(equality)])).
% cnf(514,plain,(is_a_theorem(X1)|$false|~is_a_theorem(X2)|~is_a_theorem(implies(X2,X1))),inference(rw,[status(thm)],[309,145,theory(equality)])).
% cnf(515,plain,(is_a_theorem(X1)|~is_a_theorem(X2)|~is_a_theorem(implies(X2,X1))),inference(cn,[status(thm)],[514,theory(equality)])).
% cnf(516,plain,(is_a_theorem(X1)|~is_a_theorem(necessarily(X1))),inference(spm,[status(thm)],[515,490,theory(equality)])).
% cnf(522,plain,(necessarily(implies(X1,X2))=strict_implies(X1,X2)|$false),inference(rw,[status(thm)],[300,110,theory(equality)])).
% cnf(523,plain,(necessarily(implies(X1,X2))=strict_implies(X1,X2)),inference(cn,[status(thm)],[522,theory(equality)])).
% cnf(640,plain,(is_a_theorem(implies(X1,X2))|~is_a_theorem(strict_implies(X1,X2))),inference(spm,[status(thm)],[516,523,theory(equality)])).
% cnf(762,plain,(is_a_theorem(implies(esk1_0,esk2_0))),inference(spm,[status(thm)],[640,476,theory(equality)])).
% cnf(786,plain,(is_a_theorem(esk2_0)|~is_a_theorem(esk1_0)),inference(spm,[status(thm)],[515,762,theory(equality)])).
% cnf(788,plain,(is_a_theorem(esk2_0)|$false),inference(rw,[status(thm)],[786,470,theory(equality)])).
% cnf(789,plain,(is_a_theorem(esk2_0)),inference(cn,[status(thm)],[788,theory(equality)])).
% cnf(790,plain,($false),inference(sr,[status(thm)],[789,469,theory(equality)])).
% cnf(791,plain,($false),790,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 214
% # ...of these trivial                : 29
% # ...subsumed                        : 2
% # ...remaining for further processing: 183
% # Other redundant clauses eliminated : 0
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 0
% # Backward-rewritten                 : 11
% # Generated clauses                  : 179
% # ...of the previous two non-trivial : 158
% # Contextual simplify-reflections    : 0
% # Paramodulations                    : 179
% # Factorizations                     : 0
% # Equation resolutions               : 0
% # Current number of processed clauses: 172
% #    Positive orientable unit clauses: 72
% #    Positive unorientable unit clauses: 1
% #    Negative unit clauses           : 2
% #    Non-unit-clauses                : 97
% # Current number of unprocessed clauses: 90
% # ...number of literals in the above : 114
% # Clause-clause subsumption calls (NU) : 1542
% # Rec. Clause-clause subsumption calls : 1531
% # Unit Clause-clause subsumption calls : 415
% # Rewrite failures with RHS unbound  : 0
% # Indexed BW rewrite attempts        : 58
% # Indexed BW rewrite successes       : 12
% # Backwards rewriting index:   363 leaves,   1.21+/-0.668 terms/leaf
% # Paramod-from index:           69 leaves,   1.17+/-0.480 terms/leaf
% # Paramod-into index:          315 leaves,   1.13+/-0.442 terms/leaf
% # -------------------------------------------------
% # User time              : 0.035 s
% # System time            : 0.004 s
% # Total time             : 0.039 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.13 CPU 0.22 WC
% FINAL PrfWatch: 0.13 CPU 0.22 WC
% SZS output end Solution for /tmp/SystemOnTPTP21536/LCL525+1.tptp
% 
%------------------------------------------------------------------------------