TSTP Solution File: LCL518+1 by Enigma---0.5.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Enigma---0.5.1
% Problem  : LCL518+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : enigmatic-eprover.py %s %d 1

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 09:26:33 EDT 2022

% Result   : Theorem 10.05s 2.63s
% Output   : CNFRefutation 10.05s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   21
%            Number of leaves      :   22
% Syntax   : Number of formulae    :  103 (  50 unt;   0 def)
%            Number of atoms       :  186 (  36 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  144 (  61   ~;  60   |;  10   &)
%                                         (   6 <=>;   7  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :   14 (  12 usr;  12 prp; 0-2 aty)
%            Number of functors    :   16 (  16 usr;  11 con; 0-2 aty)
%            Number of variables   :  150 (   6 sgn  42   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(op_implies_or,axiom,
    ( op_implies_or
   => ! [X1,X2] : implies(X1,X2) = or(not(X1),X2) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_implies_or) ).

fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_implies_and) ).

fof(op_and,axiom,
    ( op_and
   => ! [X1,X2] : and(X1,X2) = not(or(not(X1),not(X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_and) ).

fof(principia_op_implies_or,axiom,
    op_implies_or,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',principia_op_implies_or) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_or) ).

fof(rosser_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+5.ax',rosser_op_implies_and) ).

fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',modus_ponens) ).

fof(kn2,axiom,
    ( kn2
  <=> ! [X4,X5] : is_a_theorem(implies(and(X4,X5),X4)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',kn2) ).

fof(principia_op_and,axiom,
    op_and,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',principia_op_and) ).

fof(rosser_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+5.ax',rosser_op_or) ).

fof(rosser_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+5.ax',rosser_modus_ponens) ).

fof(rosser_kn2,axiom,
    kn2,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+5.ax',rosser_kn2) ).

fof(kn1,axiom,
    ( kn1
  <=> ! [X4] : is_a_theorem(implies(X4,and(X4,X4))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',kn1) ).

fof(rosser_kn1,axiom,
    kn1,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+5.ax',rosser_kn1) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_equiv) ).

fof(kn3,axiom,
    ( kn3
  <=> ! [X4,X5,X6] : is_a_theorem(implies(implies(X4,X5),implies(not(and(X5,X6)),not(and(X6,X4))))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',kn3) ).

fof(rosser_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+5.ax',rosser_op_equiv) ).

fof(rosser_kn3,axiom,
    kn3,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+5.ax',rosser_kn3) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',substitution_of_equivalents) ).

fof(substitution_of_equivalents_001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+5.ax',substitution_of_equivalents) ).

fof(principia_r1,conjecture,
    r1,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',principia_r1) ).

fof(r1,axiom,
    ( r1
  <=> ! [X4] : is_a_theorem(implies(or(X4,X4),X4)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',r1) ).

fof(c_0_22,plain,
    ! [X123,X124] :
      ( ~ op_implies_or
      | implies(X123,X124) = or(not(X123),X124) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_or])])]) ).

fof(c_0_23,plain,
    ! [X121,X122] :
      ( ~ op_implies_and
      | implies(X121,X122) = not(and(X121,not(X122))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])]) ).

fof(c_0_24,plain,
    ! [X119,X120] :
      ( ~ op_and
      | and(X119,X120) = not(or(not(X119),not(X120))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_and])])]) ).

cnf(c_0_25,plain,
    ( implies(X1,X2) = or(not(X1),X2)
    | ~ op_implies_or ),
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

cnf(c_0_26,plain,
    op_implies_or,
    inference(split_conjunct,[status(thm)],[principia_op_implies_or]) ).

fof(c_0_27,plain,
    ! [X117,X118] :
      ( ~ op_or
      | or(X117,X118) = not(and(not(X117),not(X118))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])]) ).

cnf(c_0_28,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_23]) ).

cnf(c_0_29,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[rosser_op_implies_and]) ).

fof(c_0_30,plain,
    ! [X7,X8] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X7)
        | ~ is_a_theorem(implies(X7,X8))
        | is_a_theorem(X8) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])]) ).

fof(c_0_31,plain,
    ! [X73,X74] :
      ( ( ~ kn2
        | is_a_theorem(implies(and(X73,X74),X73)) )
      & ( ~ is_a_theorem(implies(and(esk34_0,esk35_0),esk34_0))
        | kn2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[kn2])])])]) ).

cnf(c_0_32,plain,
    ( and(X1,X2) = not(or(not(X1),not(X2)))
    | ~ op_and ),
    inference(split_conjunct,[status(thm)],[c_0_24]) ).

cnf(c_0_33,plain,
    or(not(X1),X2) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_25,c_0_26])]) ).

cnf(c_0_34,plain,
    op_and,
    inference(split_conjunct,[status(thm)],[principia_op_and]) ).

cnf(c_0_35,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_27]) ).

cnf(c_0_36,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_28,c_0_29])]) ).

cnf(c_0_37,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[rosser_op_or]) ).

cnf(c_0_38,plain,
    ( is_a_theorem(X2)
    | ~ modus_ponens
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

cnf(c_0_39,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[rosser_modus_ponens]) ).

cnf(c_0_40,plain,
    ( is_a_theorem(implies(and(X1,X2),X1))
    | ~ kn2 ),
    inference(split_conjunct,[status(thm)],[c_0_31]) ).

cnf(c_0_41,plain,
    kn2,
    inference(split_conjunct,[status(thm)],[rosser_kn2]) ).

cnf(c_0_42,plain,
    not(implies(X1,not(X2))) = and(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_32,c_0_33]),c_0_34])]) ).

cnf(c_0_43,plain,
    implies(not(X1),X2) = or(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_35,c_0_36]),c_0_37])]) ).

fof(c_0_44,plain,
    ! [X71] :
      ( ( ~ kn1
        | is_a_theorem(implies(X71,and(X71,X71))) )
      & ( ~ is_a_theorem(implies(esk33_0,and(esk33_0,esk33_0)))
        | kn1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[kn1])])])]) ).

cnf(c_0_45,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_38,c_0_39])]) ).

cnf(c_0_46,plain,
    is_a_theorem(implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_40,c_0_41])]) ).

cnf(c_0_47,plain,
    not(or(X1,not(X2))) = and(not(X1),X2),
    inference(spm,[status(thm)],[c_0_42,c_0_43]) ).

cnf(c_0_48,plain,
    ( is_a_theorem(implies(X1,and(X1,X1)))
    | ~ kn1 ),
    inference(split_conjunct,[status(thm)],[c_0_44]) ).

cnf(c_0_49,plain,
    kn1,
    inference(split_conjunct,[status(thm)],[rosser_kn1]) ).

cnf(c_0_50,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(and(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_45,c_0_46]) ).

cnf(c_0_51,plain,
    and(not(not(X1)),X2) = and(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47,c_0_33]),c_0_42]) ).

cnf(c_0_52,plain,
    is_a_theorem(implies(X1,and(X1,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_48,c_0_49])]) ).

cnf(c_0_53,plain,
    ( is_a_theorem(not(not(X1)))
    | ~ is_a_theorem(and(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_50,c_0_51]) ).

cnf(c_0_54,plain,
    ( is_a_theorem(and(X1,X1))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_45,c_0_52]) ).

fof(c_0_55,plain,
    ! [X125,X126] :
      ( ~ op_equiv
      | equiv(X125,X126) = and(implies(X125,X126),implies(X126,X125)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])]) ).

fof(c_0_56,plain,
    ! [X77,X78,X79] :
      ( ( ~ kn3
        | is_a_theorem(implies(implies(X77,X78),implies(not(and(X78,X79)),not(and(X79,X77))))) )
      & ( ~ is_a_theorem(implies(implies(esk36_0,esk37_0),implies(not(and(esk37_0,esk38_0)),not(and(esk38_0,esk36_0)))))
        | kn3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[kn3])])])]) ).

cnf(c_0_57,plain,
    ( is_a_theorem(not(not(X1)))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_53,c_0_54]) ).

cnf(c_0_58,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_55]) ).

cnf(c_0_59,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[rosser_op_equiv]) ).

cnf(c_0_60,plain,
    or(and(X1,X2),X3) = implies(implies(X1,not(X2)),X3),
    inference(spm,[status(thm)],[c_0_33,c_0_42]) ).

cnf(c_0_61,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(not(and(X2,X3)),not(and(X3,X1)))))
    | ~ kn3 ),
    inference(split_conjunct,[status(thm)],[c_0_56]) ).

cnf(c_0_62,plain,
    kn3,
    inference(split_conjunct,[status(thm)],[rosser_kn3]) ).

fof(c_0_63,plain,
    ! [X11,X12] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X11,X12))
        | X11 = X12 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])]) ).

cnf(c_0_64,plain,
    ( is_a_theorem(not(implies(X1,X2)))
    | ~ is_a_theorem(and(X1,not(X2))) ),
    inference(spm,[status(thm)],[c_0_57,c_0_36]) ).

cnf(c_0_65,plain,
    and(implies(X1,X2),implies(X2,X1)) = equiv(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_58,c_0_59])]) ).

cnf(c_0_66,plain,
    and(X1,implies(X2,not(X3))) = not(implies(X1,and(X2,X3))),
    inference(spm,[status(thm)],[c_0_42,c_0_42]) ).

cnf(c_0_67,plain,
    implies(implies(X1,not(not(X2))),X3) = implies(implies(X1,X2),X3),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_43,c_0_36]),c_0_60]) ).

cnf(c_0_68,plain,
    is_a_theorem(implies(implies(X1,X2),or(and(X2,X3),not(and(X3,X1))))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_61,c_0_43]),c_0_62])]) ).

cnf(c_0_69,plain,
    ( X1 = X2
    | ~ substitution_of_equivalents
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_63]) ).

cnf(c_0_70,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents]) ).

cnf(c_0_71,plain,
    ( is_a_theorem(not(implies(X1,and(X2,not(X3)))))
    | ~ is_a_theorem(and(X1,implies(X2,X3))) ),
    inference(spm,[status(thm)],[c_0_64,c_0_36]) ).

cnf(c_0_72,plain,
    not(implies(or(X1,X2),and(X2,X1))) = equiv(not(X1),X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_65,c_0_43]),c_0_66]) ).

cnf(c_0_73,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,not(not(X3))))
    | ~ is_a_theorem(implies(implies(X2,X3),X1)) ),
    inference(spm,[status(thm)],[c_0_45,c_0_67]) ).

cnf(c_0_74,plain,
    is_a_theorem(implies(implies(X1,X2),implies(implies(X2,not(X3)),not(and(X3,X1))))),
    inference(rw,[status(thm)],[c_0_68,c_0_60]) ).

cnf(c_0_75,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_69,c_0_70])]) ).

cnf(c_0_76,plain,
    ( is_a_theorem(equiv(not(not(X1)),X2))
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_71,c_0_72]),c_0_33]),c_0_65]) ).

cnf(c_0_77,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(implies(and(X2,X3),X2),X1)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_73,c_0_46]),c_0_51]) ).

cnf(c_0_78,plain,
    ( is_a_theorem(implies(implies(X1,not(X2)),not(and(X2,X3))))
    | ~ is_a_theorem(implies(X3,X1)) ),
    inference(spm,[status(thm)],[c_0_45,c_0_74]) ).

cnf(c_0_79,plain,
    is_a_theorem(implies(X1,and(X1,not(not(X1))))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52,c_0_51]),c_0_43]),c_0_33]) ).

cnf(c_0_80,plain,
    ( not(not(X1)) = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_75,c_0_76]) ).

cnf(c_0_81,plain,
    ( is_a_theorem(equiv(X1,X1))
    | ~ is_a_theorem(implies(X1,X1)) ),
    inference(spm,[status(thm)],[c_0_54,c_0_65]) ).

cnf(c_0_82,plain,
    ( is_a_theorem(not(and(X1,X2)))
    | ~ is_a_theorem(implies(X2,and(not(X1),X3))) ),
    inference(spm,[status(thm)],[c_0_77,c_0_78]) ).

cnf(c_0_83,plain,
    is_a_theorem(implies(X1,and(X1,not(not(not(not(X1))))))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_79,c_0_51]),c_0_43]),c_0_33]) ).

cnf(c_0_84,plain,
    ( not(not(X1)) = X1
    | ~ is_a_theorem(implies(X1,X1)) ),
    inference(spm,[status(thm)],[c_0_80,c_0_81]) ).

cnf(c_0_85,plain,
    is_a_theorem(implies(X1,X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_82,c_0_83]),c_0_36]) ).

cnf(c_0_86,plain,
    not(not(X1)) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_84,c_0_85])]) ).

cnf(c_0_87,plain,
    not(and(X1,X2)) = implies(X1,not(X2)),
    inference(spm,[status(thm)],[c_0_36,c_0_86]) ).

cnf(c_0_88,plain,
    ( is_a_theorem(implies(implies(X1,not(X2)),implies(X2,not(X3))))
    | ~ is_a_theorem(implies(X3,X1)) ),
    inference(rw,[status(thm)],[c_0_78,c_0_87]) ).

fof(c_0_89,negated_conjecture,
    ~ r1,
    inference(assume_negation,[status(cth)],[principia_r1]) ).

cnf(c_0_90,plain,
    ( is_a_theorem(implies(X1,not(X2)))
    | ~ is_a_theorem(implies(X3,not(X1)))
    | ~ is_a_theorem(implies(X2,X3)) ),
    inference(spm,[status(thm)],[c_0_45,c_0_88]) ).

fof(c_0_91,plain,
    ! [X95] :
      ( ( ~ r1
        | is_a_theorem(implies(or(X95,X95),X95)) )
      & ( ~ is_a_theorem(implies(or(esk45_0,esk45_0),esk45_0))
        | r1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[r1])])])]) ).

fof(c_0_92,negated_conjecture,
    ~ r1,
    inference(fof_simplification,[status(thm)],[c_0_89]) ).

cnf(c_0_93,plain,
    ( is_a_theorem(implies(X1,not(X2)))
    | ~ is_a_theorem(implies(X2,not(X1))) ),
    inference(spm,[status(thm)],[c_0_90,c_0_85]) ).

cnf(c_0_94,plain,
    is_a_theorem(or(X1,and(not(X1),not(X1)))),
    inference(spm,[status(thm)],[c_0_52,c_0_43]) ).

cnf(c_0_95,plain,
    and(X1,not(X2)) = not(implies(X1,X2)),
    inference(spm,[status(thm)],[c_0_42,c_0_86]) ).

cnf(c_0_96,plain,
    ( r1
    | ~ is_a_theorem(implies(or(esk45_0,esk45_0),esk45_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_91]) ).

cnf(c_0_97,negated_conjecture,
    ~ r1,
    inference(split_conjunct,[status(thm)],[c_0_92]) ).

cnf(c_0_98,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(or(X2,not(X1))) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_93,c_0_43]),c_0_86]) ).

cnf(c_0_99,plain,
    is_a_theorem(or(X1,not(or(X1,X1)))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_94,c_0_95]),c_0_43]) ).

cnf(c_0_100,plain,
    ~ is_a_theorem(implies(or(esk45_0,esk45_0),esk45_0)),
    inference(sr,[status(thm)],[c_0_96,c_0_97]) ).

cnf(c_0_101,plain,
    is_a_theorem(implies(or(X1,X1),X1)),
    inference(spm,[status(thm)],[c_0_98,c_0_99]) ).

cnf(c_0_102,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_100,c_0_101])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : LCL518+1 : TPTP v8.1.0. Released v3.3.0.
% 0.07/0.12  % Command  : enigmatic-eprover.py %s %d 1
% 0.12/0.33  % Computer : n020.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Sun Jul  3 04:39:46 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.18/0.44  # ENIGMATIC: Selected SinE mode:
% 0.18/0.45  # Parsing /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.18/0.45  # Filter: axfilter_auto   0 goes into file theBenchmark_axfilter_auto   0.p
% 0.18/0.45  # Filter: axfilter_auto   1 goes into file theBenchmark_axfilter_auto   1.p
% 0.18/0.45  # Filter: axfilter_auto   2 goes into file theBenchmark_axfilter_auto   2.p
% 10.05/2.63  # ENIGMATIC: Solved by autoschedule:
% 10.05/2.63  # No SInE strategy applied
% 10.05/2.63  # Trying AutoSched0 for 150 seconds
% 10.05/2.63  # AutoSched0-Mode selected heuristic G_E___208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI
% 10.05/2.63  # and selection function SelectComplexExceptUniqMaxHorn.
% 10.05/2.63  #
% 10.05/2.63  # Preprocessing time       : 0.026 s
% 10.05/2.63  # Presaturation interreduction done
% 10.05/2.63  
% 10.05/2.63  # Proof found!
% 10.05/2.63  # SZS status Theorem
% 10.05/2.63  # SZS output start CNFRefutation
% See solution above
% 10.05/2.63  # Training examples: 0 positive, 0 negative
% 10.05/2.63  
% 10.05/2.63  # -------------------------------------------------
% 10.05/2.63  # User time                : 0.180 s
% 10.05/2.63  # System time              : 0.017 s
% 10.05/2.63  # Total time               : 0.198 s
% 10.05/2.63  # Maximum resident set size: 7116 pages
% 10.05/2.63  
%------------------------------------------------------------------------------