TSTP Solution File: LCL516+1 by Enigma---0.5.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Enigma---0.5.1
% Problem  : LCL516+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : enigmatic-eprover.py %s %d 1

% Computer : n015.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 09:26:33 EDT 2022

% Result   : Theorem 10.78s 2.78s
% Output   : CNFRefutation 10.78s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   37
%            Number of leaves      :   18
% Syntax   : Number of formulae    :  124 (  51 unt;   0 def)
%            Number of atoms       :  239 (  22 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  211 (  96   ~;  94   |;  10   &)
%                                         (   6 <=>;   5  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :   12 (  10 usr;  10 prp; 0-2 aty)
%            Number of functors    :   17 (  17 usr;  12 con; 0-2 aty)
%            Number of variables   :  213 (  36 sgn  36   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_implies_and) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_or) ).

fof(rosser_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+5.ax',rosser_op_implies_and) ).

fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',modus_ponens) ).

fof(kn3,axiom,
    ( kn3
  <=> ! [X4,X5,X6] : is_a_theorem(implies(implies(X4,X5),implies(not(and(X5,X6)),not(and(X6,X4))))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',kn3) ).

fof(rosser_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+5.ax',rosser_op_or) ).

fof(rosser_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+5.ax',rosser_modus_ponens) ).

fof(rosser_kn3,axiom,
    kn3,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+5.ax',rosser_kn3) ).

fof(kn2,axiom,
    ( kn2
  <=> ! [X4,X5] : is_a_theorem(implies(and(X4,X5),X4)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',kn2) ).

fof(rosser_kn2,axiom,
    kn2,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+5.ax',rosser_kn2) ).

fof(kn1,axiom,
    ( kn1
  <=> ! [X4] : is_a_theorem(implies(X4,and(X4,X4))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',kn1) ).

fof(rosser_kn1,axiom,
    kn1,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+5.ax',rosser_kn1) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+1.ax',op_equiv) ).

fof(rosser_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+5.ax',rosser_op_equiv) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',substitution_of_equivalents) ).

fof(luka_cn2,conjecture,
    cn2,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',luka_cn2) ).

fof(substitution_of_equivalents_001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+5.ax',substitution_of_equivalents) ).

fof(cn2,axiom,
    ( cn2
  <=> ! [X4,X5] : is_a_theorem(implies(X4,implies(not(X4),X5))) ),
    file('/export/starexec/sandbox/benchmark/Axioms/LCL006+0.ax',cn2) ).

fof(c_0_18,plain,
    ! [X121,X122] :
      ( ~ op_implies_and
      | implies(X121,X122) = not(and(X121,not(X122))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])]) ).

fof(c_0_19,plain,
    ! [X117,X118] :
      ( ~ op_or
      | or(X117,X118) = not(and(not(X117),not(X118))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])]) ).

cnf(c_0_20,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

cnf(c_0_21,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[rosser_op_implies_and]) ).

fof(c_0_22,plain,
    ! [X7,X8] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X7)
        | ~ is_a_theorem(implies(X7,X8))
        | is_a_theorem(X8) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])]) ).

fof(c_0_23,plain,
    ! [X77,X78,X79] :
      ( ( ~ kn3
        | is_a_theorem(implies(implies(X77,X78),implies(not(and(X78,X79)),not(and(X79,X77))))) )
      & ( ~ is_a_theorem(implies(implies(esk36_0,esk37_0),implies(not(and(esk37_0,esk38_0)),not(and(esk38_0,esk36_0)))))
        | kn3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[kn3])])])]) ).

cnf(c_0_24,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_19]) ).

cnf(c_0_25,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_20,c_0_21])]) ).

cnf(c_0_26,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[rosser_op_or]) ).

cnf(c_0_27,plain,
    ( is_a_theorem(X2)
    | ~ modus_ponens
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

cnf(c_0_28,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[rosser_modus_ponens]) ).

cnf(c_0_29,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(not(and(X2,X3)),not(and(X3,X1)))))
    | ~ kn3 ),
    inference(split_conjunct,[status(thm)],[c_0_23]) ).

cnf(c_0_30,plain,
    implies(not(X1),X2) = or(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_24,c_0_25]),c_0_26])]) ).

cnf(c_0_31,plain,
    kn3,
    inference(split_conjunct,[status(thm)],[rosser_kn3]) ).

cnf(c_0_32,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_27,c_0_28])]) ).

cnf(c_0_33,plain,
    is_a_theorem(implies(implies(X1,X2),or(and(X2,X3),not(and(X3,X1))))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_29,c_0_30]),c_0_31])]) ).

cnf(c_0_34,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(or(X2,X1))
    | ~ is_a_theorem(not(X2)) ),
    inference(spm,[status(thm)],[c_0_32,c_0_30]) ).

cnf(c_0_35,plain,
    ( is_a_theorem(or(and(X1,X2),not(and(X2,X3))))
    | ~ is_a_theorem(implies(X3,X1)) ),
    inference(spm,[status(thm)],[c_0_32,c_0_33]) ).

fof(c_0_36,plain,
    ! [X73,X74] :
      ( ( ~ kn2
        | is_a_theorem(implies(and(X73,X74),X73)) )
      & ( ~ is_a_theorem(implies(and(esk34_0,esk35_0),esk34_0))
        | kn2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[kn2])])])]) ).

cnf(c_0_37,plain,
    ( is_a_theorem(not(and(X1,X2)))
    | ~ is_a_theorem(not(and(X3,X1)))
    | ~ is_a_theorem(implies(X2,X3)) ),
    inference(spm,[status(thm)],[c_0_34,c_0_35]) ).

cnf(c_0_38,plain,
    ( is_a_theorem(implies(and(X1,X2),X1))
    | ~ kn2 ),
    inference(split_conjunct,[status(thm)],[c_0_36]) ).

cnf(c_0_39,plain,
    kn2,
    inference(split_conjunct,[status(thm)],[rosser_kn2]) ).

fof(c_0_40,plain,
    ! [X71] :
      ( ( ~ kn1
        | is_a_theorem(implies(X71,and(X71,X71))) )
      & ( ~ is_a_theorem(implies(esk33_0,and(esk33_0,esk33_0)))
        | kn1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[kn1])])])]) ).

cnf(c_0_41,plain,
    ( is_a_theorem(not(and(not(X1),X2)))
    | ~ is_a_theorem(implies(X3,X1))
    | ~ is_a_theorem(implies(X2,X3)) ),
    inference(spm,[status(thm)],[c_0_37,c_0_25]) ).

cnf(c_0_42,plain,
    is_a_theorem(implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_38,c_0_39])]) ).

cnf(c_0_43,plain,
    ( is_a_theorem(implies(X1,and(X1,X1)))
    | ~ kn1 ),
    inference(split_conjunct,[status(thm)],[c_0_40]) ).

cnf(c_0_44,plain,
    kn1,
    inference(split_conjunct,[status(thm)],[rosser_kn1]) ).

cnf(c_0_45,plain,
    ( is_a_theorem(not(and(not(X1),X2)))
    | ~ is_a_theorem(implies(X2,and(X1,X3))) ),
    inference(spm,[status(thm)],[c_0_41,c_0_42]) ).

cnf(c_0_46,plain,
    is_a_theorem(implies(X1,and(X1,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_43,c_0_44])]) ).

cnf(c_0_47,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(or(X2,and(X1,X3))) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_45,c_0_30]),c_0_25]),c_0_30]) ).

cnf(c_0_48,plain,
    is_a_theorem(or(X1,and(not(X1),not(X1)))),
    inference(spm,[status(thm)],[c_0_46,c_0_30]) ).

cnf(c_0_49,plain,
    is_a_theorem(or(not(X1),X1)),
    inference(spm,[status(thm)],[c_0_47,c_0_48]) ).

cnf(c_0_50,plain,
    is_a_theorem(or(X1,not(and(X1,X2)))),
    inference(spm,[status(thm)],[c_0_47,c_0_49]) ).

cnf(c_0_51,plain,
    ( is_a_theorem(not(and(X1,X2)))
    | ~ is_a_theorem(not(X1)) ),
    inference(spm,[status(thm)],[c_0_34,c_0_50]) ).

cnf(c_0_52,plain,
    is_a_theorem(not(and(not(X1),X1))),
    inference(spm,[status(thm)],[c_0_45,c_0_46]) ).

cnf(c_0_53,plain,
    ( is_a_theorem(not(and(X1,X2)))
    | ~ is_a_theorem(implies(X2,X3))
    | ~ is_a_theorem(not(X3)) ),
    inference(spm,[status(thm)],[c_0_37,c_0_51]) ).

cnf(c_0_54,plain,
    ( is_a_theorem(not(and(X1,X2)))
    | ~ is_a_theorem(implies(X2,not(X1))) ),
    inference(spm,[status(thm)],[c_0_37,c_0_52]) ).

cnf(c_0_55,plain,
    ( is_a_theorem(not(and(X1,X2)))
    | ~ is_a_theorem(not(and(X2,X2))) ),
    inference(spm,[status(thm)],[c_0_53,c_0_46]) ).

cnf(c_0_56,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(or(X2,not(X1))) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_54,c_0_25]),c_0_30]) ).

cnf(c_0_57,plain,
    ( is_a_theorem(not(and(X1,X2)))
    | ~ is_a_theorem(not(X2)) ),
    inference(spm,[status(thm)],[c_0_55,c_0_51]) ).

cnf(c_0_58,plain,
    is_a_theorem(implies(X1,not(not(X1)))),
    inference(spm,[status(thm)],[c_0_56,c_0_49]) ).

cnf(c_0_59,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(not(not(X2))) ),
    inference(spm,[status(thm)],[c_0_57,c_0_25]) ).

cnf(c_0_60,plain,
    ( is_a_theorem(not(not(X1)))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_32,c_0_58]) ).

cnf(c_0_61,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_59,c_0_60]) ).

cnf(c_0_62,plain,
    is_a_theorem(or(X1,implies(X1,X2))),
    inference(spm,[status(thm)],[c_0_50,c_0_25]) ).

cnf(c_0_63,plain,
    ( is_a_theorem(not(and(not(X1),X2)))
    | ~ is_a_theorem(and(X1,X3)) ),
    inference(spm,[status(thm)],[c_0_45,c_0_61]) ).

cnf(c_0_64,plain,
    ( is_a_theorem(and(X1,X1))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_32,c_0_46]) ).

cnf(c_0_65,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(not(X1)) ),
    inference(spm,[status(thm)],[c_0_34,c_0_62]) ).

cnf(c_0_66,plain,
    ( is_a_theorem(not(and(not(X1),X2)))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_63,c_0_64]) ).

cnf(c_0_67,plain,
    ( is_a_theorem(or(and(X1,X2),implies(X2,X3)))
    | ~ is_a_theorem(or(X3,X1)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_35,c_0_25]),c_0_30]) ).

cnf(c_0_68,plain,
    ( is_a_theorem(not(and(X1,X2)))
    | ~ is_a_theorem(implies(X2,not(X2))) ),
    inference(spm,[status(thm)],[c_0_55,c_0_54]) ).

cnf(c_0_69,plain,
    is_a_theorem(implies(and(not(X1),X1),X2)),
    inference(spm,[status(thm)],[c_0_65,c_0_52]) ).

cnf(c_0_70,plain,
    ( is_a_theorem(not(and(X1,X2)))
    | ~ is_a_theorem(implies(X2,not(X3)))
    | ~ is_a_theorem(X3) ),
    inference(spm,[status(thm)],[c_0_37,c_0_66]) ).

cnf(c_0_71,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(not(and(X3,X1)))
    | ~ is_a_theorem(or(X2,X3)) ),
    inference(spm,[status(thm)],[c_0_34,c_0_67]) ).

cnf(c_0_72,plain,
    is_a_theorem(not(and(X1,and(not(X2),X2)))),
    inference(spm,[status(thm)],[c_0_68,c_0_69]) ).

cnf(c_0_73,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(or(X2,not(X3)))
    | ~ is_a_theorem(X3) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_70,c_0_30]),c_0_25]) ).

cnf(c_0_74,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(implies(X3,X1))
    | ~ is_a_theorem(or(X2,X3)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_71,c_0_25]),c_0_30]) ).

cnf(c_0_75,plain,
    ( is_a_theorem(not(and(and(not(X1),X1),X2)))
    | ~ is_a_theorem(implies(X2,X3)) ),
    inference(spm,[status(thm)],[c_0_37,c_0_72]) ).

cnf(c_0_76,plain,
    ( is_a_theorem(implies(X1,not(not(X2))))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_73,c_0_49]) ).

cnf(c_0_77,plain,
    not(and(X1,implies(X2,X3))) = implies(X1,and(X2,not(X3))),
    inference(spm,[status(thm)],[c_0_25,c_0_25]) ).

cnf(c_0_78,plain,
    ( is_a_theorem(or(and(X1,X1),X2))
    | ~ is_a_theorem(or(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_74,c_0_46]) ).

cnf(c_0_79,plain,
    ( is_a_theorem(not(and(and(not(X1),X1),X2)))
    | ~ is_a_theorem(X3) ),
    inference(spm,[status(thm)],[c_0_75,c_0_76]) ).

cnf(c_0_80,plain,
    is_a_theorem(or(and(X1,implies(X2,X3)),and(implies(X1,and(X2,not(X3))),implies(X1,and(X2,not(X3)))))),
    inference(spm,[status(thm)],[c_0_48,c_0_77]) ).

cnf(c_0_81,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(not(and(X2,X2)))
    | ~ is_a_theorem(or(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_34,c_0_78]) ).

cnf(c_0_82,plain,
    is_a_theorem(not(and(and(not(X1),X1),X2))),
    inference(spm,[status(thm)],[c_0_79,c_0_80]) ).

cnf(c_0_83,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(not(X2)) ),
    inference(spm,[status(thm)],[c_0_81,c_0_51]) ).

cnf(c_0_84,plain,
    ( is_a_theorem(not(and(X1,X2)))
    | ~ is_a_theorem(implies(X2,and(not(X3),X3))) ),
    inference(spm,[status(thm)],[c_0_37,c_0_82]) ).

cnf(c_0_85,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(or(X1,X1)) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_83,c_0_48]),c_0_25]),c_0_30]) ).

cnf(c_0_86,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(or(X2,and(not(X3),X3))) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_84,c_0_30]),c_0_25]) ).

cnf(c_0_87,plain,
    is_a_theorem(or(implies(X1,X2),and(X1,not(X2)))),
    inference(spm,[status(thm)],[c_0_49,c_0_25]) ).

cnf(c_0_88,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(or(X1,not(X2)))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_81,c_0_66]) ).

cnf(c_0_89,plain,
    ( is_a_theorem(and(X1,X1))
    | ~ is_a_theorem(or(and(X1,X1),X1)) ),
    inference(spm,[status(thm)],[c_0_85,c_0_78]) ).

cnf(c_0_90,plain,
    is_a_theorem(implies(X1,or(not(X2),X2))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_86,c_0_87]),c_0_30]) ).

cnf(c_0_91,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(and(X2,X3))
    | ~ is_a_theorem(implies(X3,X1)) ),
    inference(spm,[status(thm)],[c_0_88,c_0_35]) ).

cnf(c_0_92,plain,
    ( is_a_theorem(and(X1,X1))
    | ~ is_a_theorem(or(X1,X1)) ),
    inference(spm,[status(thm)],[c_0_89,c_0_78]) ).

cnf(c_0_93,plain,
    ( is_a_theorem(or(or(not(X1),X1),X2))
    | ~ is_a_theorem(or(X2,X3)) ),
    inference(spm,[status(thm)],[c_0_74,c_0_90]) ).

cnf(c_0_94,plain,
    ( is_a_theorem(or(X1,not(not(X2))))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_76,c_0_30]) ).

cnf(c_0_95,plain,
    implies(X1,and(not(X2),not(X3))) = not(and(X1,or(X2,X3))),
    inference(spm,[status(thm)],[c_0_77,c_0_30]) ).

fof(c_0_96,plain,
    ! [X125,X126] :
      ( ~ op_equiv
      | equiv(X125,X126) = and(implies(X125,X126),implies(X126,X125)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])]) ).

cnf(c_0_97,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(or(X2,X2)) ),
    inference(spm,[status(thm)],[c_0_91,c_0_92]) ).

cnf(c_0_98,plain,
    ( is_a_theorem(or(or(not(X1),X1),X2))
    | ~ is_a_theorem(X3) ),
    inference(spm,[status(thm)],[c_0_93,c_0_94]) ).

cnf(c_0_99,plain,
    is_a_theorem(or(and(X1,or(X2,X3)),or(and(and(not(X2),not(X3)),X4),not(and(X4,X1))))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_33,c_0_95]),c_0_30]) ).

cnf(c_0_100,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_96]) ).

cnf(c_0_101,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[rosser_op_equiv]) ).

fof(c_0_102,plain,
    ! [X11,X12] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X11,X12))
        | X11 = X12 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])]) ).

cnf(c_0_103,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(or(X2,X2))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_97,c_0_61]) ).

cnf(c_0_104,plain,
    is_a_theorem(or(or(not(X1),X1),X2)),
    inference(spm,[status(thm)],[c_0_98,c_0_99]) ).

cnf(c_0_105,plain,
    and(implies(X1,X2),implies(X2,X1)) = equiv(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_100,c_0_101])]) ).

fof(c_0_106,negated_conjecture,
    ~ cn2,
    inference(assume_negation,[status(cth)],[luka_cn2]) ).

cnf(c_0_107,plain,
    ( X1 = X2
    | ~ substitution_of_equivalents
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_102]) ).

cnf(c_0_108,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents]) ).

cnf(c_0_109,plain,
    ( is_a_theorem(and(X1,or(not(X2),X2)))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_103,c_0_104]) ).

cnf(c_0_110,plain,
    and(implies(X1,not(X2)),or(X2,X1)) = equiv(X1,not(X2)),
    inference(spm,[status(thm)],[c_0_105,c_0_30]) ).

fof(c_0_111,plain,
    ! [X89,X90] :
      ( ( ~ cn2
        | is_a_theorem(implies(X89,implies(not(X89),X90))) )
      & ( ~ is_a_theorem(implies(esk42_0,implies(not(esk42_0),esk43_0)))
        | cn2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[cn2])])])]) ).

fof(c_0_112,negated_conjecture,
    ~ cn2,
    inference(fof_simplification,[status(thm)],[c_0_106]) ).

cnf(c_0_113,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_107,c_0_108])]) ).

cnf(c_0_114,plain,
    is_a_theorem(equiv(X1,not(not(X1)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_109,c_0_110]),c_0_58])]) ).

cnf(c_0_115,plain,
    ( cn2
    | ~ is_a_theorem(implies(esk42_0,implies(not(esk42_0),esk43_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_111]) ).

cnf(c_0_116,negated_conjecture,
    ~ cn2,
    inference(split_conjunct,[status(thm)],[c_0_112]) ).

cnf(c_0_117,plain,
    not(not(X1)) = X1,
    inference(spm,[status(thm)],[c_0_113,c_0_114]) ).

cnf(c_0_118,plain,
    ~ is_a_theorem(implies(esk42_0,implies(not(esk42_0),esk43_0))),
    inference(sr,[status(thm)],[c_0_115,c_0_116]) ).

cnf(c_0_119,plain,
    is_a_theorem(or(not(X1),or(X1,X2))),
    inference(spm,[status(thm)],[c_0_62,c_0_30]) ).

cnf(c_0_120,plain,
    or(not(X1),X2) = implies(X1,X2),
    inference(spm,[status(thm)],[c_0_30,c_0_117]) ).

cnf(c_0_121,plain,
    ~ is_a_theorem(implies(esk42_0,or(esk42_0,esk43_0))),
    inference(rw,[status(thm)],[c_0_118,c_0_30]) ).

cnf(c_0_122,plain,
    is_a_theorem(implies(X1,or(X1,X2))),
    inference(rw,[status(thm)],[c_0_119,c_0_120]) ).

cnf(c_0_123,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_121,c_0_122])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : LCL516+1 : TPTP v8.1.0. Released v3.3.0.
% 0.03/0.12  % Command  : enigmatic-eprover.py %s %d 1
% 0.12/0.33  % Computer : n015.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Sun Jul  3 20:50:47 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.19/0.44  # ENIGMATIC: Selected SinE mode:
% 0.19/0.45  # Parsing /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.19/0.45  # Filter: axfilter_auto   0 goes into file theBenchmark_axfilter_auto   0.p
% 0.19/0.45  # Filter: axfilter_auto   1 goes into file theBenchmark_axfilter_auto   1.p
% 0.19/0.45  # Filter: axfilter_auto   2 goes into file theBenchmark_axfilter_auto   2.p
% 10.78/2.78  # ENIGMATIC: Solved by autoschedule:
% 10.78/2.78  # No SInE strategy applied
% 10.78/2.78  # Trying AutoSched0 for 150 seconds
% 10.78/2.78  # AutoSched0-Mode selected heuristic G_E___208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI
% 10.78/2.78  # and selection function SelectComplexExceptUniqMaxHorn.
% 10.78/2.78  #
% 10.78/2.78  # Preprocessing time       : 0.029 s
% 10.78/2.78  # Presaturation interreduction done
% 10.78/2.78  
% 10.78/2.78  # Proof found!
% 10.78/2.78  # SZS status Theorem
% 10.78/2.78  # SZS output start CNFRefutation
% See solution above
% 10.78/2.78  # Training examples: 0 positive, 0 negative
% 10.78/2.78  
% 10.78/2.78  # -------------------------------------------------
% 10.78/2.78  # User time                : 0.152 s
% 10.78/2.78  # System time              : 0.014 s
% 10.78/2.78  # Total time               : 0.166 s
% 10.78/2.78  # Maximum resident set size: 7120 pages
% 10.78/2.78  
%------------------------------------------------------------------------------