TSTP Solution File: LCL512+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : LCL512+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 12:52:50 EDT 2022

% Result   : Theorem 0.21s 0.41s
% Output   : CNFRefutation 0.21s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   10
%            Number of leaves      :   10
% Syntax   : Number of formulae    :   41 (  22 unt;   0 def)
%            Number of atoms       :   66 (  16 equ)
%            Maximal formula atoms :    4 (   1 avg)
%            Number of connectives :   51 (  26   ~;  18   |;   2   &)
%                                         (   4 <=>;   1  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    6 (   3 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :    7 (   4 usr;   4 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :   47 (   2 sgn  16   !;   4   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(equivalence_1,axiom,
    ( equivalence_1
  <=> ! [X,Y] : is_a_theorem(implies(equiv(X,Y),implies(X,Y))) ) ).

fof(kn2,axiom,
    ( kn2
  <=> ! [P,Q] : is_a_theorem(implies(and(P,Q),P)) ) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X,Y] : equiv(X,Y) = and(implies(X,Y),implies(Y,X)) ) ).

fof(rosser_op_equiv,axiom,
    op_equiv ).

fof(rosser_kn2,axiom,
    kn2 ).

fof(hilbert_op_equiv,axiom,
    op_equiv ).

fof(hilbert_equivalence_1,conjecture,
    equivalence_1 ).

fof(subgoal_0,plain,
    equivalence_1,
    inference(strip,[],[hilbert_equivalence_1]) ).

fof(negate_0_0,plain,
    ~ equivalence_1,
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ( ~ equivalence_1
  <=> ? [X,Y] : ~ is_a_theorem(implies(equiv(X,Y),implies(X,Y))) ),
    inference(canonicalize,[],[equivalence_1]) ).

fof(normalize_0_1,plain,
    ! [X,Y] :
      ( ( ~ equivalence_1
        | is_a_theorem(implies(equiv(X,Y),implies(X,Y))) )
      & ( ~ is_a_theorem(implies(equiv(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12),implies(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12)))
        | equivalence_1 ) ),
    inference(clausify,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ( ~ is_a_theorem(implies(equiv(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12),implies(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12)))
    | equivalence_1 ),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    ~ equivalence_1,
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_4,plain,
    ( ~ kn2
  <=> ? [P,Q] : ~ is_a_theorem(implies(and(P,Q),P)) ),
    inference(canonicalize,[],[kn2]) ).

fof(normalize_0_5,plain,
    ! [P,Q] :
      ( ( ~ is_a_theorem(implies(and(skolemFOFtoCNF_P_1,skolemFOFtoCNF_Q),skolemFOFtoCNF_P_1))
        | kn2 )
      & ( ~ kn2
        | is_a_theorem(implies(and(P,Q),P)) ) ),
    inference(clausify,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ! [P,Q] :
      ( ~ kn2
      | is_a_theorem(implies(and(P,Q),P)) ),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    kn2,
    inference(canonicalize,[],[rosser_kn2]) ).

fof(normalize_0_8,plain,
    ( ~ op_equiv
    | ! [X,Y] : equiv(X,Y) = and(implies(X,Y),implies(Y,X)) ),
    inference(canonicalize,[],[op_equiv]) ).

fof(normalize_0_9,plain,
    ! [X,Y] :
      ( ~ op_equiv
      | equiv(X,Y) = and(implies(X,Y),implies(Y,X)) ),
    inference(clausify,[],[normalize_0_8]) ).

fof(normalize_0_10,plain,
    op_equiv,
    inference(canonicalize,[],[hilbert_op_equiv]) ).

cnf(refute_0_0,plain,
    ( ~ is_a_theorem(implies(equiv(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12),implies(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12)))
    | equivalence_1 ),
    inference(canonicalize,[],[normalize_0_2]) ).

cnf(refute_0_1,plain,
    ~ equivalence_1,
    inference(canonicalize,[],[normalize_0_3]) ).

cnf(refute_0_2,plain,
    ~ is_a_theorem(implies(equiv(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12),implies(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12))),
    inference(resolve,[$cnf( equivalence_1 )],[refute_0_0,refute_0_1]) ).

cnf(refute_0_3,plain,
    ( ~ kn2
    | is_a_theorem(implies(and(P,Q),P)) ),
    inference(canonicalize,[],[normalize_0_6]) ).

cnf(refute_0_4,plain,
    kn2,
    inference(canonicalize,[],[normalize_0_7]) ).

cnf(refute_0_5,plain,
    is_a_theorem(implies(and(P,Q),P)),
    inference(resolve,[$cnf( kn2 )],[refute_0_4,refute_0_3]) ).

cnf(refute_0_6,plain,
    is_a_theorem(implies(and(implies(X_5,X_6),implies(X_6,X_5)),implies(X_5,X_6))),
    inference(subst,[],[refute_0_5:[bind(P,$fot(implies(X_5,X_6))),bind(Q,$fot(implies(X_6,X_5)))]]) ).

cnf(refute_0_7,plain,
    ( ~ op_equiv
    | equiv(X,Y) = and(implies(X,Y),implies(Y,X)) ),
    inference(canonicalize,[],[normalize_0_9]) ).

cnf(refute_0_8,plain,
    op_equiv,
    inference(canonicalize,[],[normalize_0_10]) ).

cnf(refute_0_9,plain,
    equiv(X,Y) = and(implies(X,Y),implies(Y,X)),
    inference(resolve,[$cnf( op_equiv )],[refute_0_8,refute_0_7]) ).

cnf(refute_0_10,plain,
    equiv(X_5,X_6) = and(implies(X_5,X_6),implies(X_6,X_5)),
    inference(subst,[],[refute_0_9:[bind(X,$fot(X_5)),bind(Y,$fot(X_6))]]) ).

cnf(refute_0_11,plain,
    X0 = X0,
    introduced(tautology,[refl,[$fot(X0)]]) ).

cnf(refute_0_12,plain,
    ( X0 != X0
    | X0 != Y0
    | Y0 = X0 ),
    introduced(tautology,[equality,[$cnf( $equal(X0,X0) ),[0],$fot(Y0)]]) ).

cnf(refute_0_13,plain,
    ( X0 != Y0
    | Y0 = X0 ),
    inference(resolve,[$cnf( $equal(X0,X0) )],[refute_0_11,refute_0_12]) ).

cnf(refute_0_14,plain,
    ( equiv(X_5,X_6) != and(implies(X_5,X_6),implies(X_6,X_5))
    | and(implies(X_5,X_6),implies(X_6,X_5)) = equiv(X_5,X_6) ),
    inference(subst,[],[refute_0_13:[bind(X0,$fot(equiv(X_5,X_6))),bind(Y0,$fot(and(implies(X_5,X_6),implies(X_6,X_5))))]]) ).

cnf(refute_0_15,plain,
    and(implies(X_5,X_6),implies(X_6,X_5)) = equiv(X_5,X_6),
    inference(resolve,[$cnf( $equal(equiv(X_5,X_6),and(implies(X_5,X_6),implies(X_6,X_5))) )],[refute_0_10,refute_0_14]) ).

cnf(refute_0_16,plain,
    ( and(implies(X_5,X_6),implies(X_6,X_5)) != equiv(X_5,X_6)
    | ~ is_a_theorem(implies(and(implies(X_5,X_6),implies(X_6,X_5)),implies(X_5,X_6)))
    | is_a_theorem(implies(equiv(X_5,X_6),implies(X_5,X_6))) ),
    introduced(tautology,[equality,[$cnf( is_a_theorem(implies(and(implies(X_5,X_6),implies(X_6,X_5)),implies(X_5,X_6))) ),[0,0],$fot(equiv(X_5,X_6))]]) ).

cnf(refute_0_17,plain,
    ( ~ is_a_theorem(implies(and(implies(X_5,X_6),implies(X_6,X_5)),implies(X_5,X_6)))
    | is_a_theorem(implies(equiv(X_5,X_6),implies(X_5,X_6))) ),
    inference(resolve,[$cnf( $equal(and(implies(X_5,X_6),implies(X_6,X_5)),equiv(X_5,X_6)) )],[refute_0_15,refute_0_16]) ).

cnf(refute_0_18,plain,
    is_a_theorem(implies(equiv(X_5,X_6),implies(X_5,X_6))),
    inference(resolve,[$cnf( is_a_theorem(implies(and(implies(X_5,X_6),implies(X_6,X_5)),implies(X_5,X_6))) )],[refute_0_6,refute_0_17]) ).

cnf(refute_0_19,plain,
    is_a_theorem(implies(equiv(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12),implies(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12))),
    inference(subst,[],[refute_0_18:[bind(X_5,$fot(skolemFOFtoCNF_X_12)),bind(X_6,$fot(skolemFOFtoCNF_Y_12))]]) ).

cnf(refute_0_20,plain,
    $false,
    inference(resolve,[$cnf( is_a_theorem(implies(equiv(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12),implies(skolemFOFtoCNF_X_12,skolemFOFtoCNF_Y_12))) )],[refute_0_19,refute_0_2]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.13  % Problem  : LCL512+1 : TPTP v8.1.0. Released v3.3.0.
% 0.04/0.14  % Command  : metis --show proof --show saturation %s
% 0.13/0.35  % Computer : n013.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 600
% 0.13/0.35  % DateTime : Mon Jul  4 09:20:44 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 0.13/0.36  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.21/0.41  % SZS status Theorem for /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.21/0.41  
% 0.21/0.41  % SZS output start CNFRefutation for /export/starexec/sandbox2/benchmark/theBenchmark.p
% See solution above
% 0.21/0.42  
%------------------------------------------------------------------------------