TSTP Solution File: LCL498+1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : LCL498+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 06:54:24 EDT 2023

% Result   : Theorem 0.17s 0.70s
% Output   : CNFRefutation 0.17s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   20
%            Number of leaves      :  117
% Syntax   : Number of formulae    :  197 (  48 unt;  93 typ;   0 def)
%            Number of atoms       :  196 (  25 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  158 (  66   ~;  66   |;  12   &)
%                                         (   8 <=>;   6  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   10 (   6   >;   4   *;   0   +;   0  <<)
%            Number of predicates  :   35 (  33 usr;  33 prp; 0-2 aty)
%            Number of functors    :   60 (  60 usr;  55 con; 0-2 aty)
%            Number of variables   :  149 (   5 sgn;  48   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    modus_ponens: $o ).

tff(decl_23,type,
    is_a_theorem: $i > $o ).

tff(decl_24,type,
    implies: ( $i * $i ) > $i ).

tff(decl_25,type,
    substitution_of_equivalents: $o ).

tff(decl_26,type,
    equiv: ( $i * $i ) > $i ).

tff(decl_27,type,
    modus_tollens: $o ).

tff(decl_28,type,
    not: $i > $i ).

tff(decl_29,type,
    implies_1: $o ).

tff(decl_30,type,
    implies_2: $o ).

tff(decl_31,type,
    implies_3: $o ).

tff(decl_32,type,
    and_1: $o ).

tff(decl_33,type,
    and: ( $i * $i ) > $i ).

tff(decl_34,type,
    and_2: $o ).

tff(decl_35,type,
    and_3: $o ).

tff(decl_36,type,
    or_1: $o ).

tff(decl_37,type,
    or: ( $i * $i ) > $i ).

tff(decl_38,type,
    or_2: $o ).

tff(decl_39,type,
    or_3: $o ).

tff(decl_40,type,
    equivalence_1: $o ).

tff(decl_41,type,
    equivalence_2: $o ).

tff(decl_42,type,
    equivalence_3: $o ).

tff(decl_43,type,
    kn1: $o ).

tff(decl_44,type,
    kn2: $o ).

tff(decl_45,type,
    kn3: $o ).

tff(decl_46,type,
    cn1: $o ).

tff(decl_47,type,
    cn2: $o ).

tff(decl_48,type,
    cn3: $o ).

tff(decl_49,type,
    r1: $o ).

tff(decl_50,type,
    r2: $o ).

tff(decl_51,type,
    r3: $o ).

tff(decl_52,type,
    r4: $o ).

tff(decl_53,type,
    r5: $o ).

tff(decl_54,type,
    op_or: $o ).

tff(decl_55,type,
    op_and: $o ).

tff(decl_56,type,
    op_implies_and: $o ).

tff(decl_57,type,
    op_implies_or: $o ).

tff(decl_58,type,
    op_equiv: $o ).

tff(decl_59,type,
    op_implies: $o ).

tff(decl_60,type,
    esk1_0: $i ).

tff(decl_61,type,
    esk2_0: $i ).

tff(decl_62,type,
    esk3_0: $i ).

tff(decl_63,type,
    esk4_0: $i ).

tff(decl_64,type,
    esk5_0: $i ).

tff(decl_65,type,
    esk6_0: $i ).

tff(decl_66,type,
    esk7_0: $i ).

tff(decl_67,type,
    esk8_0: $i ).

tff(decl_68,type,
    esk9_0: $i ).

tff(decl_69,type,
    esk10_0: $i ).

tff(decl_70,type,
    esk11_0: $i ).

tff(decl_71,type,
    esk12_0: $i ).

tff(decl_72,type,
    esk13_0: $i ).

tff(decl_73,type,
    esk14_0: $i ).

tff(decl_74,type,
    esk15_0: $i ).

tff(decl_75,type,
    esk16_0: $i ).

tff(decl_76,type,
    esk17_0: $i ).

tff(decl_77,type,
    esk18_0: $i ).

tff(decl_78,type,
    esk19_0: $i ).

tff(decl_79,type,
    esk20_0: $i ).

tff(decl_80,type,
    esk21_0: $i ).

tff(decl_81,type,
    esk22_0: $i ).

tff(decl_82,type,
    esk23_0: $i ).

tff(decl_83,type,
    esk24_0: $i ).

tff(decl_84,type,
    esk25_0: $i ).

tff(decl_85,type,
    esk26_0: $i ).

tff(decl_86,type,
    esk27_0: $i ).

tff(decl_87,type,
    esk28_0: $i ).

tff(decl_88,type,
    esk29_0: $i ).

tff(decl_89,type,
    esk30_0: $i ).

tff(decl_90,type,
    esk31_0: $i ).

tff(decl_91,type,
    esk32_0: $i ).

tff(decl_92,type,
    esk33_0: $i ).

tff(decl_93,type,
    esk34_0: $i ).

tff(decl_94,type,
    esk35_0: $i ).

tff(decl_95,type,
    esk36_0: $i ).

tff(decl_96,type,
    esk37_0: $i ).

tff(decl_97,type,
    esk38_0: $i ).

tff(decl_98,type,
    esk39_0: $i ).

tff(decl_99,type,
    esk40_0: $i ).

tff(decl_100,type,
    esk41_0: $i ).

tff(decl_101,type,
    esk42_0: $i ).

tff(decl_102,type,
    esk43_0: $i ).

tff(decl_103,type,
    esk44_0: $i ).

tff(decl_104,type,
    esk45_0: $i ).

tff(decl_105,type,
    esk46_0: $i ).

tff(decl_106,type,
    esk47_0: $i ).

tff(decl_107,type,
    esk48_0: $i ).

tff(decl_108,type,
    esk49_0: $i ).

tff(decl_109,type,
    esk50_0: $i ).

tff(decl_110,type,
    esk51_0: $i ).

tff(decl_111,type,
    esk52_0: $i ).

tff(decl_112,type,
    esk53_0: $i ).

tff(decl_113,type,
    esk54_0: $i ).

tff(decl_114,type,
    esk55_0: $i ).

fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',modus_ponens) ).

fof(r4,axiom,
    ( r4
  <=> ! [X4,X5,X6] : is_a_theorem(implies(or(X4,or(X5,X6)),or(X5,or(X4,X6)))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',r4) ).

fof(principia_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+4.ax',principia_modus_ponens) ).

fof(principia_r4,axiom,
    r4,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+4.ax',principia_r4) ).

fof(op_implies_or,axiom,
    ( op_implies_or
   => ! [X1,X2] : implies(X1,X2) = or(not(X1),X2) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_implies_or) ).

fof(principia_op_implies_or,axiom,
    op_implies_or,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+4.ax',principia_op_implies_or) ).

fof(r2,axiom,
    ( r2
  <=> ! [X4,X5] : is_a_theorem(implies(X5,or(X4,X5))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',r2) ).

fof(r3,axiom,
    ( r3
  <=> ! [X4,X5] : is_a_theorem(implies(or(X4,X5),or(X5,X4))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',r3) ).

fof(principia_r2,axiom,
    r2,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+4.ax',principia_r2) ).

fof(principia_r3,axiom,
    r3,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+4.ax',principia_r3) ).

fof(op_and,axiom,
    ( op_and
   => ! [X1,X2] : and(X1,X2) = not(or(not(X1),not(X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_and) ).

fof(r5,axiom,
    ( r5
  <=> ! [X4,X5,X6] : is_a_theorem(implies(implies(X5,X6),implies(or(X4,X5),or(X4,X6)))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',r5) ).

fof(principia_op_and,axiom,
    op_and,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+4.ax',principia_op_and) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_or) ).

fof(principia_r5,axiom,
    r5,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+4.ax',principia_r5) ).

fof(luka_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',luka_op_or) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_equiv) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',substitution_of_equivalents) ).

fof(principia_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+4.ax',principia_op_equiv) ).

fof(r1,axiom,
    ( r1
  <=> ! [X4] : is_a_theorem(implies(or(X4,X4),X4)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',r1) ).

fof(substitution_of_equivalents_001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+4.ax',substitution_of_equivalents) ).

fof(principia_r1,axiom,
    r1,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+4.ax',principia_r1) ).

fof(cn3,axiom,
    ( cn3
  <=> ! [X4] : is_a_theorem(implies(implies(not(X4),X4),X4)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',cn3) ).

fof(luka_cn3,conjecture,
    cn3,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',luka_cn3) ).

fof(c_0_24,plain,
    ! [X7,X8] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X7)
        | ~ is_a_theorem(implies(X7,X8))
        | is_a_theorem(X8) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])]) ).

fof(c_0_25,plain,
    ! [X105,X106,X107] :
      ( ( ~ r4
        | is_a_theorem(implies(or(X105,or(X106,X107)),or(X106,or(X105,X107)))) )
      & ( ~ is_a_theorem(implies(or(esk50_0,or(esk51_0,esk52_0)),or(esk51_0,or(esk50_0,esk52_0))))
        | r4 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[r4])])])]) ).

cnf(c_0_26,plain,
    ( is_a_theorem(X2)
    | ~ modus_ponens
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_24]) ).

cnf(c_0_27,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[principia_modus_ponens]) ).

cnf(c_0_28,plain,
    ( is_a_theorem(implies(or(X1,or(X2,X3)),or(X2,or(X1,X3))))
    | ~ r4 ),
    inference(split_conjunct,[status(thm)],[c_0_25]) ).

cnf(c_0_29,plain,
    r4,
    inference(split_conjunct,[status(thm)],[principia_r4]) ).

fof(c_0_30,plain,
    ! [X123,X124] :
      ( ~ op_implies_or
      | implies(X123,X124) = or(not(X123),X124) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_or])])]) ).

cnf(c_0_31,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_26,c_0_27])]) ).

cnf(c_0_32,plain,
    is_a_theorem(implies(or(X1,or(X2,X3)),or(X2,or(X1,X3)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_28,c_0_29])]) ).

cnf(c_0_33,plain,
    ( implies(X1,X2) = or(not(X1),X2)
    | ~ op_implies_or ),
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

cnf(c_0_34,plain,
    op_implies_or,
    inference(split_conjunct,[status(thm)],[principia_op_implies_or]) ).

fof(c_0_35,plain,
    ! [X97,X98] :
      ( ( ~ r2
        | is_a_theorem(implies(X98,or(X97,X98))) )
      & ( ~ is_a_theorem(implies(esk47_0,or(esk46_0,esk47_0)))
        | r2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[r2])])])]) ).

fof(c_0_36,plain,
    ! [X101,X102] :
      ( ( ~ r3
        | is_a_theorem(implies(or(X101,X102),or(X102,X101))) )
      & ( ~ is_a_theorem(implies(or(esk48_0,esk49_0),or(esk49_0,esk48_0)))
        | r3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[r3])])])]) ).

cnf(c_0_37,plain,
    ( is_a_theorem(or(X1,or(X2,X3)))
    | ~ is_a_theorem(or(X2,or(X1,X3))) ),
    inference(spm,[status(thm)],[c_0_31,c_0_32]) ).

cnf(c_0_38,plain,
    or(not(X1),X2) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_33,c_0_34])]) ).

cnf(c_0_39,plain,
    ( is_a_theorem(implies(X1,or(X2,X1)))
    | ~ r2 ),
    inference(split_conjunct,[status(thm)],[c_0_35]) ).

cnf(c_0_40,plain,
    r2,
    inference(split_conjunct,[status(thm)],[principia_r2]) ).

cnf(c_0_41,plain,
    ( is_a_theorem(implies(or(X1,X2),or(X2,X1)))
    | ~ r3 ),
    inference(split_conjunct,[status(thm)],[c_0_36]) ).

cnf(c_0_42,plain,
    r3,
    inference(split_conjunct,[status(thm)],[principia_r3]) ).

cnf(c_0_43,plain,
    ( is_a_theorem(implies(X1,or(X2,X3)))
    | ~ is_a_theorem(or(X2,implies(X1,X3))) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_37,c_0_38]),c_0_38]) ).

cnf(c_0_44,plain,
    is_a_theorem(implies(X1,or(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_39,c_0_40])]) ).

cnf(c_0_45,plain,
    is_a_theorem(implies(or(X1,X2),or(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_41,c_0_42])]) ).

cnf(c_0_46,plain,
    ( is_a_theorem(implies(X1,implies(X2,X3)))
    | ~ is_a_theorem(implies(X2,implies(X1,X3))) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_43,c_0_38]),c_0_38]) ).

cnf(c_0_47,plain,
    is_a_theorem(implies(X1,implies(X2,X1))),
    inference(spm,[status(thm)],[c_0_44,c_0_38]) ).

cnf(c_0_48,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(or(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_31,c_0_45]) ).

cnf(c_0_49,plain,
    is_a_theorem(implies(X1,implies(X2,X2))),
    inference(spm,[status(thm)],[c_0_46,c_0_47]) ).

cnf(c_0_50,plain,
    ( is_a_theorem(or(X1,not(X2)))
    | ~ is_a_theorem(implies(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_48,c_0_38]) ).

cnf(c_0_51,plain,
    ( is_a_theorem(implies(X1,X1))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_31,c_0_49]) ).

cnf(c_0_52,plain,
    ( is_a_theorem(implies(X1,not(X2)))
    | ~ is_a_theorem(implies(X2,not(X1))) ),
    inference(spm,[status(thm)],[c_0_50,c_0_38]) ).

cnf(c_0_53,plain,
    is_a_theorem(implies(X1,X1)),
    inference(spm,[status(thm)],[c_0_51,c_0_32]) ).

fof(c_0_54,plain,
    ! [X119,X120] :
      ( ~ op_and
      | and(X119,X120) = not(or(not(X119),not(X120))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_and])])]) ).

fof(c_0_55,plain,
    ! [X111,X112,X113] :
      ( ( ~ r5
        | is_a_theorem(implies(implies(X112,X113),implies(or(X111,X112),or(X111,X113)))) )
      & ( ~ is_a_theorem(implies(implies(esk54_0,esk55_0),implies(or(esk53_0,esk54_0),or(esk53_0,esk55_0))))
        | r5 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[r5])])])]) ).

cnf(c_0_56,plain,
    is_a_theorem(implies(X1,not(not(X1)))),
    inference(spm,[status(thm)],[c_0_52,c_0_53]) ).

cnf(c_0_57,plain,
    ( and(X1,X2) = not(or(not(X1),not(X2)))
    | ~ op_and ),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

cnf(c_0_58,plain,
    op_and,
    inference(split_conjunct,[status(thm)],[principia_op_and]) ).

fof(c_0_59,plain,
    ! [X117,X118] :
      ( ~ op_or
      | or(X117,X118) = not(and(not(X117),not(X118))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])]) ).

cnf(c_0_60,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(or(X3,X1),or(X3,X2))))
    | ~ r5 ),
    inference(split_conjunct,[status(thm)],[c_0_55]) ).

cnf(c_0_61,plain,
    r5,
    inference(split_conjunct,[status(thm)],[principia_r5]) ).

cnf(c_0_62,plain,
    ( is_a_theorem(not(not(X1)))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_31,c_0_56]) ).

cnf(c_0_63,plain,
    not(implies(X1,not(X2))) = and(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_57,c_0_38]),c_0_58])]) ).

cnf(c_0_64,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_59]) ).

cnf(c_0_65,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[luka_op_or]) ).

cnf(c_0_66,plain,
    is_a_theorem(implies(X1,implies(implies(X1,X2),X2))),
    inference(spm,[status(thm)],[c_0_46,c_0_53]) ).

cnf(c_0_67,plain,
    is_a_theorem(implies(implies(X1,X2),implies(or(X3,X1),or(X3,X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_60,c_0_61])]) ).

cnf(c_0_68,plain,
    ( is_a_theorem(not(and(X1,X2)))
    | ~ is_a_theorem(implies(X1,not(X2))) ),
    inference(spm,[status(thm)],[c_0_62,c_0_63]) ).

cnf(c_0_69,plain,
    not(and(not(X1),not(X2))) = or(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_64,c_0_65])]) ).

cnf(c_0_70,plain,
    ( is_a_theorem(implies(implies(X1,X2),X2))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_31,c_0_66]) ).

fof(c_0_71,plain,
    ! [X125,X126] :
      ( ~ op_equiv
      | equiv(X125,X126) = and(implies(X125,X126),implies(X126,X125)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])]) ).

cnf(c_0_72,plain,
    ( is_a_theorem(implies(or(X1,X2),or(X1,X3)))
    | ~ is_a_theorem(implies(X2,X3)) ),
    inference(spm,[status(thm)],[c_0_31,c_0_67]) ).

cnf(c_0_73,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(implies(not(X1),not(not(X2)))) ),
    inference(spm,[status(thm)],[c_0_68,c_0_69]) ).

fof(c_0_74,plain,
    ! [X11,X12] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X11,X12))
        | X11 = X12 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])]) ).

cnf(c_0_75,plain,
    ( is_a_theorem(implies(X1,and(X2,X1)))
    | ~ is_a_theorem(X2) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52,c_0_70]),c_0_63]) ).

cnf(c_0_76,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_71]) ).

cnf(c_0_77,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[principia_op_equiv]) ).

fof(c_0_78,plain,
    ! [X95] :
      ( ( ~ r1
        | is_a_theorem(implies(or(X95,X95),X95)) )
      & ( ~ is_a_theorem(implies(or(esk45_0,esk45_0),esk45_0))
        | r1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[r1])])])]) ).

cnf(c_0_79,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(or(X1,X3))
    | ~ is_a_theorem(implies(X3,X2)) ),
    inference(spm,[status(thm)],[c_0_31,c_0_72]) ).

cnf(c_0_80,plain,
    is_a_theorem(or(X1,not(X1))),
    inference(spm,[status(thm)],[c_0_73,c_0_56]) ).

cnf(c_0_81,plain,
    ( X1 = X2
    | ~ substitution_of_equivalents
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_74]) ).

cnf(c_0_82,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents]) ).

cnf(c_0_83,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_31,c_0_75]) ).

cnf(c_0_84,plain,
    and(implies(X1,X2),implies(X2,X1)) = equiv(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_76,c_0_77])]) ).

cnf(c_0_85,plain,
    ( is_a_theorem(implies(or(X1,X1),X1))
    | ~ r1 ),
    inference(split_conjunct,[status(thm)],[c_0_78]) ).

cnf(c_0_86,plain,
    r1,
    inference(split_conjunct,[status(thm)],[principia_r1]) ).

cnf(c_0_87,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(implies(not(X1),X2)) ),
    inference(spm,[status(thm)],[c_0_79,c_0_80]) ).

cnf(c_0_88,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_81,c_0_82])]) ).

cnf(c_0_89,plain,
    ( is_a_theorem(equiv(X1,X2))
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_83,c_0_84]) ).

cnf(c_0_90,plain,
    is_a_theorem(implies(or(X1,X1),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_85,c_0_86])]) ).

cnf(c_0_91,plain,
    is_a_theorem(or(X1,not(not(not(X1))))),
    inference(spm,[status(thm)],[c_0_87,c_0_56]) ).

fof(c_0_92,plain,
    ! [X93] :
      ( ( ~ cn3
        | is_a_theorem(implies(implies(not(X93),X93),X93)) )
      & ( ~ is_a_theorem(implies(implies(not(esk44_0),esk44_0),esk44_0))
        | cn3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[cn3])])])]) ).

fof(c_0_93,negated_conjecture,
    ~ cn3,
    inference(fof_simplification,[status(thm)],[inference(assume_negation,[status(cth)],[luka_cn3])]) ).

cnf(c_0_94,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_88,c_0_89]) ).

cnf(c_0_95,plain,
    is_a_theorem(implies(implies(X1,not(X1)),not(X1))),
    inference(spm,[status(thm)],[c_0_90,c_0_38]) ).

cnf(c_0_96,plain,
    is_a_theorem(implies(not(not(X1)),X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48,c_0_91]),c_0_38]) ).

cnf(c_0_97,plain,
    ( cn3
    | ~ is_a_theorem(implies(implies(not(esk44_0),esk44_0),esk44_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_92]) ).

cnf(c_0_98,negated_conjecture,
    ~ cn3,
    inference(split_conjunct,[status(thm)],[c_0_93]) ).

cnf(c_0_99,plain,
    implies(X1,not(X1)) = not(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_94,c_0_95]),c_0_47])]) ).

cnf(c_0_100,plain,
    not(not(X1)) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_94,c_0_96]),c_0_56])]) ).

cnf(c_0_101,plain,
    ~ is_a_theorem(implies(implies(not(esk44_0),esk44_0),esk44_0)),
    inference(sr,[status(thm)],[c_0_97,c_0_98]) ).

cnf(c_0_102,plain,
    implies(not(X1),X1) = X1,
    inference(spm,[status(thm)],[c_0_99,c_0_100]) ).

cnf(c_0_103,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_101,c_0_102]),c_0_53])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.10  % Problem    : LCL498+1 : TPTP v8.1.2. Released v3.3.0.
% 0.10/0.11  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.11/0.31  % Computer : n003.cluster.edu
% 0.11/0.31  % Model    : x86_64 x86_64
% 0.11/0.31  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.31  % Memory   : 8042.1875MB
% 0.11/0.31  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.31  % CPULimit   : 300
% 0.11/0.31  % WCLimit    : 300
% 0.11/0.31  % DateTime   : Fri Aug 25 06:02:23 EDT 2023
% 0.11/0.32  % CPUTime  : 
% 0.17/0.55  start to proof: theBenchmark
% 0.17/0.70  % Version  : CSE_E---1.5
% 0.17/0.70  % Problem  : theBenchmark.p
% 0.17/0.70  % Proof found
% 0.17/0.70  % SZS status Theorem for theBenchmark.p
% 0.17/0.70  % SZS output start Proof
% See solution above
% 0.17/0.71  % Total time : 0.144000 s
% 0.17/0.71  % SZS output end Proof
% 0.17/0.71  % Total time : 0.148000 s
%------------------------------------------------------------------------------