TSTP Solution File: LCL488+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : LCL488+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 12:52:36 EDT 2022

% Result   : Theorem 0.61s 0.79s
% Output   : CNFRefutation 0.61s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   19
%            Number of leaves      :   26
% Syntax   : Number of formulae    :  121 (  60 unt;   0 def)
%            Number of atoms       :  214 (  76 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  174 (  81   ~;  71   |;   9   &)
%                                         (   8 <=>;   5  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   3 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :   12 (   9 usr;   9 prp; 0-2 aty)
%            Number of functors    :   12 (  12 usr;   8 con; 0-2 aty)
%            Number of variables   :  183 (   9 sgn  46   !;   8   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X,Y] :
        ( ( is_a_theorem(X)
          & is_a_theorem(implies(X,Y)) )
       => is_a_theorem(Y) ) ) ).

fof(and_2,axiom,
    ( and_2
  <=> ! [X,Y] : is_a_theorem(implies(and(X,Y),Y)) ) ).

fof(r2,axiom,
    ( r2
  <=> ! [P,Q] : is_a_theorem(implies(Q,or(P,Q))) ) ).

fof(r3,axiom,
    ( r3
  <=> ! [P,Q] : is_a_theorem(implies(or(P,Q),or(Q,P))) ) ).

fof(op_or,axiom,
    ( op_or
   => ! [X,Y] : or(X,Y) = not(and(not(X),not(Y))) ) ).

fof(op_and,axiom,
    ( op_and
   => ! [X,Y] : and(X,Y) = not(or(not(X),not(Y))) ) ).

fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X,Y] : implies(X,Y) = not(and(X,not(Y))) ) ).

fof(op_implies_or,axiom,
    ( op_implies_or
   => ! [X,Y] : implies(X,Y) = or(not(X),Y) ) ).

fof(principia_op_implies_or,axiom,
    op_implies_or ).

fof(principia_op_and,axiom,
    op_and ).

fof(principia_modus_ponens,axiom,
    modus_ponens ).

fof(principia_r2,axiom,
    r2 ).

fof(principia_r3,axiom,
    r3 ).

fof(hilbert_op_or,axiom,
    op_or ).

fof(hilbert_op_implies_and,axiom,
    op_implies_and ).

fof(hilbert_and_2,conjecture,
    and_2 ).

fof(subgoal_0,plain,
    and_2,
    inference(strip,[],[hilbert_and_2]) ).

fof(negate_0_0,plain,
    ~ and_2,
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ( ~ and_2
  <=> ? [X,Y] : ~ is_a_theorem(implies(and(X,Y),Y)) ),
    inference(canonicalize,[],[and_2]) ).

fof(normalize_0_1,plain,
    ! [X,Y] :
      ( ( ~ and_2
        | is_a_theorem(implies(and(X,Y),Y)) )
      & ( ~ is_a_theorem(implies(and(skolemFOFtoCNF_X_7,skolemFOFtoCNF_Y_7),skolemFOFtoCNF_Y_7))
        | and_2 ) ),
    inference(clausify,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ( ~ is_a_theorem(implies(and(skolemFOFtoCNF_X_7,skolemFOFtoCNF_Y_7),skolemFOFtoCNF_Y_7))
    | and_2 ),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    ~ and_2,
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_4,plain,
    ( ~ r2
  <=> ? [P,Q] : ~ is_a_theorem(implies(Q,or(P,Q))) ),
    inference(canonicalize,[],[r2]) ).

fof(normalize_0_5,plain,
    ! [P,Q] :
      ( ( ~ is_a_theorem(implies(skolemFOFtoCNF_Q_4,or(skolemFOFtoCNF_P_7,skolemFOFtoCNF_Q_4)))
        | r2 )
      & ( ~ r2
        | is_a_theorem(implies(Q,or(P,Q))) ) ),
    inference(clausify,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ! [P,Q] :
      ( ~ r2
      | is_a_theorem(implies(Q,or(P,Q))) ),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    r2,
    inference(canonicalize,[],[principia_r2]) ).

fof(normalize_0_8,plain,
    ( ~ op_or
    | ! [X,Y] : or(X,Y) = not(and(not(X),not(Y))) ),
    inference(canonicalize,[],[op_or]) ).

fof(normalize_0_9,plain,
    ! [X,Y] :
      ( ~ op_or
      | or(X,Y) = not(and(not(X),not(Y))) ),
    inference(clausify,[],[normalize_0_8]) ).

fof(normalize_0_10,plain,
    op_or,
    inference(canonicalize,[],[hilbert_op_or]) ).

fof(normalize_0_11,plain,
    ( ~ op_implies_and
    | ! [X,Y] : implies(X,Y) = not(and(X,not(Y))) ),
    inference(canonicalize,[],[op_implies_and]) ).

fof(normalize_0_12,plain,
    ! [X,Y] :
      ( ~ op_implies_and
      | implies(X,Y) = not(and(X,not(Y))) ),
    inference(clausify,[],[normalize_0_11]) ).

fof(normalize_0_13,plain,
    op_implies_and,
    inference(canonicalize,[],[hilbert_op_implies_and]) ).

fof(normalize_0_14,plain,
    ( ~ op_implies_or
    | ! [X,Y] : implies(X,Y) = or(not(X),Y) ),
    inference(canonicalize,[],[op_implies_or]) ).

fof(normalize_0_15,plain,
    ! [X,Y] :
      ( ~ op_implies_or
      | implies(X,Y) = or(not(X),Y) ),
    inference(clausify,[],[normalize_0_14]) ).

fof(normalize_0_16,plain,
    op_implies_or,
    inference(canonicalize,[],[principia_op_implies_or]) ).

fof(normalize_0_17,plain,
    ( ~ r3
  <=> ? [P,Q] : ~ is_a_theorem(implies(or(P,Q),or(Q,P))) ),
    inference(canonicalize,[],[r3]) ).

fof(normalize_0_18,plain,
    ! [P,Q] :
      ( ( ~ is_a_theorem(implies(or(skolemFOFtoCNF_P_8,skolemFOFtoCNF_Q_5),or(skolemFOFtoCNF_Q_5,skolemFOFtoCNF_P_8)))
        | r3 )
      & ( ~ r3
        | is_a_theorem(implies(or(P,Q),or(Q,P))) ) ),
    inference(clausify,[],[normalize_0_17]) ).

fof(normalize_0_19,plain,
    ! [P,Q] :
      ( ~ r3
      | is_a_theorem(implies(or(P,Q),or(Q,P))) ),
    inference(conjunct,[],[normalize_0_18]) ).

fof(normalize_0_20,plain,
    r3,
    inference(canonicalize,[],[principia_r3]) ).

fof(normalize_0_21,plain,
    ( ~ modus_ponens
  <=> ? [X,Y] :
        ( ~ is_a_theorem(Y)
        & is_a_theorem(X)
        & is_a_theorem(implies(X,Y)) ) ),
    inference(canonicalize,[],[modus_ponens]) ).

fof(normalize_0_22,plain,
    ! [X,Y] :
      ( ( ~ is_a_theorem(skolemFOFtoCNF_Y)
        | modus_ponens )
      & ( is_a_theorem(implies(skolemFOFtoCNF_X,skolemFOFtoCNF_Y))
        | modus_ponens )
      & ( is_a_theorem(skolemFOFtoCNF_X)
        | modus_ponens )
      & ( ~ is_a_theorem(X)
        | ~ is_a_theorem(implies(X,Y))
        | ~ modus_ponens
        | is_a_theorem(Y) ) ),
    inference(clausify,[],[normalize_0_21]) ).

fof(normalize_0_23,plain,
    ! [X,Y] :
      ( ~ is_a_theorem(X)
      | ~ is_a_theorem(implies(X,Y))
      | ~ modus_ponens
      | is_a_theorem(Y) ),
    inference(conjunct,[],[normalize_0_22]) ).

fof(normalize_0_24,plain,
    modus_ponens,
    inference(canonicalize,[],[principia_modus_ponens]) ).

fof(normalize_0_25,plain,
    ( ~ op_and
    | ! [X,Y] : and(X,Y) = not(or(not(X),not(Y))) ),
    inference(canonicalize,[],[op_and]) ).

fof(normalize_0_26,plain,
    ! [X,Y] :
      ( ~ op_and
      | and(X,Y) = not(or(not(X),not(Y))) ),
    inference(clausify,[],[normalize_0_25]) ).

fof(normalize_0_27,plain,
    op_and,
    inference(canonicalize,[],[principia_op_and]) ).

cnf(refute_0_0,plain,
    ( ~ is_a_theorem(implies(and(skolemFOFtoCNF_X_7,skolemFOFtoCNF_Y_7),skolemFOFtoCNF_Y_7))
    | and_2 ),
    inference(canonicalize,[],[normalize_0_2]) ).

cnf(refute_0_1,plain,
    ~ and_2,
    inference(canonicalize,[],[normalize_0_3]) ).

cnf(refute_0_2,plain,
    ~ is_a_theorem(implies(and(skolemFOFtoCNF_X_7,skolemFOFtoCNF_Y_7),skolemFOFtoCNF_Y_7)),
    inference(resolve,[$cnf( and_2 )],[refute_0_0,refute_0_1]) ).

cnf(refute_0_3,plain,
    ( ~ r2
    | is_a_theorem(implies(Q,or(P,Q))) ),
    inference(canonicalize,[],[normalize_0_6]) ).

cnf(refute_0_4,plain,
    r2,
    inference(canonicalize,[],[normalize_0_7]) ).

cnf(refute_0_5,plain,
    is_a_theorem(implies(Q,or(P,Q))),
    inference(resolve,[$cnf( r2 )],[refute_0_4,refute_0_3]) ).

cnf(refute_0_6,plain,
    is_a_theorem(implies(not(X_9),or(P,not(X_9)))),
    inference(subst,[],[refute_0_5:[bind(Q,$fot(not(X_9)))]]) ).

cnf(refute_0_7,plain,
    ( ~ op_or
    | or(X,Y) = not(and(not(X),not(Y))) ),
    inference(canonicalize,[],[normalize_0_9]) ).

cnf(refute_0_8,plain,
    op_or,
    inference(canonicalize,[],[normalize_0_10]) ).

cnf(refute_0_9,plain,
    or(X,Y) = not(and(not(X),not(Y))),
    inference(resolve,[$cnf( op_or )],[refute_0_8,refute_0_7]) ).

cnf(refute_0_10,plain,
    ( ~ op_implies_and
    | implies(X,Y) = not(and(X,not(Y))) ),
    inference(canonicalize,[],[normalize_0_12]) ).

cnf(refute_0_11,plain,
    op_implies_and,
    inference(canonicalize,[],[normalize_0_13]) ).

cnf(refute_0_12,plain,
    implies(X,Y) = not(and(X,not(Y))),
    inference(resolve,[$cnf( op_implies_and )],[refute_0_11,refute_0_10]) ).

cnf(refute_0_13,plain,
    X0 = X0,
    introduced(tautology,[refl,[$fot(X0)]]) ).

cnf(refute_0_14,plain,
    ( X0 != X0
    | X0 != Y0
    | Y0 = X0 ),
    introduced(tautology,[equality,[$cnf( $equal(X0,X0) ),[0],$fot(Y0)]]) ).

cnf(refute_0_15,plain,
    ( X0 != Y0
    | Y0 = X0 ),
    inference(resolve,[$cnf( $equal(X0,X0) )],[refute_0_13,refute_0_14]) ).

cnf(refute_0_16,plain,
    ( implies(X,Y) != not(and(X,not(Y)))
    | not(and(X,not(Y))) = implies(X,Y) ),
    inference(subst,[],[refute_0_15:[bind(X0,$fot(implies(X,Y))),bind(Y0,$fot(not(and(X,not(Y)))))]]) ).

cnf(refute_0_17,plain,
    not(and(X,not(Y))) = implies(X,Y),
    inference(resolve,[$cnf( $equal(implies(X,Y),not(and(X,not(Y)))) )],[refute_0_12,refute_0_16]) ).

cnf(refute_0_18,plain,
    not(and(not(X),not(Y))) = implies(not(X),Y),
    inference(subst,[],[refute_0_17:[bind(X,$fot(not(X)))]]) ).

cnf(refute_0_19,plain,
    ( not(and(not(X),not(Y))) != implies(not(X),Y)
    | or(X,Y) != not(and(not(X),not(Y)))
    | or(X,Y) = implies(not(X),Y) ),
    introduced(tautology,[equality,[$cnf( $equal(or(X,Y),not(and(not(X),not(Y)))) ),[1],$fot(implies(not(X),Y))]]) ).

cnf(refute_0_20,plain,
    ( or(X,Y) != not(and(not(X),not(Y)))
    | or(X,Y) = implies(not(X),Y) ),
    inference(resolve,[$cnf( $equal(not(and(not(X),not(Y))),implies(not(X),Y)) )],[refute_0_18,refute_0_19]) ).

cnf(refute_0_21,plain,
    or(X,Y) = implies(not(X),Y),
    inference(resolve,[$cnf( $equal(or(X,Y),not(and(not(X),not(Y)))) )],[refute_0_9,refute_0_20]) ).

cnf(refute_0_22,plain,
    or(X_9,or(P,not(X_9))) = implies(not(X_9),or(P,not(X_9))),
    inference(subst,[],[refute_0_21:[bind(X,$fot(X_9)),bind(Y,$fot(or(P,not(X_9))))]]) ).

cnf(refute_0_23,plain,
    ( or(X_9,or(P,not(X_9))) != implies(not(X_9),or(P,not(X_9)))
    | implies(not(X_9),or(P,not(X_9))) = or(X_9,or(P,not(X_9))) ),
    inference(subst,[],[refute_0_15:[bind(X0,$fot(or(X_9,or(P,not(X_9))))),bind(Y0,$fot(implies(not(X_9),or(P,not(X_9)))))]]) ).

cnf(refute_0_24,plain,
    implies(not(X_9),or(P,not(X_9))) = or(X_9,or(P,not(X_9))),
    inference(resolve,[$cnf( $equal(or(X_9,or(P,not(X_9))),implies(not(X_9),or(P,not(X_9)))) )],[refute_0_22,refute_0_23]) ).

cnf(refute_0_25,plain,
    ( implies(not(X_9),or(P,not(X_9))) != or(X_9,or(P,not(X_9)))
    | ~ is_a_theorem(implies(not(X_9),or(P,not(X_9))))
    | is_a_theorem(or(X_9,or(P,not(X_9)))) ),
    introduced(tautology,[equality,[$cnf( is_a_theorem(implies(not(X_9),or(P,not(X_9)))) ),[0],$fot(or(X_9,or(P,not(X_9))))]]) ).

cnf(refute_0_26,plain,
    ( ~ is_a_theorem(implies(not(X_9),or(P,not(X_9))))
    | is_a_theorem(or(X_9,or(P,not(X_9)))) ),
    inference(resolve,[$cnf( $equal(implies(not(X_9),or(P,not(X_9))),or(X_9,or(P,not(X_9)))) )],[refute_0_24,refute_0_25]) ).

cnf(refute_0_27,plain,
    is_a_theorem(or(X_9,or(P,not(X_9)))),
    inference(resolve,[$cnf( is_a_theorem(implies(not(X_9),or(P,not(X_9)))) )],[refute_0_6,refute_0_26]) ).

cnf(refute_0_28,plain,
    is_a_theorem(or(X_9,or(not(X_17),not(X_9)))),
    inference(subst,[],[refute_0_27:[bind(P,$fot(not(X_17)))]]) ).

cnf(refute_0_29,plain,
    ( ~ op_implies_or
    | implies(X,Y) = or(not(X),Y) ),
    inference(canonicalize,[],[normalize_0_15]) ).

cnf(refute_0_30,plain,
    op_implies_or,
    inference(canonicalize,[],[normalize_0_16]) ).

cnf(refute_0_31,plain,
    implies(X,Y) = or(not(X),Y),
    inference(resolve,[$cnf( op_implies_or )],[refute_0_30,refute_0_29]) ).

cnf(refute_0_32,plain,
    implies(X_17,not(X_9)) = or(not(X_17),not(X_9)),
    inference(subst,[],[refute_0_31:[bind(X,$fot(X_17)),bind(Y,$fot(not(X_9)))]]) ).

cnf(refute_0_33,plain,
    ( implies(X_17,not(X_9)) != or(not(X_17),not(X_9))
    | or(not(X_17),not(X_9)) = implies(X_17,not(X_9)) ),
    inference(subst,[],[refute_0_15:[bind(X0,$fot(implies(X_17,not(X_9)))),bind(Y0,$fot(or(not(X_17),not(X_9))))]]) ).

cnf(refute_0_34,plain,
    or(not(X_17),not(X_9)) = implies(X_17,not(X_9)),
    inference(resolve,[$cnf( $equal(implies(X_17,not(X_9)),or(not(X_17),not(X_9))) )],[refute_0_32,refute_0_33]) ).

cnf(refute_0_35,plain,
    ( or(not(X_17),not(X_9)) != implies(X_17,not(X_9))
    | ~ is_a_theorem(or(X_9,or(not(X_17),not(X_9))))
    | is_a_theorem(or(X_9,implies(X_17,not(X_9)))) ),
    introduced(tautology,[equality,[$cnf( is_a_theorem(or(X_9,or(not(X_17),not(X_9)))) ),[0,1],$fot(implies(X_17,not(X_9)))]]) ).

cnf(refute_0_36,plain,
    ( ~ is_a_theorem(or(X_9,or(not(X_17),not(X_9))))
    | is_a_theorem(or(X_9,implies(X_17,not(X_9)))) ),
    inference(resolve,[$cnf( $equal(or(not(X_17),not(X_9)),implies(X_17,not(X_9))) )],[refute_0_34,refute_0_35]) ).

cnf(refute_0_37,plain,
    is_a_theorem(or(X_9,implies(X_17,not(X_9)))),
    inference(resolve,[$cnf( is_a_theorem(or(X_9,or(not(X_17),not(X_9)))) )],[refute_0_28,refute_0_36]) ).

cnf(refute_0_38,plain,
    is_a_theorem(or(X_259,implies(X_17,not(X_259)))),
    inference(subst,[],[refute_0_37:[bind(X_9,$fot(X_259))]]) ).

cnf(refute_0_39,plain,
    ( ~ r3
    | is_a_theorem(implies(or(P,Q),or(Q,P))) ),
    inference(canonicalize,[],[normalize_0_19]) ).

cnf(refute_0_40,plain,
    r3,
    inference(canonicalize,[],[normalize_0_20]) ).

cnf(refute_0_41,plain,
    is_a_theorem(implies(or(P,Q),or(Q,P))),
    inference(resolve,[$cnf( r3 )],[refute_0_40,refute_0_39]) ).

cnf(refute_0_42,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | ~ modus_ponens
    | is_a_theorem(Y) ),
    inference(canonicalize,[],[normalize_0_23]) ).

cnf(refute_0_43,plain,
    modus_ponens,
    inference(canonicalize,[],[normalize_0_24]) ).

cnf(refute_0_44,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | is_a_theorem(Y) ),
    inference(resolve,[$cnf( modus_ponens )],[refute_0_43,refute_0_42]) ).

cnf(refute_0_45,plain,
    ( ~ is_a_theorem(implies(or(P,Q),or(Q,P)))
    | ~ is_a_theorem(or(P,Q))
    | is_a_theorem(or(Q,P)) ),
    inference(subst,[],[refute_0_44:[bind(X,$fot(or(P,Q))),bind(Y,$fot(or(Q,P)))]]) ).

cnf(refute_0_46,plain,
    ( ~ is_a_theorem(or(P,Q))
    | is_a_theorem(or(Q,P)) ),
    inference(resolve,[$cnf( is_a_theorem(implies(or(P,Q),or(Q,P))) )],[refute_0_41,refute_0_45]) ).

cnf(refute_0_47,plain,
    ( ~ is_a_theorem(or(X_259,implies(X_17,not(X_259))))
    | is_a_theorem(or(implies(X_17,not(X_259)),X_259)) ),
    inference(subst,[],[refute_0_46:[bind(P,$fot(X_259)),bind(Q,$fot(implies(X_17,not(X_259))))]]) ).

cnf(refute_0_48,plain,
    is_a_theorem(or(implies(X_17,not(X_259)),X_259)),
    inference(resolve,[$cnf( is_a_theorem(or(X_259,implies(X_17,not(X_259)))) )],[refute_0_38,refute_0_47]) ).

cnf(refute_0_49,plain,
    or(implies(X_13,not(X_14)),Y) = implies(not(implies(X_13,not(X_14))),Y),
    inference(subst,[],[refute_0_21:[bind(X,$fot(implies(X_13,not(X_14))))]]) ).

cnf(refute_0_50,plain,
    ( ~ op_and
    | and(X,Y) = not(or(not(X),not(Y))) ),
    inference(canonicalize,[],[normalize_0_26]) ).

cnf(refute_0_51,plain,
    op_and,
    inference(canonicalize,[],[normalize_0_27]) ).

cnf(refute_0_52,plain,
    and(X,Y) = not(or(not(X),not(Y))),
    inference(resolve,[$cnf( op_and )],[refute_0_51,refute_0_50]) ).

cnf(refute_0_53,plain,
    ( implies(X,Y) != or(not(X),Y)
    | or(not(X),Y) = implies(X,Y) ),
    inference(subst,[],[refute_0_15:[bind(X0,$fot(implies(X,Y))),bind(Y0,$fot(or(not(X),Y)))]]) ).

cnf(refute_0_54,plain,
    or(not(X),Y) = implies(X,Y),
    inference(resolve,[$cnf( $equal(implies(X,Y),or(not(X),Y)) )],[refute_0_31,refute_0_53]) ).

cnf(refute_0_55,plain,
    or(not(X),not(Y)) = implies(X,not(Y)),
    inference(subst,[],[refute_0_54:[bind(Y,$fot(not(Y)))]]) ).

cnf(refute_0_56,plain,
    not(or(not(X),not(Y))) = not(or(not(X),not(Y))),
    introduced(tautology,[refl,[$fot(not(or(not(X),not(Y))))]]) ).

cnf(refute_0_57,plain,
    ( not(or(not(X),not(Y))) != not(or(not(X),not(Y)))
    | or(not(X),not(Y)) != implies(X,not(Y))
    | not(or(not(X),not(Y))) = not(implies(X,not(Y))) ),
    introduced(tautology,[equality,[$cnf( $equal(not(or(not(X),not(Y))),not(or(not(X),not(Y)))) ),[1,0],$fot(implies(X,not(Y)))]]) ).

cnf(refute_0_58,plain,
    ( or(not(X),not(Y)) != implies(X,not(Y))
    | not(or(not(X),not(Y))) = not(implies(X,not(Y))) ),
    inference(resolve,[$cnf( $equal(not(or(not(X),not(Y))),not(or(not(X),not(Y)))) )],[refute_0_56,refute_0_57]) ).

cnf(refute_0_59,plain,
    not(or(not(X),not(Y))) = not(implies(X,not(Y))),
    inference(resolve,[$cnf( $equal(or(not(X),not(Y)),implies(X,not(Y))) )],[refute_0_55,refute_0_58]) ).

cnf(refute_0_60,plain,
    ( and(X,Y) != not(or(not(X),not(Y)))
    | not(or(not(X),not(Y))) != not(implies(X,not(Y)))
    | and(X,Y) = not(implies(X,not(Y))) ),
    introduced(tautology,[equality,[$cnf( ~ $equal(and(X,Y),not(implies(X,not(Y)))) ),[0],$fot(not(or(not(X),not(Y))))]]) ).

cnf(refute_0_61,plain,
    ( and(X,Y) != not(or(not(X),not(Y)))
    | and(X,Y) = not(implies(X,not(Y))) ),
    inference(resolve,[$cnf( $equal(not(or(not(X),not(Y))),not(implies(X,not(Y)))) )],[refute_0_59,refute_0_60]) ).

cnf(refute_0_62,plain,
    and(X,Y) = not(implies(X,not(Y))),
    inference(resolve,[$cnf( $equal(and(X,Y),not(or(not(X),not(Y)))) )],[refute_0_52,refute_0_61]) ).

cnf(refute_0_63,plain,
    and(X_13,X_14) = not(implies(X_13,not(X_14))),
    inference(subst,[],[refute_0_62:[bind(X,$fot(X_13)),bind(Y,$fot(X_14))]]) ).

cnf(refute_0_64,plain,
    ( and(X_13,X_14) != not(implies(X_13,not(X_14)))
    | not(implies(X_13,not(X_14))) = and(X_13,X_14) ),
    inference(subst,[],[refute_0_15:[bind(X0,$fot(and(X_13,X_14))),bind(Y0,$fot(not(implies(X_13,not(X_14)))))]]) ).

cnf(refute_0_65,plain,
    not(implies(X_13,not(X_14))) = and(X_13,X_14),
    inference(resolve,[$cnf( $equal(and(X_13,X_14),not(implies(X_13,not(X_14)))) )],[refute_0_63,refute_0_64]) ).

cnf(refute_0_66,plain,
    ( not(implies(X_13,not(X_14))) != and(X_13,X_14)
    | or(implies(X_13,not(X_14)),Y) != implies(not(implies(X_13,not(X_14))),Y)
    | or(implies(X_13,not(X_14)),Y) = implies(and(X_13,X_14),Y) ),
    introduced(tautology,[equality,[$cnf( $equal(or(implies(X_13,not(X_14)),Y),implies(not(implies(X_13,not(X_14))),Y)) ),[1,0],$fot(and(X_13,X_14))]]) ).

cnf(refute_0_67,plain,
    ( or(implies(X_13,not(X_14)),Y) != implies(not(implies(X_13,not(X_14))),Y)
    | or(implies(X_13,not(X_14)),Y) = implies(and(X_13,X_14),Y) ),
    inference(resolve,[$cnf( $equal(not(implies(X_13,not(X_14))),and(X_13,X_14)) )],[refute_0_65,refute_0_66]) ).

cnf(refute_0_68,plain,
    or(implies(X_13,not(X_14)),Y) = implies(and(X_13,X_14),Y),
    inference(resolve,[$cnf( $equal(or(implies(X_13,not(X_14)),Y),implies(not(implies(X_13,not(X_14))),Y)) )],[refute_0_49,refute_0_67]) ).

cnf(refute_0_69,plain,
    or(implies(X_17,not(X_259)),X_259) = implies(and(X_17,X_259),X_259),
    inference(subst,[],[refute_0_68:[bind(Y,$fot(X_259)),bind(X_13,$fot(X_17)),bind(X_14,$fot(X_259))]]) ).

cnf(refute_0_70,plain,
    ( or(implies(X_17,not(X_259)),X_259) != implies(and(X_17,X_259),X_259)
    | ~ is_a_theorem(or(implies(X_17,not(X_259)),X_259))
    | is_a_theorem(implies(and(X_17,X_259),X_259)) ),
    introduced(tautology,[equality,[$cnf( is_a_theorem(or(implies(X_17,not(X_259)),X_259)) ),[0],$fot(implies(and(X_17,X_259),X_259))]]) ).

cnf(refute_0_71,plain,
    ( ~ is_a_theorem(or(implies(X_17,not(X_259)),X_259))
    | is_a_theorem(implies(and(X_17,X_259),X_259)) ),
    inference(resolve,[$cnf( $equal(or(implies(X_17,not(X_259)),X_259),implies(and(X_17,X_259),X_259)) )],[refute_0_69,refute_0_70]) ).

cnf(refute_0_72,plain,
    is_a_theorem(implies(and(X_17,X_259),X_259)),
    inference(resolve,[$cnf( is_a_theorem(or(implies(X_17,not(X_259)),X_259)) )],[refute_0_48,refute_0_71]) ).

cnf(refute_0_73,plain,
    is_a_theorem(implies(and(skolemFOFtoCNF_X_7,skolemFOFtoCNF_Y_7),skolemFOFtoCNF_Y_7)),
    inference(subst,[],[refute_0_72:[bind(X_17,$fot(skolemFOFtoCNF_X_7)),bind(X_259,$fot(skolemFOFtoCNF_Y_7))]]) ).

cnf(refute_0_74,plain,
    $false,
    inference(resolve,[$cnf( is_a_theorem(implies(and(skolemFOFtoCNF_X_7,skolemFOFtoCNF_Y_7),skolemFOFtoCNF_Y_7)) )],[refute_0_73,refute_0_2]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : LCL488+1 : TPTP v8.1.0. Released v3.3.0.
% 0.07/0.12  % Command  : metis --show proof --show saturation %s
% 0.13/0.33  % Computer : n006.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 600
% 0.13/0.33  % DateTime : Sun Jul  3 04:53:37 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.13/0.34  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.61/0.79  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.61/0.79  
% 0.61/0.79  % SZS output start CNFRefutation for /export/starexec/sandbox/benchmark/theBenchmark.p
% See solution above
% 0.61/0.80  
%------------------------------------------------------------------------------