TSTP Solution File: LCL463+1 by Enigma---0.5.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Enigma---0.5.1
% Problem  : LCL463+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : enigmatic-eprover.py %s %d 1

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 09:26:13 EDT 2022

% Result   : Theorem 216.83s 29.21s
% Output   : CNFRefutation 216.83s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   25
%            Number of leaves      :   18
% Syntax   : Number of formulae    :  112 (  45 unt;   0 def)
%            Number of atoms       :  223 (  29 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  202 (  91   ~;  90   |;  10   &)
%                                         (   6 <=>;   5  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :   12 (  10 usr;  10 prp; 0-2 aty)
%            Number of functors    :   17 (  17 usr;  12 con; 0-2 aty)
%            Number of variables   :  198 (  25 sgn  36   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',modus_ponens) ).

fof(cn1,axiom,
    ( cn1
  <=> ! [X4,X5,X6] : is_a_theorem(implies(implies(X4,X5),implies(implies(X5,X6),implies(X4,X6)))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',cn1) ).

fof(luka_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+3.ax',luka_modus_ponens) ).

fof(luka_cn1,axiom,
    cn1,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+3.ax',luka_cn1) ).

fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_implies_and) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_or) ).

fof(hilbert_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',hilbert_op_implies_and) ).

fof(cn3,axiom,
    ( cn3
  <=> ! [X4] : is_a_theorem(implies(implies(not(X4),X4),X4)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',cn3) ).

fof(luka_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+3.ax',luka_op_or) ).

fof(luka_cn3,axiom,
    cn3,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+3.ax',luka_cn3) ).

fof(cn2,axiom,
    ( cn2
  <=> ! [X4,X5] : is_a_theorem(implies(X4,implies(not(X4),X5))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',cn2) ).

fof(luka_cn2,axiom,
    cn2,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+3.ax',luka_cn2) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+1.ax',op_equiv) ).

fof(luka_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+3.ax',luka_op_equiv) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',substitution_of_equivalents) ).

fof(substitution_of_equivalents_001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+3.ax',substitution_of_equivalents) ).

fof(hilbert_implies_1,conjecture,
    implies_1,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',hilbert_implies_1) ).

fof(implies_1,axiom,
    ( implies_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,X1))) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/LCL006+0.ax',implies_1) ).

fof(c_0_18,plain,
    ! [X7,X8] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X7)
        | ~ is_a_theorem(implies(X7,X8))
        | is_a_theorem(X8) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])]) ).

fof(c_0_19,plain,
    ! [X83,X84,X85] :
      ( ( ~ cn1
        | is_a_theorem(implies(implies(X83,X84),implies(implies(X84,X85),implies(X83,X85)))) )
      & ( ~ is_a_theorem(implies(implies(esk39_0,esk40_0),implies(implies(esk40_0,esk41_0),implies(esk39_0,esk41_0))))
        | cn1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[cn1])])])]) ).

cnf(c_0_20,plain,
    ( is_a_theorem(X2)
    | ~ modus_ponens
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

cnf(c_0_21,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[luka_modus_ponens]) ).

cnf(c_0_22,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(implies(X2,X3),implies(X1,X3))))
    | ~ cn1 ),
    inference(split_conjunct,[status(thm)],[c_0_19]) ).

cnf(c_0_23,plain,
    cn1,
    inference(split_conjunct,[status(thm)],[luka_cn1]) ).

fof(c_0_24,plain,
    ! [X121,X122] :
      ( ~ op_implies_and
      | implies(X121,X122) = not(and(X121,not(X122))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])]) ).

cnf(c_0_25,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_20,c_0_21])]) ).

cnf(c_0_26,plain,
    is_a_theorem(implies(implies(X1,X2),implies(implies(X2,X3),implies(X1,X3)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_22,c_0_23])]) ).

fof(c_0_27,plain,
    ! [X117,X118] :
      ( ~ op_or
      | or(X117,X118) = not(and(not(X117),not(X118))) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])]) ).

cnf(c_0_28,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_24]) ).

cnf(c_0_29,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[hilbert_op_implies_and]) ).

fof(c_0_30,plain,
    ! [X93] :
      ( ( ~ cn3
        | is_a_theorem(implies(implies(not(X93),X93),X93)) )
      & ( ~ is_a_theorem(implies(implies(not(esk44_0),esk44_0),esk44_0))
        | cn3 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[cn3])])])]) ).

cnf(c_0_31,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(X3,X2)))
    | ~ is_a_theorem(implies(X3,X1)) ),
    inference(spm,[status(thm)],[c_0_25,c_0_26]) ).

cnf(c_0_32,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_27]) ).

cnf(c_0_33,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_28,c_0_29])]) ).

cnf(c_0_34,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[luka_op_or]) ).

cnf(c_0_35,plain,
    ( is_a_theorem(implies(implies(not(X1),X1),X1))
    | ~ cn3 ),
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

cnf(c_0_36,plain,
    cn3,
    inference(split_conjunct,[status(thm)],[luka_cn3]) ).

fof(c_0_37,plain,
    ! [X89,X90] :
      ( ( ~ cn2
        | is_a_theorem(implies(X89,implies(not(X89),X90))) )
      & ( ~ is_a_theorem(implies(esk42_0,implies(not(esk42_0),esk43_0)))
        | cn2 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[cn2])])])]) ).

cnf(c_0_38,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X3,X2))
    | ~ is_a_theorem(implies(X1,X3)) ),
    inference(spm,[status(thm)],[c_0_25,c_0_31]) ).

cnf(c_0_39,plain,
    implies(not(X1),X2) = or(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_32,c_0_33]),c_0_34])]) ).

cnf(c_0_40,plain,
    is_a_theorem(implies(implies(not(X1),X1),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_35,c_0_36])]) ).

cnf(c_0_41,plain,
    ( is_a_theorem(implies(X1,implies(not(X1),X2)))
    | ~ cn2 ),
    inference(split_conjunct,[status(thm)],[c_0_37]) ).

cnf(c_0_42,plain,
    cn2,
    inference(split_conjunct,[status(thm)],[luka_cn2]) ).

cnf(c_0_43,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X1,not(X3)))
    | ~ is_a_theorem(or(X3,X2)) ),
    inference(spm,[status(thm)],[c_0_38,c_0_39]) ).

cnf(c_0_44,plain,
    is_a_theorem(implies(or(X1,X1),X1)),
    inference(rw,[status(thm)],[c_0_40,c_0_39]) ).

cnf(c_0_45,plain,
    is_a_theorem(implies(X1,implies(not(X1),X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_41,c_0_42])]) ).

cnf(c_0_46,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(or(X1,not(X3)))
    | ~ is_a_theorem(or(X3,X2)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_43,c_0_39]),c_0_39]) ).

cnf(c_0_47,plain,
    or(and(X1,not(X2)),X3) = implies(implies(X1,X2),X3),
    inference(spm,[status(thm)],[c_0_39,c_0_33]) ).

cnf(c_0_48,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X1,or(X2,X2))) ),
    inference(spm,[status(thm)],[c_0_38,c_0_44]) ).

cnf(c_0_49,plain,
    ( is_a_theorem(implies(implies(X1,X2),or(X3,X2)))
    | ~ is_a_theorem(or(X3,X1)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_31,c_0_39]),c_0_39]) ).

cnf(c_0_50,plain,
    is_a_theorem(implies(X1,or(X1,X2))),
    inference(rw,[status(thm)],[c_0_45,c_0_39]) ).

cnf(c_0_51,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(or(X1,implies(X3,X4)))
    | ~ is_a_theorem(implies(implies(X3,X4),X2)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_46,c_0_33]),c_0_47]) ).

cnf(c_0_52,plain,
    ( is_a_theorem(implies(implies(X1,X2),X2))
    | ~ is_a_theorem(or(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_48,c_0_49]) ).

cnf(c_0_53,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_25,c_0_50]) ).

cnf(c_0_54,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(or(X1,or(X3,X4)))
    | ~ is_a_theorem(implies(or(X3,X4),X2)) ),
    inference(spm,[status(thm)],[c_0_51,c_0_39]) ).

cnf(c_0_55,plain,
    is_a_theorem(or(X1,or(not(X1),X2))),
    inference(spm,[status(thm)],[c_0_50,c_0_39]) ).

cnf(c_0_56,plain,
    ( is_a_theorem(implies(implies(X1,X2),X2))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_52,c_0_53]) ).

cnf(c_0_57,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(implies(or(not(X1),X3),X2)) ),
    inference(spm,[status(thm)],[c_0_54,c_0_55]) ).

cnf(c_0_58,plain,
    ( is_a_theorem(implies(or(X1,X2),X2))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_56,c_0_39]) ).

cnf(c_0_59,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_57,c_0_58]) ).

cnf(c_0_60,plain,
    ( is_a_theorem(implies(implies(X1,X2),X2))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_52,c_0_59]) ).

cnf(c_0_61,plain,
    ( is_a_theorem(implies(implies(X1,or(X2,X2)),X2))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_48,c_0_60]) ).

fof(c_0_62,plain,
    ! [X125,X126] :
      ( ~ op_equiv
      | equiv(X125,X126) = and(implies(X125,X126),implies(X126,X125)) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])]) ).

cnf(c_0_63,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,or(X1,X1)))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_25,c_0_61]) ).

cnf(c_0_64,plain,
    ( is_a_theorem(implies(X1,or(X2,X3)))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_38,c_0_50]) ).

cnf(c_0_65,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_62]) ).

cnf(c_0_66,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[luka_op_equiv]) ).

cnf(c_0_67,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(or(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_63,c_0_49]) ).

cnf(c_0_68,plain,
    ( is_a_theorem(or(X1,or(X2,X3)))
    | ~ is_a_theorem(or(X1,X2)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64,c_0_39]),c_0_39]) ).

cnf(c_0_69,plain,
    not(and(X1,implies(X2,X3))) = implies(X1,and(X2,not(X3))),
    inference(spm,[status(thm)],[c_0_33,c_0_33]) ).

cnf(c_0_70,plain,
    and(implies(X1,X2),implies(X2,X1)) = equiv(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_65,c_0_66])]) ).

fof(c_0_71,plain,
    ! [X11,X12] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X11,X12))
        | X11 = X12 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])]) ).

cnf(c_0_72,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(or(X2,X3),X1))
    | ~ is_a_theorem(or(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_67,c_0_68]) ).

cnf(c_0_73,plain,
    ( is_a_theorem(implies(or(X1,X2),X2))
    | ~ is_a_theorem(not(X1)) ),
    inference(spm,[status(thm)],[c_0_60,c_0_39]) ).

cnf(c_0_74,plain,
    implies(implies(X1,X2),and(X2,not(X1))) = not(equiv(X1,X2)),
    inference(spm,[status(thm)],[c_0_69,c_0_70]) ).

cnf(c_0_75,plain,
    ( is_a_theorem(implies(X1,or(X2,X3)))
    | ~ is_a_theorem(implies(X1,X4))
    | ~ is_a_theorem(implies(X4,X2)) ),
    inference(spm,[status(thm)],[c_0_38,c_0_64]) ).

cnf(c_0_76,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(implies(X3,X1))
    | ~ is_a_theorem(X3) ),
    inference(spm,[status(thm)],[c_0_25,c_0_64]) ).

cnf(c_0_77,plain,
    ( X1 = X2
    | ~ substitution_of_equivalents
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_71]) ).

cnf(c_0_78,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents]) ).

cnf(c_0_79,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(not(X2)) ),
    inference(spm,[status(thm)],[c_0_72,c_0_73]) ).

cnf(c_0_80,plain,
    ( is_a_theorem(or(equiv(X1,X2),and(X2,not(X1))))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_60,c_0_74]),c_0_39]) ).

cnf(c_0_81,plain,
    ( is_a_theorem(implies(X1,or(X2,X3)))
    | ~ is_a_theorem(implies(or(X1,X4),X2)) ),
    inference(spm,[status(thm)],[c_0_75,c_0_50]) ).

cnf(c_0_82,plain,
    is_a_theorem(implies(or(or(X1,X1),or(X1,X1)),X1)),
    inference(spm,[status(thm)],[c_0_48,c_0_44]) ).

cnf(c_0_83,plain,
    ( is_a_theorem(or(implies(X1,X2),X3))
    | ~ is_a_theorem(implies(X4,X2))
    | ~ is_a_theorem(implies(X1,X4)) ),
    inference(spm,[status(thm)],[c_0_76,c_0_31]) ).

cnf(c_0_84,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_77,c_0_78])]) ).

cnf(c_0_85,plain,
    ( is_a_theorem(equiv(X1,X2))
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_79,c_0_80]),c_0_33]) ).

cnf(c_0_86,plain,
    ( is_a_theorem(implies(X1,or(X2,X3)))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_81,c_0_58]) ).

cnf(c_0_87,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X1,or(or(X2,X2),or(X2,X2)))) ),
    inference(spm,[status(thm)],[c_0_38,c_0_82]) ).

cnf(c_0_88,plain,
    ( is_a_theorem(or(implies(X1,X2),X3))
    | ~ is_a_theorem(implies(X1,or(X2,X2))) ),
    inference(spm,[status(thm)],[c_0_83,c_0_44]) ).

cnf(c_0_89,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_84,c_0_85]) ).

cnf(c_0_90,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_48,c_0_86]) ).

cnf(c_0_91,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(or(X2,X2)) ),
    inference(spm,[status(thm)],[c_0_87,c_0_86]) ).

cnf(c_0_92,plain,
    is_a_theorem(or(implies(X1,X1),X2)),
    inference(spm,[status(thm)],[c_0_88,c_0_50]) ).

cnf(c_0_93,plain,
    ( implies(X1,X2) = X2
    | ~ is_a_theorem(implies(X2,implies(X1,X2)))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_89,c_0_60]) ).

cnf(c_0_94,plain,
    is_a_theorem(implies(or(X1,X2),implies(implies(X2,X3),or(X1,X3)))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_26,c_0_39]),c_0_39]) ).

cnf(c_0_95,plain,
    is_a_theorem(implies(X1,X1)),
    inference(spm,[status(thm)],[c_0_48,c_0_50]) ).

cnf(c_0_96,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_89,c_0_90]) ).

cnf(c_0_97,plain,
    is_a_theorem(implies(X1,implies(X2,X2))),
    inference(spm,[status(thm)],[c_0_91,c_0_92]) ).

fof(c_0_98,negated_conjecture,
    ~ implies_1,
    inference(assume_negation,[status(cth)],[hilbert_implies_1]) ).

cnf(c_0_99,plain,
    implies(implies(X1,X1),or(X2,X1)) = or(X2,X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_93,c_0_94]),c_0_95])]) ).

cnf(c_0_100,plain,
    or(X1,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_89,c_0_44]),c_0_50])]) ).

cnf(c_0_101,plain,
    ( X1 = implies(X2,X2)
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_96,c_0_97]) ).

fof(c_0_102,plain,
    ! [X19,X20] :
      ( ( ~ implies_1
        | is_a_theorem(implies(X19,implies(X20,X19))) )
      & ( ~ is_a_theorem(implies(esk7_0,implies(esk8_0,esk7_0)))
        | implies_1 ) ),
    inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_1])])])]) ).

fof(c_0_103,negated_conjecture,
    ~ implies_1,
    inference(fof_simplification,[status(thm)],[c_0_98]) ).

cnf(c_0_104,plain,
    implies(implies(X1,X1),X1) = X1,
    inference(spm,[status(thm)],[c_0_99,c_0_100]) ).

cnf(c_0_105,plain,
    implies(X1,X1) = implies(X2,X2),
    inference(spm,[status(thm)],[c_0_101,c_0_95]) ).

cnf(c_0_106,plain,
    ( implies_1
    | ~ is_a_theorem(implies(esk7_0,implies(esk8_0,esk7_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_102]) ).

cnf(c_0_107,negated_conjecture,
    ~ implies_1,
    inference(split_conjunct,[status(thm)],[c_0_103]) ).

cnf(c_0_108,plain,
    implies(implies(X1,X1),X2) = X2,
    inference(spm,[status(thm)],[c_0_104,c_0_105]) ).

cnf(c_0_109,plain,
    ~ is_a_theorem(implies(esk7_0,implies(esk8_0,esk7_0))),
    inference(sr,[status(thm)],[c_0_106,c_0_107]) ).

cnf(c_0_110,plain,
    is_a_theorem(implies(X1,implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_31,c_0_108]),c_0_97])]) ).

cnf(c_0_111,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_109,c_0_110])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : LCL463+1 : TPTP v8.1.0. Released v3.3.0.
% 0.07/0.14  % Command  : enigmatic-eprover.py %s %d 1
% 0.13/0.35  % Computer : n007.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 600
% 0.13/0.35  % DateTime : Mon Jul  4 17:54:43 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 0.20/0.47  # ENIGMATIC: Selected SinE mode:
% 0.20/0.48  # Parsing /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.20/0.48  # Filter: axfilter_auto   0 goes into file theBenchmark_axfilter_auto   0.p
% 0.20/0.48  # Filter: axfilter_auto   1 goes into file theBenchmark_axfilter_auto   1.p
% 0.20/0.48  # Filter: axfilter_auto   2 goes into file theBenchmark_axfilter_auto   2.p
% 216.83/29.21  # ENIGMATIC: Solved by autoschedule:
% 216.83/29.21  # No SInE strategy applied
% 216.83/29.21  # Trying AutoSched0 for 150 seconds
% 216.83/29.21  # AutoSched0-Mode selected heuristic G_E___208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI
% 216.83/29.21  # and selection function SelectComplexExceptUniqMaxHorn.
% 216.83/29.21  #
% 216.83/29.21  # Preprocessing time       : 0.030 s
% 216.83/29.21  # Presaturation interreduction done
% 216.83/29.21  
% 216.83/29.21  # Proof found!
% 216.83/29.21  # SZS status Theorem
% 216.83/29.21  # SZS output start CNFRefutation
% See solution above
% 216.83/29.21  # Training examples: 0 positive, 0 negative
% 216.83/29.21  
% 216.83/29.21  # -------------------------------------------------
% 216.83/29.21  # User time                : 25.353 s
% 216.83/29.21  # System time              : 0.904 s
% 216.83/29.21  # Total time               : 26.257 s
% 216.83/29.21  # Maximum resident set size: 7120 pages
% 216.83/29.21  
%------------------------------------------------------------------------------