TSTP Solution File: LCL459+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : LCL459+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n008.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 12:52:27 EDT 2022

% Result   : Theorem 0.19s 0.53s
% Output   : CNFRefutation 0.19s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   11
%            Number of leaves      :    8
% Syntax   : Number of formulae    :   45 (  21 unt;   0 def)
%            Number of atoms       :   93 (   0 equ)
%            Maximal formula atoms :   10 (   2 avg)
%            Number of connectives :   88 (  40   ~;  30   |;   9   &)
%                                         (   8 <=>;   1  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   3 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :    6 (   5 usr;   5 prp; 0-1 aty)
%            Number of functors    :    9 (   9 usr;   7 con; 0-2 aty)
%            Number of variables   :   46 (   0 sgn  20   !;   7   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X,Y] :
        ( ( is_a_theorem(X)
          & is_a_theorem(implies(X,Y)) )
       => is_a_theorem(Y) ) ) ).

fof(implies_2,axiom,
    ( implies_2
  <=> ! [X,Y] : is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) ) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X,Y] : is_a_theorem(implies(X,implies(Y,and(X,Y)))) ) ).

fof(kn1,axiom,
    ( kn1
  <=> ! [P] : is_a_theorem(implies(P,and(P,P))) ) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens ).

fof(hilbert_implies_2,axiom,
    implies_2 ).

fof(hilbert_and_3,axiom,
    and_3 ).

fof(rosser_kn1,conjecture,
    kn1 ).

fof(subgoal_0,plain,
    kn1,
    inference(strip,[],[rosser_kn1]) ).

fof(negate_0_0,plain,
    ~ kn1,
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ( ~ kn1
  <=> ? [P] : ~ is_a_theorem(implies(P,and(P,P))) ),
    inference(canonicalize,[],[kn1]) ).

fof(normalize_0_1,plain,
    ! [P] :
      ( ( ~ is_a_theorem(implies(skolemFOFtoCNF_P,and(skolemFOFtoCNF_P,skolemFOFtoCNF_P)))
        | kn1 )
      & ( ~ kn1
        | is_a_theorem(implies(P,and(P,P))) ) ),
    inference(clausify,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ( ~ is_a_theorem(implies(skolemFOFtoCNF_P,and(skolemFOFtoCNF_P,skolemFOFtoCNF_P)))
    | kn1 ),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    ~ kn1,
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_4,plain,
    ( ~ and_3
  <=> ? [X,Y] : ~ is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(canonicalize,[],[and_3]) ).

fof(normalize_0_5,plain,
    ! [X,Y] :
      ( ( ~ and_3
        | is_a_theorem(implies(X,implies(Y,and(X,Y)))) )
      & ( ~ is_a_theorem(implies(skolemFOFtoCNF_X_8,implies(skolemFOFtoCNF_Y_8,and(skolemFOFtoCNF_X_8,skolemFOFtoCNF_Y_8))))
        | and_3 ) ),
    inference(clausify,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ! [X,Y] :
      ( ~ and_3
      | is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    and_3,
    inference(canonicalize,[],[hilbert_and_3]) ).

fof(normalize_0_8,plain,
    ( ~ implies_2
  <=> ? [X,Y] : ~ is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) ),
    inference(canonicalize,[],[implies_2]) ).

fof(normalize_0_9,plain,
    ! [X,Y] :
      ( ( ~ implies_2
        | is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) )
      & ( ~ is_a_theorem(implies(implies(skolemFOFtoCNF_X_4,implies(skolemFOFtoCNF_X_4,skolemFOFtoCNF_Y_4)),implies(skolemFOFtoCNF_X_4,skolemFOFtoCNF_Y_4)))
        | implies_2 ) ),
    inference(clausify,[],[normalize_0_8]) ).

fof(normalize_0_10,plain,
    ! [X,Y] :
      ( ~ implies_2
      | is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) ),
    inference(conjunct,[],[normalize_0_9]) ).

fof(normalize_0_11,plain,
    implies_2,
    inference(canonicalize,[],[hilbert_implies_2]) ).

fof(normalize_0_12,plain,
    ( ~ modus_ponens
  <=> ? [X,Y] :
        ( ~ is_a_theorem(Y)
        & is_a_theorem(X)
        & is_a_theorem(implies(X,Y)) ) ),
    inference(canonicalize,[],[modus_ponens]) ).

fof(normalize_0_13,plain,
    ! [X,Y] :
      ( ( ~ is_a_theorem(skolemFOFtoCNF_Y)
        | modus_ponens )
      & ( is_a_theorem(implies(skolemFOFtoCNF_X,skolemFOFtoCNF_Y))
        | modus_ponens )
      & ( is_a_theorem(skolemFOFtoCNF_X)
        | modus_ponens )
      & ( ~ is_a_theorem(X)
        | ~ is_a_theorem(implies(X,Y))
        | ~ modus_ponens
        | is_a_theorem(Y) ) ),
    inference(clausify,[],[normalize_0_12]) ).

fof(normalize_0_14,plain,
    ! [X,Y] :
      ( ~ is_a_theorem(X)
      | ~ is_a_theorem(implies(X,Y))
      | ~ modus_ponens
      | is_a_theorem(Y) ),
    inference(conjunct,[],[normalize_0_13]) ).

fof(normalize_0_15,plain,
    modus_ponens,
    inference(canonicalize,[],[hilbert_modus_ponens]) ).

cnf(refute_0_0,plain,
    ( ~ is_a_theorem(implies(skolemFOFtoCNF_P,and(skolemFOFtoCNF_P,skolemFOFtoCNF_P)))
    | kn1 ),
    inference(canonicalize,[],[normalize_0_2]) ).

cnf(refute_0_1,plain,
    ~ kn1,
    inference(canonicalize,[],[normalize_0_3]) ).

cnf(refute_0_2,plain,
    ~ is_a_theorem(implies(skolemFOFtoCNF_P,and(skolemFOFtoCNF_P,skolemFOFtoCNF_P))),
    inference(resolve,[$cnf( kn1 )],[refute_0_0,refute_0_1]) ).

cnf(refute_0_3,plain,
    ( ~ and_3
    | is_a_theorem(implies(X,implies(Y,and(X,Y)))) ),
    inference(canonicalize,[],[normalize_0_6]) ).

cnf(refute_0_4,plain,
    and_3,
    inference(canonicalize,[],[normalize_0_7]) ).

cnf(refute_0_5,plain,
    is_a_theorem(implies(X,implies(Y,and(X,Y)))),
    inference(resolve,[$cnf( and_3 )],[refute_0_4,refute_0_3]) ).

cnf(refute_0_6,plain,
    is_a_theorem(implies(X_315,implies(X_315,and(X_315,X_315)))),
    inference(subst,[],[refute_0_5:[bind(X,$fot(X_315)),bind(Y,$fot(X_315))]]) ).

cnf(refute_0_7,plain,
    ( ~ implies_2
    | is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) ),
    inference(canonicalize,[],[normalize_0_10]) ).

cnf(refute_0_8,plain,
    implies_2,
    inference(canonicalize,[],[normalize_0_11]) ).

cnf(refute_0_9,plain,
    is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))),
    inference(resolve,[$cnf( implies_2 )],[refute_0_8,refute_0_7]) ).

cnf(refute_0_10,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | ~ modus_ponens
    | is_a_theorem(Y) ),
    inference(canonicalize,[],[normalize_0_14]) ).

cnf(refute_0_11,plain,
    modus_ponens,
    inference(canonicalize,[],[normalize_0_15]) ).

cnf(refute_0_12,plain,
    ( ~ is_a_theorem(X)
    | ~ is_a_theorem(implies(X,Y))
    | is_a_theorem(Y) ),
    inference(resolve,[$cnf( modus_ponens )],[refute_0_11,refute_0_10]) ).

cnf(refute_0_13,plain,
    ( ~ is_a_theorem(implies(X,implies(X,Y)))
    | ~ is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y)))
    | is_a_theorem(implies(X,Y)) ),
    inference(subst,[],[refute_0_12:[bind(X,$fot(implies(X,implies(X,Y)))),bind(Y,$fot(implies(X,Y)))]]) ).

cnf(refute_0_14,plain,
    ( ~ is_a_theorem(implies(X,implies(X,Y)))
    | is_a_theorem(implies(X,Y)) ),
    inference(resolve,[$cnf( is_a_theorem(implies(implies(X,implies(X,Y)),implies(X,Y))) )],[refute_0_9,refute_0_13]) ).

cnf(refute_0_15,plain,
    ( ~ is_a_theorem(implies(X_315,implies(X_315,and(X_315,X_315))))
    | is_a_theorem(implies(X_315,and(X_315,X_315))) ),
    inference(subst,[],[refute_0_14:[bind(X,$fot(X_315)),bind(Y,$fot(and(X_315,X_315)))]]) ).

cnf(refute_0_16,plain,
    is_a_theorem(implies(X_315,and(X_315,X_315))),
    inference(resolve,[$cnf( is_a_theorem(implies(X_315,implies(X_315,and(X_315,X_315)))) )],[refute_0_6,refute_0_15]) ).

cnf(refute_0_17,plain,
    is_a_theorem(implies(skolemFOFtoCNF_P,and(skolemFOFtoCNF_P,skolemFOFtoCNF_P))),
    inference(subst,[],[refute_0_16:[bind(X_315,$fot(skolemFOFtoCNF_P))]]) ).

cnf(refute_0_18,plain,
    $false,
    inference(resolve,[$cnf( is_a_theorem(implies(skolemFOFtoCNF_P,and(skolemFOFtoCNF_P,skolemFOFtoCNF_P))) )],[refute_0_17,refute_0_2]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : LCL459+1 : TPTP v8.1.0. Released v3.3.0.
% 0.07/0.13  % Command  : metis --show proof --show saturation %s
% 0.12/0.34  % Computer : n008.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 600
% 0.12/0.34  % DateTime : Sat Jul  2 16:44:08 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.12/0.34  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.19/0.53  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.19/0.53  
% 0.19/0.53  % SZS output start CNFRefutation for /export/starexec/sandbox/benchmark/theBenchmark.p
% See solution above
% 0.19/0.53  
%------------------------------------------------------------------------------