TSTP Solution File: LCL456+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : LCL456+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 08:19:04 EDT 2023

% Result   : Theorem 0.19s 0.51s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : LCL456+1 : TPTP v8.1.2. Released v3.3.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n006.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Fri Aug 25 01:19:22 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.19/0.51  Command-line arguments: --lhs-weight 9 --flip-ordering --complete-subsets --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.19/0.51  
% 0.19/0.51  % SZS status Theorem
% 0.19/0.51  
% 0.19/0.51  % SZS output start Proof
% 0.19/0.51  Take the following subset of the input axioms:
% 0.19/0.51    fof(hilbert_modus_tollens, axiom, modus_tollens).
% 0.19/0.51    fof(hilbert_op_implies_and, axiom, op_implies_and).
% 0.19/0.51    fof(hilbert_op_or, axiom, op_or).
% 0.19/0.51    fof(modus_tollens, axiom, modus_tollens <=> ![X, Y]: is_a_theorem(implies(implies(not(Y), not(X)), implies(X, Y)))).
% 0.19/0.51    fof(op_and, axiom, op_and => ![X2, Y2]: and(X2, Y2)=not(or(not(X2), not(Y2)))).
% 0.19/0.51    fof(op_implies_and, axiom, op_implies_and => ![X2, Y2]: implies(X2, Y2)=not(and(X2, not(Y2)))).
% 0.19/0.51    fof(op_implies_or, axiom, op_implies_or => ![X2, Y2]: implies(X2, Y2)=or(not(X2), Y2)).
% 0.19/0.51    fof(op_or, axiom, op_or => ![X2, Y2]: or(X2, Y2)=not(and(not(X2), not(Y2)))).
% 0.19/0.51    fof(principia_op_and, axiom, op_and).
% 0.19/0.51    fof(principia_op_implies_or, axiom, op_implies_or).
% 0.19/0.51    fof(principia_r3, conjecture, r3).
% 0.19/0.51    fof(r3, axiom, r3 <=> ![P, Q]: is_a_theorem(implies(or(P, Q), or(Q, P)))).
% 0.19/0.51  
% 0.19/0.51  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.19/0.51  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.19/0.51  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.19/0.51    fresh(y, y, x1...xn) = u
% 0.19/0.51    C => fresh(s, t, x1...xn) = v
% 0.19/0.51  where fresh is a fresh function symbol and x1..xn are the free
% 0.19/0.51  variables of u and v.
% 0.19/0.51  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.19/0.51  input problem has no model of domain size 1).
% 0.19/0.51  
% 0.19/0.51  The encoding turns the above axioms into the following unit equations and goals:
% 0.19/0.51  
% 0.19/0.51  Axiom 1 (hilbert_modus_tollens): modus_tollens = true.
% 0.19/0.51  Axiom 2 (hilbert_op_or): op_or = true.
% 0.19/0.51  Axiom 3 (principia_op_and): op_and = true.
% 0.19/0.51  Axiom 4 (hilbert_op_implies_and): op_implies_and = true.
% 0.19/0.51  Axiom 5 (principia_op_implies_or): op_implies_or = true.
% 0.19/0.51  Axiom 6 (r3): fresh9(X, X) = true.
% 0.19/0.51  Axiom 7 (modus_tollens_1): fresh25(X, X, Y, Z) = true.
% 0.19/0.51  Axiom 8 (op_and): fresh24(X, X, Y, Z) = and(Y, Z).
% 0.19/0.51  Axiom 9 (op_implies_and): fresh22(X, X, Y, Z) = implies(Y, Z).
% 0.19/0.51  Axiom 10 (op_implies_and): fresh22(op_implies_and, true, X, Y) = not(and(X, not(Y))).
% 0.19/0.51  Axiom 11 (op_implies_or): fresh21(X, X, Y, Z) = implies(Y, Z).
% 0.19/0.51  Axiom 12 (op_implies_or): fresh21(op_implies_or, true, X, Y) = or(not(X), Y).
% 0.19/0.51  Axiom 13 (op_or): fresh20(X, X, Y, Z) = or(Y, Z).
% 0.19/0.51  Axiom 14 (op_and): fresh24(op_and, true, X, Y) = not(or(not(X), not(Y))).
% 0.19/0.51  Axiom 15 (op_or): fresh20(op_or, true, X, Y) = not(and(not(X), not(Y))).
% 0.19/0.51  Axiom 16 (modus_tollens_1): fresh25(modus_tollens, true, X, Y) = is_a_theorem(implies(implies(not(Y), not(X)), implies(X, Y))).
% 0.19/0.51  Axiom 17 (r3): fresh9(is_a_theorem(implies(or(p3, q3), or(q3, p3))), true) = r3.
% 0.19/0.51  
% 0.19/0.51  Lemma 18: not(and(X, not(Y))) = implies(X, Y).
% 0.19/0.51  Proof:
% 0.19/0.51    not(and(X, not(Y)))
% 0.19/0.51  = { by axiom 10 (op_implies_and) R->L }
% 0.19/0.51    fresh22(op_implies_and, true, X, Y)
% 0.19/0.51  = { by axiom 4 (hilbert_op_implies_and) }
% 0.19/0.51    fresh22(true, true, X, Y)
% 0.19/0.51  = { by axiom 9 (op_implies_and) }
% 0.19/0.51    implies(X, Y)
% 0.19/0.51  
% 0.19/0.51  Lemma 19: implies(not(X), Y) = or(X, Y).
% 0.19/0.51  Proof:
% 0.19/0.51    implies(not(X), Y)
% 0.19/0.51  = { by lemma 18 R->L }
% 0.19/0.51    not(and(not(X), not(Y)))
% 0.19/0.51  = { by axiom 15 (op_or) R->L }
% 0.19/0.51    fresh20(op_or, true, X, Y)
% 0.19/0.51  = { by axiom 2 (hilbert_op_or) }
% 0.19/0.51    fresh20(true, true, X, Y)
% 0.19/0.51  = { by axiom 13 (op_or) }
% 0.19/0.51    or(X, Y)
% 0.19/0.51  
% 0.19/0.51  Lemma 20: or(not(X), Y) = implies(X, Y).
% 0.19/0.51  Proof:
% 0.19/0.51    or(not(X), Y)
% 0.19/0.51  = { by axiom 12 (op_implies_or) R->L }
% 0.19/0.51    fresh21(op_implies_or, true, X, Y)
% 0.19/0.51  = { by axiom 5 (principia_op_implies_or) }
% 0.19/0.51    fresh21(true, true, X, Y)
% 0.19/0.51  = { by axiom 11 (op_implies_or) }
% 0.19/0.51    implies(X, Y)
% 0.19/0.51  
% 0.19/0.51  Goal 1 (principia_r3): r3 = true.
% 0.19/0.51  Proof:
% 0.19/0.51    r3
% 0.19/0.51  = { by axiom 17 (r3) R->L }
% 0.19/0.51    fresh9(is_a_theorem(implies(or(p3, q3), or(q3, p3))), true)
% 0.19/0.51  = { by lemma 19 R->L }
% 0.19/0.51    fresh9(is_a_theorem(implies(or(p3, q3), implies(not(q3), p3))), true)
% 0.19/0.51  = { by lemma 19 R->L }
% 0.19/0.51    fresh9(is_a_theorem(implies(implies(not(p3), q3), implies(not(q3), p3))), true)
% 0.19/0.51  = { by lemma 18 R->L }
% 0.19/0.51    fresh9(is_a_theorem(implies(not(and(not(p3), not(q3))), implies(not(q3), p3))), true)
% 0.19/0.51  = { by lemma 19 }
% 0.19/0.51    fresh9(is_a_theorem(or(and(not(p3), not(q3)), implies(not(q3), p3))), true)
% 0.19/0.51  = { by axiom 8 (op_and) R->L }
% 0.19/0.52    fresh9(is_a_theorem(or(fresh24(true, true, not(p3), not(q3)), implies(not(q3), p3))), true)
% 0.19/0.52  = { by axiom 3 (principia_op_and) R->L }
% 0.19/0.52    fresh9(is_a_theorem(or(fresh24(op_and, true, not(p3), not(q3)), implies(not(q3), p3))), true)
% 0.19/0.52  = { by axiom 14 (op_and) }
% 0.19/0.52    fresh9(is_a_theorem(or(not(or(not(not(p3)), not(not(q3)))), implies(not(q3), p3))), true)
% 0.19/0.52  = { by lemma 20 }
% 0.19/0.52    fresh9(is_a_theorem(or(not(implies(not(p3), not(not(q3)))), implies(not(q3), p3))), true)
% 0.19/0.52  = { by lemma 19 }
% 0.19/0.52    fresh9(is_a_theorem(or(not(or(p3, not(not(q3)))), implies(not(q3), p3))), true)
% 0.19/0.52  = { by lemma 20 }
% 0.19/0.52    fresh9(is_a_theorem(implies(or(p3, not(not(q3))), implies(not(q3), p3))), true)
% 0.19/0.52  = { by lemma 19 R->L }
% 0.19/0.52    fresh9(is_a_theorem(implies(implies(not(p3), not(not(q3))), implies(not(q3), p3))), true)
% 0.19/0.52  = { by axiom 16 (modus_tollens_1) R->L }
% 0.19/0.52    fresh9(fresh25(modus_tollens, true, not(q3), p3), true)
% 0.19/0.52  = { by axiom 1 (hilbert_modus_tollens) }
% 0.19/0.52    fresh9(fresh25(true, true, not(q3), p3), true)
% 0.19/0.52  = { by axiom 7 (modus_tollens_1) }
% 0.19/0.52    fresh9(true, true)
% 0.19/0.52  = { by axiom 6 (r3) }
% 0.19/0.52    true
% 0.19/0.52  % SZS output end Proof
% 0.19/0.52  
% 0.19/0.52  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------