TSTP Solution File: LCL153-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : LCL153-1 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n008.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:03:42 EDT 2022

% Result   : Unsatisfiable 1.70s 1.91s
% Output   : Refutation 1.70s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :   11
% Syntax   : Number of clauses     :   49 (  49 unt;   0 nHn;   6 RR)
%            Number of literals    :   49 (  48 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   3 con; 0-2 aty)
%            Number of variables   :   63 (   5 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    not(x) != xor(x,truth),
    file('LCL153-1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('LCL153-1.p',unknown),
    [] ).

cnf(4,axiom,
    implies(truth,A) = A,
    file('LCL153-1.p',unknown),
    [] ).

cnf(5,axiom,
    implies(implies(A,B),implies(implies(B,C),implies(A,C))) = truth,
    file('LCL153-1.p',unknown),
    [] ).

cnf(7,axiom,
    implies(implies(A,B),B) = implies(implies(B,A),A),
    file('LCL153-1.p',unknown),
    [] ).

cnf(8,axiom,
    implies(implies(not(A),not(B)),implies(B,A)) = truth,
    file('LCL153-1.p',unknown),
    [] ).

cnf(10,axiom,
    or(A,B) = implies(not(A),B),
    file('LCL153-1.p',unknown),
    [] ).

cnf(13,axiom,
    or(A,B) = or(B,A),
    file('LCL153-1.p',unknown),
    [] ).

cnf(14,axiom,
    and(A,B) = not(or(not(A),not(B))),
    file('LCL153-1.p',unknown),
    [] ).

cnf(15,plain,
    not(or(not(A),not(B))) = and(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[14])]),
    [iquote('copy,14,flip.1')] ).

cnf(20,axiom,
    xor(A,B) = or(and(A,not(B)),and(not(A),B)),
    file('LCL153-1.p',unknown),
    [] ).

cnf(26,axiom,
    not(truth) = falsehood,
    file('LCL153-1.p',unknown),
    [] ).

cnf(27,plain,
    implies(not(A),B) = or(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10])]),
    [iquote('copy,10,flip.1')] ).

cnf(28,plain,
    or(and(A,not(B)),and(not(A),B)) = xor(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[20])]),
    [iquote('copy,20,flip.1')] ).

cnf(31,plain,
    implies(A,implies(implies(A,B),B)) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[5,4]),4]),
    [iquote('para_into,5.1.1.1,3.1.1,demod,4')] ).

cnf(35,plain,
    implies(implies(A,truth),implies(B,implies(A,B))) = truth,
    inference(para_into,[status(thm),theory(equality)],[5,4]),
    [iquote('para_into,5.1.1.2.1,3.1.1')] ).

cnf(41,plain,
    or(A,B) = implies(not(B),A),
    inference(para_into,[status(thm),theory(equality)],[10,13]),
    [iquote('para_into,10.1.1,13.1.1')] ).

cnf(42,plain,
    implies(not(A),B) = or(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[41])]),
    [iquote('copy,41,flip.1')] ).

cnf(43,plain,
    or(truth,A) = implies(falsehood,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[27,26])]),
    [iquote('para_into,27.1.1.1,25.1.1,flip.1')] ).

cnf(57,plain,
    implies(implies(A,truth),truth) = implies(A,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[7,4])]),
    [iquote('para_into,7.1.1.1,3.1.1,flip.1')] ).

cnf(67,plain,
    or(A,truth) = implies(falsehood,A),
    inference(para_into,[status(thm),theory(equality)],[43,13]),
    [iquote('para_into,43.1.1,13.1.1')] ).

cnf(69,plain,
    implies(not(A),truth) = implies(falsehood,A),
    inference(para_into,[status(thm),theory(equality)],[67,10]),
    [iquote('para_into,67.1.1,10.1.1')] ).

cnf(82,plain,
    implies(implies(not(A),falsehood),A) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,26]),4]),
    [iquote('para_into,8.1.1.1.2,25.1.1,demod,4')] ).

cnf(118,plain,
    implies(implies(falsehood,falsehood),truth) = truth,
    inference(para_into,[status(thm),theory(equality)],[82,26]),
    [iquote('para_into,82.1.1.1.1,25.1.1')] ).

cnf(120,plain,
    implies(or(falsehood,A),A) = truth,
    inference(para_into,[status(thm),theory(equality)],[82,42]),
    [iquote('para_into,82.1.1.1,42.1.1')] ).

cnf(138,plain,
    implies(implies(implies(falsehood,falsehood),A),implies(A,A)) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[118,5]),57]),
    [iquote('para_from,118.1.1,5.1.1.2.2,demod,57')] ).

cnf(146,plain,
    implies(implies(not(falsehood),A),A) = truth,
    inference(para_into,[status(thm),theory(equality)],[120,10]),
    [iquote('para_into,120.1.1.1,10.1.1')] ).

cnf(193,plain,
    implies(implies(A,implies(not(falsehood),A)),implies(not(falsehood),A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[146,7]),4])]),
    [iquote('para_from,146.1.1,7.1.1.1,demod,4,flip.1')] ).

cnf(206,plain,
    implies(A,A) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[31,4]),4]),
    [iquote('para_into,31.1.1.2.1,3.1.1,demod,4')] ).

cnf(214,plain,
    implies(A,truth) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[138]),206,4,206]),
    [iquote('back_demod,138,demod,206,4,206')] ).

cnf(218,plain,
    implies(falsehood,A) = truth,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[69]),214])]),
    [iquote('back_demod,69,demod,214,flip.1')] ).

cnf(220,plain,
    implies(A,implies(B,A)) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[35]),214,4]),
    [iquote('back_demod,35,demod,214,4')] ).

cnf(222,plain,
    or(A,truth) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[67]),218]),
    [iquote('back_demod,67,demod,218')] ).

cnf(225,plain,
    implies(not(falsehood),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[193]),220,4]),
    [iquote('back_demod,193,demod,220,4')] ).

cnf(241,plain,
    not(or(not(A),falsehood)) = and(A,truth),
    inference(para_into,[status(thm),theory(equality)],[15,26]),
    [iquote('para_into,15.1.1.1.2,25.1.1')] ).

cnf(260,plain,
    implies(implies(A,falsehood),falsehood) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[218,7]),4])]),
    [iquote('para_from,217.1.1,7.1.1.1,demod,4,flip.1')] ).

cnf(264,plain,
    not(falsehood) = truth,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[225,206])]),
    [iquote('para_into,225.1.1,205.1.1,flip.1')] ).

cnf(267,plain,
    or(A,falsehood) = A,
    inference(para_into,[status(thm),theory(equality)],[225,42]),
    [iquote('para_into,225.1.1,42.1.1')] ).

cnf(270,plain,
    not(not(A)) = and(A,truth),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[241]),267]),
    [iquote('back_demod,241,demod,267')] ).

cnf(279,plain,
    and(A,falsehood) = falsehood,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[264,15]),222,26])]),
    [iquote('para_from,264.1.1,15.1.1.1.2,demod,222,26,flip.1')] ).

cnf(284,plain,
    implies(not(A),falsehood) = A,
    inference(para_into,[status(thm),theory(equality)],[267,10]),
    [iquote('para_into,266.1.1,10.1.1')] ).

cnf(315,plain,
    or(and(not(A),B),and(A,not(B))) = xor(A,B),
    inference(para_into,[status(thm),theory(equality)],[28,13]),
    [iquote('para_into,28.1.1,13.1.1')] ).

cnf(323,plain,
    xor(A,B) = or(and(not(A),B),and(A,not(B))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[315])]),
    [iquote('copy,315,flip.1')] ).

cnf(349,plain,
    not(A) = implies(A,falsehood),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[284,7]),218,4])]),
    [iquote('para_from,284.1.1,7.1.1.1,demod,218,4,flip.1')] ).

cnf(373,plain,
    xor(A,B) = or(and(implies(A,falsehood),B),and(A,implies(B,falsehood))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[323]),349,349]),
    [iquote('back_demod,323,demod,349,349')] ).

cnf(402,plain,
    and(A,truth) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[270]),349,349,260])]),
    [iquote('back_demod,270,demod,349,349,260,flip.1')] ).

cnf(452,plain,
    or(A,B) = implies(implies(B,falsehood),A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[42]),349])]),
    [iquote('back_demod,42,demod,349,flip.1')] ).

cnf(455,plain,
    implies(x,falsehood) != implies(x,falsehood),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),349,373,402,4,279,452,206,4]),
    [iquote('back_demod,1,demod,349,373,402,4,279,452,206,4')] ).

cnf(456,plain,
    $false,
    inference(binary,[status(thm)],[455,2]),
    [iquote('binary,455.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.12  % Problem  : LCL153-1 : TPTP v8.1.0. Released v1.0.0.
% 0.12/0.13  % Command  : otter-tptp-script %s
% 0.12/0.34  % Computer : n008.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Wed Jul 27 09:26:23 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 1.70/1.90  ----- Otter 3.3f, August 2004 -----
% 1.70/1.90  The process was started by sandbox on n008.cluster.edu,
% 1.70/1.90  Wed Jul 27 09:26:23 2022
% 1.70/1.90  The command was "./otter".  The process ID is 3746.
% 1.70/1.90  
% 1.70/1.90  set(prolog_style_variables).
% 1.70/1.90  set(auto).
% 1.70/1.90     dependent: set(auto1).
% 1.70/1.90     dependent: set(process_input).
% 1.70/1.90     dependent: clear(print_kept).
% 1.70/1.90     dependent: clear(print_new_demod).
% 1.70/1.90     dependent: clear(print_back_demod).
% 1.70/1.90     dependent: clear(print_back_sub).
% 1.70/1.90     dependent: set(control_memory).
% 1.70/1.90     dependent: assign(max_mem, 12000).
% 1.70/1.90     dependent: assign(pick_given_ratio, 4).
% 1.70/1.90     dependent: assign(stats_level, 1).
% 1.70/1.90     dependent: assign(max_seconds, 10800).
% 1.70/1.90  clear(print_given).
% 1.70/1.90  
% 1.70/1.90  list(usable).
% 1.70/1.90  0 [] A=A.
% 1.70/1.90  0 [] implies(truth,X)=X.
% 1.70/1.90  0 [] implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))=truth.
% 1.70/1.90  0 [] implies(implies(X,Y),Y)=implies(implies(Y,X),X).
% 1.70/1.90  0 [] implies(implies(not(X),not(Y)),implies(Y,X))=truth.
% 1.70/1.90  0 [] or(X,Y)=implies(not(X),Y).
% 1.70/1.90  0 [] or(or(X,Y),Z)=or(X,or(Y,Z)).
% 1.70/1.90  0 [] or(X,Y)=or(Y,X).
% 1.70/1.90  0 [] and(X,Y)=not(or(not(X),not(Y))).
% 1.70/1.90  0 [] and(and(X,Y),Z)=and(X,and(Y,Z)).
% 1.70/1.90  0 [] and(X,Y)=and(Y,X).
% 1.70/1.90  0 [] xor(X,Y)=or(and(X,not(Y)),and(not(X),Y)).
% 1.70/1.90  0 [] xor(X,Y)=xor(Y,X).
% 1.70/1.90  0 [] and_star(X,Y)=not(or(not(X),not(Y))).
% 1.70/1.90  0 [] and_star(and_star(X,Y),Z)=and_star(X,and_star(Y,Z)).
% 1.70/1.90  0 [] and_star(X,Y)=and_star(Y,X).
% 1.70/1.90  0 [] not(truth)=falsehood.
% 1.70/1.90  0 [] not(x)!=xor(x,truth).
% 1.70/1.90  end_of_list.
% 1.70/1.90  
% 1.70/1.90  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.70/1.90  
% 1.70/1.90  All clauses are units, and equality is present; the
% 1.70/1.90  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.70/1.90  
% 1.70/1.90     dependent: set(knuth_bendix).
% 1.70/1.90     dependent: set(anl_eq).
% 1.70/1.90     dependent: set(para_from).
% 1.70/1.90     dependent: set(para_into).
% 1.70/1.90     dependent: clear(para_from_right).
% 1.70/1.90     dependent: clear(para_into_right).
% 1.70/1.90     dependent: set(para_from_vars).
% 1.70/1.90     dependent: set(eq_units_both_ways).
% 1.70/1.90     dependent: set(dynamic_demod_all).
% 1.70/1.90     dependent: set(dynamic_demod).
% 1.70/1.90     dependent: set(order_eq).
% 1.70/1.90     dependent: set(back_demod).
% 1.70/1.90     dependent: set(lrpo).
% 1.70/1.90  
% 1.70/1.90  ------------> process usable:
% 1.70/1.90  ** KEPT (pick-wt=6): 1 [] not(x)!=xor(x,truth).
% 1.70/1.90  
% 1.70/1.90  ------------> process sos:
% 1.70/1.90  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.70/1.90  ** KEPT (pick-wt=5): 3 [] implies(truth,A)=A.
% 1.70/1.90  ---> New Demodulator: 4 [new_demod,3] implies(truth,A)=A.
% 1.70/1.90  ** KEPT (pick-wt=13): 5 [] implies(implies(A,B),implies(implies(B,C),implies(A,C)))=truth.
% 1.70/1.90  ---> New Demodulator: 6 [new_demod,5] implies(implies(A,B),implies(implies(B,C),implies(A,C)))=truth.
% 1.70/1.90  ** KEPT (pick-wt=11): 7 [] implies(implies(A,B),B)=implies(implies(B,A),A).
% 1.70/1.90  ** KEPT (pick-wt=11): 8 [] implies(implies(not(A),not(B)),implies(B,A))=truth.
% 1.70/1.90  ---> New Demodulator: 9 [new_demod,8] implies(implies(not(A),not(B)),implies(B,A))=truth.
% 1.70/1.90  ** KEPT (pick-wt=8): 10 [] or(A,B)=implies(not(A),B).
% 1.70/1.90  ** KEPT (pick-wt=11): 11 [] or(or(A,B),C)=or(A,or(B,C)).
% 1.70/1.90  ---> New Demodulator: 12 [new_demod,11] or(or(A,B),C)=or(A,or(B,C)).
% 1.70/1.90  ** KEPT (pick-wt=7): 13 [] or(A,B)=or(B,A).
% 1.70/1.90  ** KEPT (pick-wt=10): 15 [copy,14,flip.1] not(or(not(A),not(B)))=and(A,B).
% 1.70/1.90  ---> New Demodulator: 16 [new_demod,15] not(or(not(A),not(B)))=and(A,B).
% 1.70/1.90  ** KEPT (pick-wt=11): 17 [] and(and(A,B),C)=and(A,and(B,C)).
% 1.70/1.90  ---> New Demodulator: 18 [new_demod,17] and(and(A,B),C)=and(A,and(B,C)).
% 1.70/1.90  ** KEPT (pick-wt=7): 19 [] and(A,B)=and(B,A).
% 1.70/1.90  ** KEPT (pick-wt=13): 20 [] xor(A,B)=or(and(A,not(B)),and(not(A),B)).
% 1.70/1.90  ** KEPT (pick-wt=7): 21 [] xor(A,B)=xor(B,A).
% 1.70/1.90  ** KEPT (pick-wt=7): 23 [copy,22,demod,16] and_star(A,B)=and(A,B).
% 1.70/1.90  ---> New Demodulator: 24 [new_demod,23] and_star(A,B)=and(A,B).
% 1.70/1.90    Following clause subsumed by 2 during input processing: 0 [demod,24,24,18,24,24] and(A,and(B,C))=and(A,and(B,C)).
% 1.70/1.90    Following clause subsumed by 19 during input processing: 0 [demod,24,24] and(A,B)=and(B,A).
% 1.70/1.90  ** KEPT (pick-wt=4): 25 [] not(truth)=falsehood.
% 1.70/1.90  ---> New Demodulator: 26 [new_demod,25] not(truth)=falsehood.
% 1.70/1.90    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.70/1.90  >>>> Starting back demodulation with 4.
% 1.70/1.90  >>>> Starting back demodulation with 6.
% 1.70/1.90    Following clause subsumed by 7 during input processing: 0 [copy,7,flip.1] implies(implies(A,B),B)=implies(implies(B,A),A).
% 1.70/1.90  >>>> Starting back demodulation with 9.
% 1.70/1.90  ** KEPT (pick-wt=8): 27 [copy,10,flip.1] implies(not(A),B)=or(A,B).
% 1.70/1.91  >>>> Starting back demodulation with 12.
% 1.70/1.91    Following clause subsumed by 13 during input processing: 0 [copy,13,flip.1] or(A,B)=or(B,A).
% 1.70/1.91  >>>> Starting back demodulation with 16.
% 1.70/1.91  >>>> Starting back demodulation with 18.
% 1.70/1.91    Following clause subsumed by 19 during input processing: 0 [copy,19,flip.1] and(A,B)=and(B,A).
% 1.70/1.91  ** KEPT (pick-wt=13): 28 [copy,20,flip.1] or(and(A,not(B)),and(not(A),B))=xor(A,B).
% 1.70/1.91    Following clause subsumed by 21 during input processing: 0 [copy,21,flip.1] xor(A,B)=xor(B,A).
% 1.70/1.91  >>>> Starting back demodulation with 24.
% 1.70/1.91  >>>> Starting back demodulation with 26.
% 1.70/1.91    Following clause subsumed by 10 during input processing: 0 [copy,27,flip.1] or(A,B)=implies(not(A),B).
% 1.70/1.91    Following clause subsumed by 20 during input processing: 0 [copy,28,flip.1] xor(A,B)=or(and(A,not(B)),and(not(A),B)).
% 1.70/1.91  
% 1.70/1.91  ======= end of input processing =======
% 1.70/1.91  
% 1.70/1.91  =========== start of search ===========
% 1.70/1.91  
% 1.70/1.91  -------- PROOF -------- 
% 1.70/1.91  
% 1.70/1.91  ----> UNIT CONFLICT at   0.01 sec ----> 456 [binary,455.1,2.1] $F.
% 1.70/1.91  
% 1.70/1.91  Length of proof is 37.  Level of proof is 11.
% 1.70/1.91  
% 1.70/1.91  ---------------- PROOF ----------------
% 1.70/1.91  % SZS status Unsatisfiable
% 1.70/1.91  % SZS output start Refutation
% See solution above
% 1.70/1.91  ------------ end of proof -------------
% 1.70/1.91  
% 1.70/1.91  
% 1.70/1.91  Search stopped by max_proofs option.
% 1.70/1.91  
% 1.70/1.91  
% 1.70/1.91  Search stopped by max_proofs option.
% 1.70/1.91  
% 1.70/1.91  ============ end of search ============
% 1.70/1.91  
% 1.70/1.91  -------------- statistics -------------
% 1.70/1.91  clauses given                 42
% 1.70/1.91  clauses generated            447
% 1.70/1.91  clauses kept                 254
% 1.70/1.91  clauses forward subsumed     411
% 1.70/1.91  clauses back subsumed          0
% 1.70/1.91  Kbytes malloced             2929
% 1.70/1.91  
% 1.70/1.91  ----------- times (seconds) -----------
% 1.70/1.91  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.70/1.91  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.70/1.91  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.70/1.91  
% 1.70/1.91  That finishes the proof of the theorem.
% 1.70/1.91  
% 1.70/1.91  Process 3746 finished Wed Jul 27 09:26:25 2022
% 1.70/1.91  Otter interrupted
% 1.70/1.91  PROOF FOUND
%------------------------------------------------------------------------------