TSTP Solution File: LCL145-1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : LCL145-1 : TPTP v8.1.2. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 08:17:38 EDT 2023

% Result   : Unsatisfiable 0.20s 0.50s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : LCL145-1 : TPTP v8.1.2. Released v1.0.0.
% 0.11/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n005.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Thu Aug 24 20:07:08 EDT 2023
% 0.20/0.34  % CPUTime  : 
% 0.20/0.50  Command-line arguments: --no-flatten-goal
% 0.20/0.50  
% 0.20/0.50  % SZS status Unsatisfiable
% 0.20/0.50  
% 0.20/0.51  % SZS output start Proof
% 0.20/0.51  Take the following subset of the input axioms:
% 0.20/0.51    fof(big_V_definition, axiom, ![X, Y]: big_V(X, Y)=implies(implies(X, Y), Y)).
% 0.20/0.51    fof(big_hat_definition, axiom, ![X2, Y2]: big_hat(X2, Y2)=not(big_V(not(X2), not(Y2)))).
% 0.20/0.51    fof(prove_wajsberg_theorem, negated_conjecture, not(big_V(x, y))!=big_hat(not(x), not(y))).
% 0.20/0.51    fof(wajsberg_1, axiom, ![X2]: implies(truth, X2)=X2).
% 0.20/0.51    fof(wajsberg_2, axiom, ![Z, X2, Y2]: implies(implies(X2, Y2), implies(implies(Y2, Z), implies(X2, Z)))=truth).
% 0.20/0.51    fof(wajsberg_3, axiom, ![X2, Y2]: implies(implies(X2, Y2), Y2)=implies(implies(Y2, X2), X2)).
% 0.20/0.51    fof(wajsberg_4, axiom, ![X2, Y2]: implies(implies(not(X2), not(Y2)), implies(Y2, X2))=truth).
% 0.20/0.51  
% 0.20/0.51  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.51  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.51  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.51    fresh(y, y, x1...xn) = u
% 0.20/0.51    C => fresh(s, t, x1...xn) = v
% 0.20/0.51  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.51  variables of u and v.
% 0.20/0.51  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.51  input problem has no model of domain size 1).
% 0.20/0.51  
% 0.20/0.51  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.51  
% 0.20/0.51  Axiom 1 (wajsberg_1): implies(truth, X) = X.
% 0.20/0.51  Axiom 2 (big_V_definition): big_V(X, Y) = implies(implies(X, Y), Y).
% 0.20/0.51  Axiom 3 (wajsberg_3): implies(implies(X, Y), Y) = implies(implies(Y, X), X).
% 0.20/0.51  Axiom 4 (big_hat_definition): big_hat(X, Y) = not(big_V(not(X), not(Y))).
% 0.20/0.51  Axiom 5 (wajsberg_4): implies(implies(not(X), not(Y)), implies(Y, X)) = truth.
% 0.20/0.51  Axiom 6 (wajsberg_2): implies(implies(X, Y), implies(implies(Y, Z), implies(X, Z))) = truth.
% 0.20/0.51  
% 0.20/0.51  Lemma 7: big_V(Y, X) = big_V(X, Y).
% 0.20/0.51  Proof:
% 0.20/0.51    big_V(Y, X)
% 0.20/0.51  = { by axiom 2 (big_V_definition) }
% 0.20/0.51    implies(implies(Y, X), X)
% 0.20/0.51  = { by axiom 3 (wajsberg_3) R->L }
% 0.20/0.51    implies(implies(X, Y), Y)
% 0.20/0.52  = { by axiom 2 (big_V_definition) R->L }
% 0.20/0.52    big_V(X, Y)
% 0.20/0.52  
% 0.20/0.52  Lemma 8: implies(implies(not(X), not(truth)), X) = truth.
% 0.20/0.52  Proof:
% 0.20/0.52    implies(implies(not(X), not(truth)), X)
% 0.20/0.52  = { by axiom 1 (wajsberg_1) R->L }
% 0.20/0.52    implies(implies(not(X), not(truth)), implies(truth, X))
% 0.20/0.52  = { by axiom 5 (wajsberg_4) }
% 0.20/0.52    truth
% 0.20/0.52  
% 0.20/0.52  Lemma 9: implies(X, big_V(X, Y)) = truth.
% 0.20/0.52  Proof:
% 0.20/0.52    implies(X, big_V(X, Y))
% 0.20/0.52  = { by axiom 2 (big_V_definition) }
% 0.20/0.52    implies(X, implies(implies(X, Y), Y))
% 0.20/0.52  = { by axiom 1 (wajsberg_1) R->L }
% 0.20/0.52    implies(X, implies(implies(X, Y), implies(truth, Y)))
% 0.20/0.52  = { by axiom 1 (wajsberg_1) R->L }
% 0.20/0.52    implies(implies(truth, X), implies(implies(X, Y), implies(truth, Y)))
% 0.20/0.52  = { by axiom 6 (wajsberg_2) }
% 0.20/0.52    truth
% 0.20/0.52  
% 0.20/0.52  Lemma 10: implies(X, big_V(Y, implies(Z, X))) = truth.
% 0.20/0.52  Proof:
% 0.20/0.52    implies(X, big_V(Y, implies(Z, X)))
% 0.20/0.52  = { by lemma 7 }
% 0.20/0.52    implies(X, big_V(implies(Z, X), Y))
% 0.20/0.52  = { by axiom 1 (wajsberg_1) R->L }
% 0.20/0.52    implies(truth, implies(X, big_V(implies(Z, X), Y)))
% 0.20/0.52  = { by axiom 6 (wajsberg_2) R->L }
% 0.20/0.52    implies(implies(implies(Z, truth), implies(implies(truth, X), implies(Z, X))), implies(X, big_V(implies(Z, X), Y)))
% 0.20/0.52  = { by lemma 9 R->L }
% 0.20/0.52    implies(implies(implies(Z, implies(truth, big_V(truth, Z))), implies(implies(truth, X), implies(Z, X))), implies(X, big_V(implies(Z, X), Y)))
% 0.20/0.52  = { by axiom 1 (wajsberg_1) }
% 0.20/0.52    implies(implies(implies(Z, big_V(truth, Z)), implies(implies(truth, X), implies(Z, X))), implies(X, big_V(implies(Z, X), Y)))
% 0.20/0.52  = { by lemma 7 R->L }
% 0.20/0.52    implies(implies(implies(Z, big_V(Z, truth)), implies(implies(truth, X), implies(Z, X))), implies(X, big_V(implies(Z, X), Y)))
% 0.20/0.52  = { by lemma 9 }
% 0.20/0.52    implies(implies(truth, implies(implies(truth, X), implies(Z, X))), implies(X, big_V(implies(Z, X), Y)))
% 0.20/0.52  = { by axiom 1 (wajsberg_1) }
% 0.20/0.52    implies(implies(implies(truth, X), implies(Z, X)), implies(X, big_V(implies(Z, X), Y)))
% 0.20/0.52  = { by axiom 1 (wajsberg_1) }
% 0.20/0.52    implies(implies(X, implies(Z, X)), implies(X, big_V(implies(Z, X), Y)))
% 0.20/0.52  = { by axiom 1 (wajsberg_1) R->L }
% 0.20/0.52    implies(implies(X, implies(Z, X)), implies(truth, implies(X, big_V(implies(Z, X), Y))))
% 0.20/0.52  = { by lemma 9 R->L }
% 0.20/0.52    implies(implies(X, implies(Z, X)), implies(implies(implies(Z, X), big_V(implies(Z, X), Y)), implies(X, big_V(implies(Z, X), Y))))
% 0.20/0.52  = { by axiom 6 (wajsberg_2) }
% 0.20/0.52    truth
% 0.20/0.52  
% 0.20/0.52  Lemma 11: big_V(X, not(truth)) = X.
% 0.20/0.52  Proof:
% 0.20/0.52    big_V(X, not(truth))
% 0.20/0.52  = { by lemma 7 }
% 0.20/0.52    big_V(not(truth), X)
% 0.20/0.52  = { by axiom 2 (big_V_definition) }
% 0.20/0.52    implies(implies(not(truth), X), X)
% 0.20/0.52  = { by axiom 1 (wajsberg_1) R->L }
% 0.20/0.52    implies(implies(not(truth), implies(truth, X)), X)
% 0.20/0.52  = { by lemma 8 R->L }
% 0.20/0.52    implies(implies(not(truth), implies(implies(implies(not(X), not(truth)), X), X)), X)
% 0.20/0.52  = { by axiom 2 (big_V_definition) R->L }
% 0.20/0.52    implies(implies(not(truth), big_V(implies(not(X), not(truth)), X)), X)
% 0.20/0.52  = { by lemma 7 R->L }
% 0.20/0.52    implies(implies(not(truth), big_V(X, implies(not(X), not(truth)))), X)
% 0.20/0.52  = { by lemma 10 }
% 0.20/0.52    implies(truth, X)
% 0.20/0.52  = { by axiom 1 (wajsberg_1) }
% 0.20/0.52    X
% 0.20/0.52  
% 0.20/0.52  Lemma 12: not(not(X)) = big_hat(X, truth).
% 0.20/0.52  Proof:
% 0.20/0.52    not(not(X))
% 0.20/0.52  = { by lemma 11 R->L }
% 0.20/0.52    not(big_V(not(X), not(truth)))
% 0.20/0.52  = { by axiom 4 (big_hat_definition) R->L }
% 0.20/0.52    big_hat(X, truth)
% 0.20/0.52  
% 0.20/0.52  Lemma 13: implies(X, not(truth)) = not(X).
% 0.20/0.52  Proof:
% 0.20/0.52    implies(X, not(truth))
% 0.20/0.52  = { by axiom 1 (wajsberg_1) R->L }
% 0.20/0.52    implies(truth, implies(X, not(truth)))
% 0.20/0.52  = { by lemma 10 R->L }
% 0.20/0.52    implies(implies(not(X), big_V(implies(X, not(truth)), implies(not(not(truth)), not(X)))), implies(X, not(truth)))
% 0.20/0.52  = { by lemma 7 }
% 0.20/0.52    implies(implies(not(X), big_V(implies(not(not(truth)), not(X)), implies(X, not(truth)))), implies(X, not(truth)))
% 0.20/0.52  = { by axiom 2 (big_V_definition) }
% 0.20/0.52    implies(implies(not(X), implies(implies(implies(not(not(truth)), not(X)), implies(X, not(truth))), implies(X, not(truth)))), implies(X, not(truth)))
% 0.20/0.52  = { by axiom 5 (wajsberg_4) }
% 0.20/0.52    implies(implies(not(X), implies(truth, implies(X, not(truth)))), implies(X, not(truth)))
% 0.20/0.52  = { by axiom 1 (wajsberg_1) }
% 0.20/0.52    implies(implies(not(X), implies(X, not(truth))), implies(X, not(truth)))
% 0.20/0.52  = { by axiom 2 (big_V_definition) R->L }
% 0.20/0.52    big_V(not(X), implies(X, not(truth)))
% 0.20/0.52  = { by lemma 7 }
% 0.20/0.52    big_V(implies(X, not(truth)), not(X))
% 0.20/0.52  = { by axiom 2 (big_V_definition) }
% 0.20/0.52    implies(implies(implies(X, not(truth)), not(X)), not(X))
% 0.20/0.52  = { by lemma 11 R->L }
% 0.20/0.52    implies(implies(implies(X, not(truth)), big_V(not(X), not(truth))), not(X))
% 0.20/0.52  = { by axiom 2 (big_V_definition) }
% 0.20/0.52    implies(implies(implies(X, not(truth)), implies(implies(not(X), not(truth)), not(truth))), not(X))
% 0.20/0.52  = { by axiom 1 (wajsberg_1) R->L }
% 0.20/0.52    implies(implies(truth, implies(implies(X, not(truth)), implies(implies(not(X), not(truth)), not(truth)))), not(X))
% 0.20/0.52  = { by lemma 8 R->L }
% 0.20/0.52    implies(implies(implies(implies(not(X), not(truth)), X), implies(implies(X, not(truth)), implies(implies(not(X), not(truth)), not(truth)))), not(X))
% 0.20/0.52  = { by axiom 6 (wajsberg_2) }
% 0.20/0.52    implies(truth, not(X))
% 0.20/0.52  = { by axiom 1 (wajsberg_1) }
% 0.20/0.52    not(X)
% 0.20/0.52  
% 0.20/0.52  Lemma 14: big_hat(X, truth) = X.
% 0.20/0.52  Proof:
% 0.20/0.52    big_hat(X, truth)
% 0.20/0.52  = { by lemma 12 R->L }
% 0.20/0.52    not(not(X))
% 0.20/0.52  = { by lemma 13 R->L }
% 0.20/0.52    not(implies(X, not(truth)))
% 0.20/0.52  = { by lemma 13 R->L }
% 0.20/0.52    implies(implies(X, not(truth)), not(truth))
% 0.20/0.52  = { by axiom 2 (big_V_definition) R->L }
% 0.20/0.52    big_V(X, not(truth))
% 0.20/0.52  = { by lemma 11 }
% 0.20/0.52    X
% 0.20/0.52  
% 0.20/0.52  Lemma 15: big_hat(Y, X) = big_hat(X, Y).
% 0.20/0.52  Proof:
% 0.20/0.52    big_hat(Y, X)
% 0.20/0.52  = { by axiom 4 (big_hat_definition) }
% 0.20/0.52    not(big_V(not(Y), not(X)))
% 0.20/0.52  = { by lemma 7 }
% 0.20/0.52    not(big_V(not(X), not(Y)))
% 0.20/0.52  = { by axiom 4 (big_hat_definition) R->L }
% 0.20/0.52    big_hat(X, Y)
% 0.20/0.52  
% 0.20/0.52  Goal 1 (prove_wajsberg_theorem): not(big_V(x, y)) = big_hat(not(x), not(y)).
% 0.20/0.52  Proof:
% 0.20/0.52    not(big_V(x, y))
% 0.20/0.52  = { by lemma 14 R->L }
% 0.20/0.52    not(big_V(x, big_hat(y, truth)))
% 0.20/0.52  = { by lemma 12 R->L }
% 0.20/0.52    not(big_V(x, not(not(y))))
% 0.20/0.52  = { by lemma 7 }
% 0.20/0.52    not(big_V(not(not(y)), x))
% 0.20/0.52  = { by lemma 14 R->L }
% 0.20/0.52    not(big_V(not(not(y)), big_hat(x, truth)))
% 0.20/0.52  = { by lemma 15 }
% 0.20/0.52    not(big_V(not(not(y)), big_hat(truth, x)))
% 0.20/0.52  = { by lemma 7 }
% 0.20/0.52    not(big_V(big_hat(truth, x), not(not(y))))
% 0.20/0.52  = { by axiom 4 (big_hat_definition) }
% 0.20/0.52    not(big_V(not(big_V(not(truth), not(x))), not(not(y))))
% 0.20/0.52  = { by axiom 4 (big_hat_definition) R->L }
% 0.20/0.52    big_hat(big_V(not(truth), not(x)), not(y))
% 0.20/0.52  = { by lemma 15 R->L }
% 0.20/0.52    big_hat(not(y), big_V(not(truth), not(x)))
% 0.20/0.52  = { by lemma 7 R->L }
% 0.20/0.52    big_hat(not(y), big_V(not(x), not(truth)))
% 0.20/0.52  = { by lemma 11 }
% 0.20/0.52    big_hat(not(y), not(x))
% 0.20/0.52  = { by lemma 15 R->L }
% 0.20/0.52    big_hat(not(x), not(y))
% 0.20/0.52  % SZS output end Proof
% 0.20/0.52  
% 0.20/0.52  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------