TSTP Solution File: LCL109-6 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : LCL109-6 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:03:34 EDT 2022

% Result   : Unsatisfiable 2.40s 2.64s
% Output   : Refutation 2.40s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :   12
% Syntax   : Number of clauses     :   56 (  56 unt;   0 nHn;   3 RR)
%            Number of literals    :   56 (  55 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :  100 (   5 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    implies(implies(implies(a,b),implies(b,a)),implies(b,a)) != truth,
    file('LCL109-6.p',unknown),
    [] ).

cnf(6,axiom,
    xor(A,falsehood) = A,
    file('LCL109-6.p',unknown),
    [] ).

cnf(7,axiom,
    xor(A,A) = falsehood,
    file('LCL109-6.p',unknown),
    [] ).

cnf(10,axiom,
    and_star(A,truth) = A,
    file('LCL109-6.p',unknown),
    [] ).

cnf(12,axiom,
    and_star(A,falsehood) = falsehood,
    file('LCL109-6.p',unknown),
    [] ).

cnf(13,axiom,
    and_star(xor(truth,A),A) = falsehood,
    file('LCL109-6.p',unknown),
    [] ).

cnf(15,axiom,
    xor(A,xor(truth,B)) = xor(xor(A,truth),B),
    file('LCL109-6.p',unknown),
    [] ).

cnf(16,plain,
    xor(xor(A,truth),B) = xor(A,xor(truth,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[15])]),
    [iquote('copy,15,flip.1')] ).

cnf(18,axiom,
    and_star(xor(and_star(xor(truth,A),B),truth),B) = and_star(xor(and_star(xor(truth,B),A),truth),A),
    file('LCL109-6.p',unknown),
    [] ).

cnf(19,axiom,
    xor(A,B) = xor(B,A),
    file('LCL109-6.p',unknown),
    [] ).

cnf(20,axiom,
    and_star(and_star(A,B),C) = and_star(A,and_star(B,C)),
    file('LCL109-6.p',unknown),
    [] ).

cnf(22,axiom,
    and_star(A,B) = and_star(B,A),
    file('LCL109-6.p',unknown),
    [] ).

cnf(23,axiom,
    implies(A,B) = xor(truth,and_star(A,xor(truth,B))),
    file('LCL109-6.p',unknown),
    [] ).

cnf(24,plain,
    xor(truth,and_star(A,xor(truth,B))) = implies(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[23])]),
    [iquote('copy,23,flip.1')] ).

cnf(27,plain,
    xor(falsehood,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,6])]),
    [iquote('para_into,19.1.1,5.1.1,flip.1')] ).

cnf(30,plain,
    and_star(A,xor(truth,A)) = falsehood,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[22,13])]),
    [iquote('para_into,22.1.1,13.1.1,flip.1')] ).

cnf(32,plain,
    and_star(falsehood,A) = falsehood,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[22,12])]),
    [iquote('para_into,22.1.1,11.1.1,flip.1')] ).

cnf(34,plain,
    and_star(truth,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[22,10])]),
    [iquote('para_into,22.1.1,9.1.1,flip.1')] ).

cnf(40,plain,
    xor(truth,xor(truth,A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[16,7]),27])]),
    [iquote('para_into,16.1.1.1,7.1.1,demod,27,flip.1')] ).

cnf(51,plain,
    and_star(xor(and_star(xor(truth,A),B),truth),B) = and_star(xor(truth,and_star(xor(truth,B),A)),A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[18,19])]),
    [iquote('para_into,18.1.1.1,19.1.1,flip.1')] ).

cnf(58,plain,
    and_star(xor(truth,and_star(xor(truth,A),B)),B) = and_star(xor(truth,and_star(xor(truth,B),A)),A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[18]),51,51]),
    [iquote('back_demod,18,demod,51,51')] ).

cnf(78,plain,
    xor(truth,and_star(A,B)) = implies(A,xor(truth,B)),
    inference(para_into,[status(thm),theory(equality)],[24,40]),
    [iquote('para_into,24.1.1.2.2,40.1.1')] ).

cnf(79,plain,
    implies(A,xor(truth,implies(B,C))) = implies(A,and_star(B,xor(truth,C))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[24,24]),78]),
    [iquote('para_into,24.1.1.2.2,24.1.1,demod,78')] ).

cnf(82,plain,
    implies(A,truth) = truth,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[24,7]),12,6])]),
    [iquote('para_into,24.1.1.2.2,7.1.1,demod,12,6,flip.1')] ).

cnf(84,plain,
    xor(truth,A) = implies(A,falsehood),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[24,6]),10]),
    [iquote('para_into,24.1.1.2.2,5.1.1,demod,10')] ).

cnf(86,plain,
    implies(implies(A,falsehood),falsehood) = implies(truth,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[24,34]),84,84]),
    [iquote('para_into,24.1.1.2,34.1.1,demod,84,84')] ).

cnf(88,plain,
    implies(falsehood,A) = truth,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[24,32]),6])]),
    [iquote('para_into,24.1.1.2,32.1.1,demod,6,flip.1')] ).

cnf(90,plain,
    implies(A,A) = truth,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[24,30]),6])]),
    [iquote('para_into,24.1.1.2,30.1.1,demod,6,flip.1')] ).

cnf(94,plain,
    implies(and_star(implies(A,falsehood),B),falsehood) = implies(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[24,22]),84,84]),
    [iquote('para_into,24.1.1.2,22.1.1,demod,84,84')] ).

cnf(95,plain,
    implies(and_star(A,and_star(B,implies(C,falsehood))),falsehood) = implies(and_star(A,B),C),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[24,20]),84,84]),
    [iquote('para_into,24.1.1.2,20.1.1,demod,84,84')] ).

cnf(105,plain,
    and_star(implies(A,B),A) = and_star(implies(B,A),B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[58]),84,84,94,84,84,94]),
    [iquote('back_demod,58,demod,84,84,94,84,84,94')] ).

cnf(110,plain,
    and_star(xor(and_star(implies(A,falsehood),B),truth),B) = and_star(implies(A,B),A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[51]),84,84,84,94]),
    [iquote('back_demod,50,demod,84,84,84,94')] ).

cnf(114,plain,
    implies(A,implies(implies(B,C),falsehood)) = implies(A,and_star(B,implies(C,falsehood))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[79]),84,84]),
    [iquote('back_demod,79,demod,84,84')] ).

cnf(117,plain,
    implies(and_star(A,B),falsehood) = implies(A,implies(B,falsehood)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[78]),84,84]),
    [iquote('back_demod,77,demod,84,84')] ).

cnf(127,plain,
    implies(truth,A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[40]),84,84,86]),
    [iquote('back_demod,40,demod,84,84,86')] ).

cnf(141,plain,
    implies(and_star(A,B),C) = implies(A,implies(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[95]),117,117,86,127])]),
    [iquote('back_demod,95,demod,117,117,86,127,flip.1')] ).

cnf(142,plain,
    implies(implies(A,falsehood),implies(B,falsehood)) = implies(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[94]),141]),
    [iquote('back_demod,93,demod,141')] ).

cnf(145,plain,
    implies(A,B) = implies(implies(B,falsehood),implies(A,falsehood)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[142])]),
    [iquote('copy,142,flip.1')] ).

cnf(153,plain,
    xor(A,truth) = implies(A,falsehood),
    inference(para_into,[status(thm),theory(equality)],[84,19]),
    [iquote('para_into,83.1.1,19.1.1')] ).

cnf(162,plain,
    and_star(implies(implies(A,falsehood),implies(B,falsehood)),B) = and_star(implies(A,B),A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[110]),153,141]),
    [iquote('back_demod,110,demod,153,141')] ).

cnf(221,plain,
    implies(implies(A,B),falsehood) = and_star(A,implies(B,falsehood)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[114,127]),127]),
    [iquote('para_into,114.1.1,126.1.1,demod,127')] ).

cnf(242,plain,
    implies(implies(A,B),implies(A,C)) = implies(implies(B,A),implies(B,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[141,105]),141]),
    [iquote('para_into,140.1.1.1,105.1.1,demod,141')] ).

cnf(246,plain,
    implies(A,implies(B,C)) = implies(B,implies(A,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[141,22]),141]),
    [iquote('para_into,140.1.1.1,22.1.1,demod,141')] ).

cnf(247,plain,
    implies(A,implies(B,and_star(A,B))) = truth,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[141,90])]),
    [iquote('para_into,140.1.1,89.1.1,flip.1')] ).

cnf(259,plain,
    implies(implies(A,implies(B,falsehood)),implies(C,falsehood)) = implies(C,and_star(A,B)),
    inference(para_into,[status(thm),theory(equality)],[142,141]),
    [iquote('para_into,142.1.1.1,140.1.1')] ).

cnf(285,plain,
    implies(A,implies(B,and_star(B,A))) = truth,
    inference(para_into,[status(thm),theory(equality)],[247,22]),
    [iquote('para_into,247.1.1.2.2,22.1.1')] ).

cnf(792,plain,
    implies(A,implies(B,implies(C,and_star(C,A)))) = truth,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[246,285]),82])]),
    [iquote('para_into,246.1.1.2,285.1.1,demod,82,flip.1')] ).

cnf(798,plain,
    implies(A,implies(implies(A,B),B)) = truth,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[246,90])]),
    [iquote('para_into,246.1.1,89.1.1,flip.1')] ).

cnf(809,plain,
    implies(b,implies(implies(implies(a,b),implies(b,a)),a)) != truth,
    inference(para_from,[status(thm),theory(equality)],[246,1]),
    [iquote('para_from,246.1.1,1.1.1')] ).

cnf(2028,plain,
    implies(implies(A,B),implies(A,implies(implies(B,C),C))) = truth,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[242,798]),82])]),
    [iquote('para_into,242.1.1.2,798.1.1,demod,82,flip.1')] ).

cnf(2036,plain,
    implies(A,implies(implies(B,C),implies(B,and_star(C,A)))) = truth,
    inference(para_from,[status(thm),theory(equality)],[242,792]),
    [iquote('para_from,242.1.1,792.1.1.2')] ).

cnf(2052,plain,
    implies(implies(implies(A,falsehood),B),A) = implies(B,and_star(B,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[259,242]),221,90,10]),
    [iquote('para_into,259.1.1,242.1.1,demod,221,90,10')] ).

cnf(2148,plain,
    implies(implies(A,B),and_star(implies(A,B),A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[2052,2028]),127,88,127,88,127])]),
    [iquote('para_into,2052.1.1.1,2028.1.1,demod,127,88,127,88,127,flip.1')] ).

cnf(2157,plain,
    implies(implies(A,B),and_star(implies(B,A),B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[2148,145]),162]),
    [iquote('para_into,2148.1.1.2.1,145.1.1,demod,162')] ).

cnf(2170,plain,
    implies(A,implies(implies(implies(B,A),implies(A,B)),B)) = truth,
    inference(para_from,[status(thm),theory(equality)],[2157,2036]),
    [iquote('para_from,2157.1.1,2036.1.1.2.2')] ).

cnf(2172,plain,
    $false,
    inference(binary,[status(thm)],[2170,809]),
    [iquote('binary,2170.1,809.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : LCL109-6 : TPTP v8.1.0. Released v1.0.0.
% 0.07/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n013.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 09:21:45 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.96/2.14  ----- Otter 3.3f, August 2004 -----
% 1.96/2.14  The process was started by sandbox2 on n013.cluster.edu,
% 1.96/2.14  Wed Jul 27 09:21:45 2022
% 1.96/2.14  The command was "./otter".  The process ID is 7139.
% 1.96/2.14  
% 1.96/2.14  set(prolog_style_variables).
% 1.96/2.14  set(auto).
% 1.96/2.14     dependent: set(auto1).
% 1.96/2.14     dependent: set(process_input).
% 1.96/2.14     dependent: clear(print_kept).
% 1.96/2.14     dependent: clear(print_new_demod).
% 1.96/2.14     dependent: clear(print_back_demod).
% 1.96/2.14     dependent: clear(print_back_sub).
% 1.96/2.14     dependent: set(control_memory).
% 1.96/2.14     dependent: assign(max_mem, 12000).
% 1.96/2.14     dependent: assign(pick_given_ratio, 4).
% 1.96/2.14     dependent: assign(stats_level, 1).
% 1.96/2.14     dependent: assign(max_seconds, 10800).
% 1.96/2.14  clear(print_given).
% 1.96/2.14  
% 1.96/2.14  list(usable).
% 1.96/2.14  0 [] A=A.
% 1.96/2.14  0 [] not(X)=xor(X,truth).
% 1.96/2.14  0 [] xor(X,falsehood)=X.
% 1.96/2.14  0 [] xor(X,X)=falsehood.
% 1.96/2.14  0 [] and_star(X,truth)=X.
% 1.96/2.14  0 [] and_star(X,falsehood)=falsehood.
% 1.96/2.14  0 [] and_star(xor(truth,X),X)=falsehood.
% 1.96/2.14  0 [] xor(X,xor(truth,Y))=xor(xor(X,truth),Y).
% 1.96/2.14  0 [] and_star(xor(and_star(xor(truth,X),Y),truth),Y)=and_star(xor(and_star(xor(truth,Y),X),truth),X).
% 1.96/2.14  0 [] xor(X,Y)=xor(Y,X).
% 1.96/2.14  0 [] and_star(and_star(X,Y),Z)=and_star(X,and_star(Y,Z)).
% 1.96/2.14  0 [] and_star(X,Y)=and_star(Y,X).
% 1.96/2.14  0 [] not(truth)=falsehood.
% 1.96/2.14  0 [] implies(X,Y)=xor(truth,and_star(X,xor(truth,Y))).
% 1.96/2.14  0 [] implies(implies(implies(a,b),implies(b,a)),implies(b,a))!=truth.
% 1.96/2.14  end_of_list.
% 1.96/2.14  
% 1.96/2.14  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.96/2.14  
% 1.96/2.14  All clauses are units, and equality is present; the
% 1.96/2.14  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.96/2.14  
% 1.96/2.14     dependent: set(knuth_bendix).
% 1.96/2.14     dependent: set(anl_eq).
% 1.96/2.14     dependent: set(para_from).
% 1.96/2.14     dependent: set(para_into).
% 1.96/2.14     dependent: clear(para_from_right).
% 1.96/2.14     dependent: clear(para_into_right).
% 1.96/2.14     dependent: set(para_from_vars).
% 1.96/2.14     dependent: set(eq_units_both_ways).
% 1.96/2.14     dependent: set(dynamic_demod_all).
% 1.96/2.14     dependent: set(dynamic_demod).
% 1.96/2.14     dependent: set(order_eq).
% 1.96/2.14     dependent: set(back_demod).
% 1.96/2.14     dependent: set(lrpo).
% 1.96/2.14  
% 1.96/2.14  ------------> process usable:
% 1.96/2.14  ** KEPT (pick-wt=13): 1 [] implies(implies(implies(a,b),implies(b,a)),implies(b,a))!=truth.
% 1.96/2.14  
% 1.96/2.14  ------------> process sos:
% 1.96/2.14  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.96/2.14  ** KEPT (pick-wt=6): 3 [] not(A)=xor(A,truth).
% 1.96/2.14  ---> New Demodulator: 4 [new_demod,3] not(A)=xor(A,truth).
% 1.96/2.14  ** KEPT (pick-wt=5): 5 [] xor(A,falsehood)=A.
% 1.96/2.14  ---> New Demodulator: 6 [new_demod,5] xor(A,falsehood)=A.
% 1.96/2.14  ** KEPT (pick-wt=5): 7 [] xor(A,A)=falsehood.
% 1.96/2.14  ---> New Demodulator: 8 [new_demod,7] xor(A,A)=falsehood.
% 1.96/2.14  ** KEPT (pick-wt=5): 9 [] and_star(A,truth)=A.
% 1.96/2.14  ---> New Demodulator: 10 [new_demod,9] and_star(A,truth)=A.
% 1.96/2.14  ** KEPT (pick-wt=5): 11 [] and_star(A,falsehood)=falsehood.
% 1.96/2.14  ---> New Demodulator: 12 [new_demod,11] and_star(A,falsehood)=falsehood.
% 1.96/2.14  ** KEPT (pick-wt=7): 13 [] and_star(xor(truth,A),A)=falsehood.
% 1.96/2.14  ---> New Demodulator: 14 [new_demod,13] and_star(xor(truth,A),A)=falsehood.
% 1.96/2.14  ** KEPT (pick-wt=11): 16 [copy,15,flip.1] xor(xor(A,truth),B)=xor(A,xor(truth,B)).
% 1.96/2.14  ---> New Demodulator: 17 [new_demod,16] xor(xor(A,truth),B)=xor(A,xor(truth,B)).
% 1.96/2.14  ** KEPT (pick-wt=19): 18 [] and_star(xor(and_star(xor(truth,A),B),truth),B)=and_star(xor(and_star(xor(truth,B),A),truth),A).
% 1.96/2.14  ** KEPT (pick-wt=7): 19 [] xor(A,B)=xor(B,A).
% 1.96/2.14  ** KEPT (pick-wt=11): 20 [] and_star(and_star(A,B),C)=and_star(A,and_star(B,C)).
% 1.96/2.14  ---> New Demodulator: 21 [new_demod,20] and_star(and_star(A,B),C)=and_star(A,and_star(B,C)).
% 1.96/2.14  ** KEPT (pick-wt=7): 22 [] and_star(A,B)=and_star(B,A).
% 1.96/2.14    Following clause subsumed by 2 during input processing: 0 [demod,4,8] falsehood=falsehood.
% 1.96/2.14  ** KEPT (pick-wt=11): 24 [copy,23,flip.1] xor(truth,and_star(A,xor(truth,B)))=implies(A,B).
% 1.96/2.14  ---> New Demodulator: 25 [new_demod,24] xor(truth,and_star(A,xor(truth,B)))=implies(A,B).
% 1.96/2.14    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.96/2.14  >>>> Starting back demodulation with 4.
% 1.96/2.14  >>>> Starting back demodulation with 6.
% 1.96/2.14  >>>> Starting back demodulation with 8.
% 1.96/2.14  >>>> Starting back demodulation with 10.
% 1.96/2.14  >>>> Starting back demodulation with 12.
% 1.96/2.14  >>>> Starting back demodulation with 14.
% 1.96/2.14  >>>> Starting back demodulation with 17.
% 1.96/2.14    Following clause subsumed by 18 during input processing: 0 [copy,18,flip.1] and_star(xor(and_star(xor(truth,A),B),truth),B)=and_star(xor(and_star(xor(truth,B),A),truth),A).
% 2.40/2.64    Following clause subsumed by 19 during input processing: 0 [copy,19,flip.1] xor(A,B)=xor(B,A).
% 2.40/2.64  >>>> Starting back demodulation with 21.
% 2.40/2.64    Following clause subsumed by 22 during input processing: 0 [copy,22,flip.1] and_star(A,B)=and_star(B,A).
% 2.40/2.64  >>>> Starting back demodulation with 25.
% 2.40/2.64  
% 2.40/2.64  ======= end of input processing =======
% 2.40/2.64  
% 2.40/2.64  =========== start of search ===========
% 2.40/2.64  
% 2.40/2.64  
% 2.40/2.64  Resetting weight limit to 13.
% 2.40/2.64  
% 2.40/2.64  
% 2.40/2.64  Resetting weight limit to 13.
% 2.40/2.64  
% 2.40/2.64  sos_size=979
% 2.40/2.64  
% 2.40/2.64  -------- PROOF -------- 
% 2.40/2.64  
% 2.40/2.64  ----> UNIT CONFLICT at   0.49 sec ----> 2172 [binary,2170.1,809.1] $F.
% 2.40/2.64  
% 2.40/2.64  Length of proof is 43.  Level of proof is 11.
% 2.40/2.64  
% 2.40/2.64  ---------------- PROOF ----------------
% 2.40/2.64  % SZS status Unsatisfiable
% 2.40/2.64  % SZS output start Refutation
% See solution above
% 2.40/2.65  ------------ end of proof -------------
% 2.40/2.65  
% 2.40/2.65  
% 2.40/2.65  Search stopped by max_proofs option.
% 2.40/2.65  
% 2.40/2.65  
% 2.40/2.65  Search stopped by max_proofs option.
% 2.40/2.65  
% 2.40/2.65  ============ end of search ============
% 2.40/2.65  
% 2.40/2.65  -------------- statistics -------------
% 2.40/2.65  clauses given                337
% 2.40/2.65  clauses generated          93383
% 2.40/2.65  clauses kept                1323
% 2.40/2.65  clauses forward subsumed   64014
% 2.40/2.65  clauses back subsumed          1
% 2.40/2.65  Kbytes malloced             5859
% 2.40/2.65  
% 2.40/2.65  ----------- times (seconds) -----------
% 2.40/2.65  user CPU time          0.49          (0 hr, 0 min, 0 sec)
% 2.40/2.65  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 2.40/2.65  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.40/2.65  
% 2.40/2.65  That finishes the proof of the theorem.
% 2.40/2.65  
% 2.40/2.65  Process 7139 finished Wed Jul 27 09:21:47 2022
% 2.40/2.65  Otter interrupted
% 2.40/2.65  PROOF FOUND
%------------------------------------------------------------------------------