TSTP Solution File: LAT251-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : LAT251-1 : TPTP v8.1.0. Released v3.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:02:12 EDT 2022

% Result   : Unsatisfiable 2.14s 2.33s
% Output   : Refutation 2.14s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    9
%            Number of leaves      :   13
% Syntax   : Number of clauses     :   30 (  29 unt;   0 nHn;   9 RR)
%            Number of literals    :   32 (  31 equ;   4 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :   38 (   6 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( meet(A,B) != zero
    | join(A,B) != one
    | complement(A) = B ),
    file('LAT251-1.p',unknown),
    [] ).

cnf(2,axiom,
    join(complement(b),complement(a)) != complement(a),
    file('LAT251-1.p',unknown),
    [] ).

cnf(7,axiom,
    join(A,A) = A,
    file('LAT251-1.p',unknown),
    [] ).

cnf(8,axiom,
    meet(A,join(A,B)) = A,
    file('LAT251-1.p',unknown),
    [] ).

cnf(10,axiom,
    join(A,meet(A,B)) = A,
    file('LAT251-1.p',unknown),
    [] ).

cnf(12,axiom,
    meet(A,B) = meet(B,A),
    file('LAT251-1.p',unknown),
    [] ).

cnf(13,axiom,
    join(A,B) = join(B,A),
    file('LAT251-1.p',unknown),
    [] ).

cnf(14,axiom,
    meet(meet(A,B),C) = meet(A,meet(B,C)),
    file('LAT251-1.p',unknown),
    [] ).

cnf(16,axiom,
    join(join(A,B),C) = join(A,join(B,C)),
    file('LAT251-1.p',unknown),
    [] ).

cnf(18,axiom,
    join(A,complement(A)) = one,
    file('LAT251-1.p',unknown),
    [] ).

cnf(21,axiom,
    meet(A,complement(A)) = zero,
    file('LAT251-1.p',unknown),
    [] ).

cnf(22,axiom,
    meet(A,join(B,C)) = join(meet(A,join(C,meet(A,B))),meet(A,join(B,meet(A,C)))),
    file('LAT251-1.p',unknown),
    [] ).

cnf(23,plain,
    join(meet(A,join(B,meet(A,C))),meet(A,join(C,meet(A,B)))) = meet(A,join(C,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[22])]),
    [iquote('copy,22,flip.1')] ).

cnf(25,axiom,
    meet(b,a) = a,
    file('LAT251-1.p',unknown),
    [] ).

cnf(29,plain,
    meet(A,one) = A,
    inference(para_into,[status(thm),theory(equality)],[8,18]),
    [iquote('para_into,8.1.1.2,18.1.1')] ).

cnf(36,plain,
    join(A,zero) = A,
    inference(para_into,[status(thm),theory(equality)],[10,21]),
    [iquote('para_into,10.1.1.2,20.1.1')] ).

cnf(39,plain,
    meet(one,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,29])]),
    [iquote('para_into,12.1.1,29.1.1,flip.1')] ).

cnf(43,plain,
    meet(complement(A),A) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,21])]),
    [iquote('para_into,12.1.1,20.1.1,flip.1')] ).

cnf(54,plain,
    join(one,A) = one,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[39,8])]),
    [iquote('para_into,39.1.1,8.1.1,flip.1')] ).

cnf(57,plain,
    join(zero,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[13,36])]),
    [iquote('para_into,13.1.1,35.1.1,flip.1')] ).

cnf(66,plain,
    join(complement(a),complement(b)) != complement(a),
    inference(para_from,[status(thm),theory(equality)],[13,2]),
    [iquote('para_from,13.1.1,2.1.1')] ).

cnf(76,plain,
    meet(zero,A) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[57,10])]),
    [iquote('para_into,57.1.1,10.1.1,flip.1')] ).

cnf(105,plain,
    meet(complement(A),meet(A,B)) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[43,14]),76])]),
    [iquote('para_from,43.1.1,14.1.1.1,demod,76,flip.1')] ).

cnf(112,plain,
    join(A,join(complement(A),B)) = one,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[16,18]),54])]),
    [iquote('para_into,16.1.1.1,18.1.1,demod,54,flip.1')] ).

cnf(165,plain,
    join(meet(A,B),meet(A,join(complement(A),meet(A,B)))) = meet(A,join(complement(A),B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[23,21]),36]),
    [iquote('para_into,23.1.1.1.2.2,20.1.1,demod,36')] ).

cnf(324,plain,
    meet(complement(b),a) = zero,
    inference(para_into,[status(thm),theory(equality)],[105,25]),
    [iquote('para_into,105.1.1.2,25.1.1')] ).

cnf(336,plain,
    meet(a,complement(b)) = zero,
    inference(para_into,[status(thm),theory(equality)],[324,12]),
    [iquote('para_into,324.1.1,12.1.1')] ).

cnf(1200,plain,
    meet(a,join(complement(a),complement(b))) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[165,336]),336,36,21,7])]),
    [iquote('para_into,165.1.1.1,335.1.1,demod,336,36,21,7,flip.1')] ).

cnf(1206,plain,
    join(complement(a),complement(b)) = complement(a),
    inference(flip,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[1200,1,112])]),
    [iquote('hyper,1200,1,112,flip.1')] ).

cnf(1208,plain,
    $false,
    inference(binary,[status(thm)],[1206,66]),
    [iquote('binary,1206.1,66.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.09/0.11  % Problem  : LAT251-1 : TPTP v8.1.0. Released v3.1.0.
% 0.09/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n013.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 08:29:00 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.93/2.10  ----- Otter 3.3f, August 2004 -----
% 1.93/2.10  The process was started by sandbox2 on n013.cluster.edu,
% 1.93/2.10  Wed Jul 27 08:29:00 2022
% 1.93/2.10  The command was "./otter".  The process ID is 26989.
% 1.93/2.10  
% 1.93/2.10  set(prolog_style_variables).
% 1.93/2.10  set(auto).
% 1.93/2.10     dependent: set(auto1).
% 1.93/2.10     dependent: set(process_input).
% 1.93/2.10     dependent: clear(print_kept).
% 1.93/2.10     dependent: clear(print_new_demod).
% 1.93/2.10     dependent: clear(print_back_demod).
% 1.93/2.10     dependent: clear(print_back_sub).
% 1.93/2.10     dependent: set(control_memory).
% 1.93/2.10     dependent: assign(max_mem, 12000).
% 1.93/2.10     dependent: assign(pick_given_ratio, 4).
% 1.93/2.10     dependent: assign(stats_level, 1).
% 1.93/2.10     dependent: assign(max_seconds, 10800).
% 1.93/2.10  clear(print_given).
% 1.93/2.10  
% 1.93/2.10  list(usable).
% 1.93/2.10  0 [] A=A.
% 1.93/2.10  0 [] meet(X,X)=X.
% 1.93/2.10  0 [] join(X,X)=X.
% 1.93/2.10  0 [] meet(X,join(X,Y))=X.
% 1.93/2.10  0 [] join(X,meet(X,Y))=X.
% 1.93/2.10  0 [] meet(X,Y)=meet(Y,X).
% 1.93/2.10  0 [] join(X,Y)=join(Y,X).
% 1.93/2.10  0 [] meet(meet(X,Y),Z)=meet(X,meet(Y,Z)).
% 1.93/2.10  0 [] join(join(X,Y),Z)=join(X,join(Y,Z)).
% 1.93/2.10  0 [] join(X,complement(X))=one.
% 1.93/2.10  0 [] meet(X,complement(X))=zero.
% 1.93/2.10  0 [] meet(X,Y)!=zero|join(X,Y)!=one|complement(X)=Y.
% 1.93/2.10  0 [] meet(X,join(Y,Z))=join(meet(X,join(Z,meet(X,Y))),meet(X,join(Y,meet(X,Z)))).
% 1.93/2.10  0 [] meet(b,a)=a.
% 1.93/2.10  0 [] join(complement(b),complement(a))!=complement(a).
% 1.93/2.10  end_of_list.
% 1.93/2.10  
% 1.93/2.10  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=3.
% 1.93/2.10  
% 1.93/2.10  This is a Horn set with equality.  The strategy will be
% 1.93/2.10  Knuth-Bendix and hyper_res, with positive clauses in
% 1.93/2.10  sos and nonpositive clauses in usable.
% 1.93/2.10  
% 1.93/2.10     dependent: set(knuth_bendix).
% 1.93/2.10     dependent: set(anl_eq).
% 1.93/2.10     dependent: set(para_from).
% 1.93/2.10     dependent: set(para_into).
% 1.93/2.10     dependent: clear(para_from_right).
% 1.93/2.10     dependent: clear(para_into_right).
% 1.93/2.10     dependent: set(para_from_vars).
% 1.93/2.10     dependent: set(eq_units_both_ways).
% 1.93/2.10     dependent: set(dynamic_demod_all).
% 1.93/2.10     dependent: set(dynamic_demod).
% 1.93/2.10     dependent: set(order_eq).
% 1.93/2.10     dependent: set(back_demod).
% 1.93/2.10     dependent: set(lrpo).
% 1.93/2.10     dependent: set(hyper_res).
% 1.93/2.10     dependent: clear(order_hyper).
% 1.93/2.10  
% 1.93/2.10  ------------> process usable:
% 1.93/2.10  ** KEPT (pick-wt=14): 1 [] meet(A,B)!=zero|join(A,B)!=one|complement(A)=B.
% 1.93/2.10  ** KEPT (pick-wt=8): 2 [] join(complement(b),complement(a))!=complement(a).
% 1.93/2.10  
% 1.93/2.10  ------------> process sos:
% 1.93/2.10  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.93/2.10  ** KEPT (pick-wt=5): 4 [] meet(A,A)=A.
% 1.93/2.10  ---> New Demodulator: 5 [new_demod,4] meet(A,A)=A.
% 1.93/2.10  ** KEPT (pick-wt=5): 6 [] join(A,A)=A.
% 1.93/2.10  ---> New Demodulator: 7 [new_demod,6] join(A,A)=A.
% 1.93/2.10  ** KEPT (pick-wt=7): 8 [] meet(A,join(A,B))=A.
% 1.93/2.10  ---> New Demodulator: 9 [new_demod,8] meet(A,join(A,B))=A.
% 1.93/2.10  ** KEPT (pick-wt=7): 10 [] join(A,meet(A,B))=A.
% 1.93/2.10  ---> New Demodulator: 11 [new_demod,10] join(A,meet(A,B))=A.
% 1.93/2.10  ** KEPT (pick-wt=7): 12 [] meet(A,B)=meet(B,A).
% 1.93/2.10  ** KEPT (pick-wt=7): 13 [] join(A,B)=join(B,A).
% 1.93/2.10  ** KEPT (pick-wt=11): 14 [] meet(meet(A,B),C)=meet(A,meet(B,C)).
% 1.93/2.10  ---> New Demodulator: 15 [new_demod,14] meet(meet(A,B),C)=meet(A,meet(B,C)).
% 1.93/2.10  ** KEPT (pick-wt=11): 16 [] join(join(A,B),C)=join(A,join(B,C)).
% 1.93/2.10  ---> New Demodulator: 17 [new_demod,16] join(join(A,B),C)=join(A,join(B,C)).
% 1.93/2.10  ** KEPT (pick-wt=6): 18 [] join(A,complement(A))=one.
% 1.93/2.10  ---> New Demodulator: 19 [new_demod,18] join(A,complement(A))=one.
% 1.93/2.10  ** KEPT (pick-wt=6): 20 [] meet(A,complement(A))=zero.
% 1.93/2.10  ---> New Demodulator: 21 [new_demod,20] meet(A,complement(A))=zero.
% 1.93/2.10  ** KEPT (pick-wt=21): 23 [copy,22,flip.1] join(meet(A,join(B,meet(A,C))),meet(A,join(C,meet(A,B))))=meet(A,join(C,B)).
% 1.93/2.10  ---> New Demodulator: 24 [new_demod,23] join(meet(A,join(B,meet(A,C))),meet(A,join(C,meet(A,B))))=meet(A,join(C,B)).
% 1.93/2.10  ** KEPT (pick-wt=5): 25 [] meet(b,a)=a.
% 1.93/2.10  ---> New Demodulator: 26 [new_demod,25] meet(b,a)=a.
% 1.93/2.10    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.93/2.10  >>>> Starting back demodulation with 5.
% 1.93/2.10  >>>> Starting back demodulation with 7.
% 1.93/2.10  >>>> Starting back demodulation with 9.
% 1.93/2.10  >>>> Starting back demodulation with 11.
% 1.93/2.10    Following clause subsumed by 12 during input processing: 0 [copy,12,flip.1] meet(A,B)=meet(B,A).
% 1.93/2.10    Following clause subsumed by 13 during input processing: 0 [copy,13,flip.1] join(A,B)=join(B,A).
% 1.93/2.10  >>>> Starting back demodulation with 15.
% 1.93/2.10  >>>> Starting back demodulation with 17.
% 1.93/2.10  >>>> Starting back demodulation with 19.
% 1.93/2.10  >>>> Starting back demodulation with 21.
% 1.93/2.10  >>>> Starting back demodulation with 24.
% 2.14/2.33  >>>> Starting back demodulation with 26.
% 2.14/2.33  
% 2.14/2.33  ======= end of input processing =======
% 2.14/2.33  
% 2.14/2.33  =========== start of search ===========
% 2.14/2.33  
% 2.14/2.33  
% 2.14/2.33  Resetting weight limit to 10.
% 2.14/2.33  
% 2.14/2.33  
% 2.14/2.33  Resetting weight limit to 10.
% 2.14/2.33  
% 2.14/2.33  sos_size=599
% 2.14/2.33  
% 2.14/2.33  -------- PROOF -------- 
% 2.14/2.33  
% 2.14/2.33  ----> UNIT CONFLICT at   0.23 sec ----> 1208 [binary,1206.1,66.1] $F.
% 2.14/2.33  
% 2.14/2.33  Length of proof is 16.  Level of proof is 8.
% 2.14/2.33  
% 2.14/2.33  ---------------- PROOF ----------------
% 2.14/2.33  % SZS status Unsatisfiable
% 2.14/2.33  % SZS output start Refutation
% See solution above
% 2.14/2.33  ------------ end of proof -------------
% 2.14/2.33  
% 2.14/2.33  
% 2.14/2.33  Search stopped by max_proofs option.
% 2.14/2.33  
% 2.14/2.33  
% 2.14/2.33  Search stopped by max_proofs option.
% 2.14/2.33  
% 2.14/2.33  ============ end of search ============
% 2.14/2.33  
% 2.14/2.33  -------------- statistics -------------
% 2.14/2.33  clauses given                238
% 2.14/2.33  clauses generated          34583
% 2.14/2.33  clauses kept                 827
% 2.14/2.33  clauses forward subsumed   23369
% 2.14/2.33  clauses back subsumed         33
% 2.14/2.33  Kbytes malloced             5859
% 2.14/2.33  
% 2.14/2.33  ----------- times (seconds) -----------
% 2.14/2.33  user CPU time          0.23          (0 hr, 0 min, 0 sec)
% 2.14/2.33  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.14/2.33  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.14/2.33  
% 2.14/2.33  That finishes the proof of the theorem.
% 2.14/2.33  
% 2.14/2.33  Process 26989 finished Wed Jul 27 08:29:02 2022
% 2.14/2.33  Otter interrupted
% 2.14/2.33  PROOF FOUND
%------------------------------------------------------------------------------