TSTP Solution File: KRS133+1 by SuperZenon---0.0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SuperZenon---0.0.1
% Problem  : KRS133+1 : TPTP v8.1.0. Released v3.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_super_zenon -p0 -itptp -om -max-time %d %s

% Computer : n028.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 03:31:59 EDT 2022

% Result   : Theorem 36.67s 36.87s
% Output   : Proof 37.52s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.02/0.11  % Problem  : KRS133+1 : TPTP v8.1.0. Released v3.1.0.
% 0.02/0.12  % Command  : run_super_zenon -p0 -itptp -om -max-time %d %s
% 0.12/0.32  % Computer : n028.cluster.edu
% 0.12/0.32  % Model    : x86_64 x86_64
% 0.12/0.32  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.32  % Memory   : 8042.1875MB
% 0.12/0.32  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.32  % CPULimit : 300
% 0.12/0.32  % WCLimit  : 600
% 0.12/0.32  % DateTime : Tue Jun  7 14:42:30 EDT 2022
% 0.12/0.32  % CPUTime  : 
% 36.67/36.87  % SZS status Theorem
% 36.67/36.87  (* PROOF-FOUND *)
% 36.67/36.87  (* BEGIN-PROOF *)
% 36.67/36.87  % SZS output start Proof
% 36.67/36.87  1. (All X, ((cowlThing X) /\ (-. (cowlNothing X)))) (-. (All X, ((cowlThing X) /\ (-. (cowlNothing X)))))   ### Axiom
% 36.67/36.87  2. (-. (xsd_integer T_0)) (xsd_integer T_0)   ### Axiom
% 36.67/36.87  3. (-. (-. (xsd_integer T_0))) (-. (xsd_integer T_0))   ### NotNot 2
% 36.67/36.87  4. (-. (xsd_string T_0)) (-. (xsd_integer T_0))   ### Definition-Pseudo(xsd_string) 3
% 36.67/36.87  5. (-. (-. (xsd_integer T_0))) (-. (xsd_integer T_0))   ### Axiom
% 36.67/36.87  6. (xsd_string T_0) (-. (-. (xsd_integer T_0)))   ### Definition-Pseudo(xsd_string) 5
% 36.67/36.87  7. (-. ((xsd_string T_0) <=> (-. (xsd_integer T_0))))   ### NotEquiv 4 6
% 36.67/36.87  8. (-. (All X, ((xsd_string X) <=> (-. (xsd_integer X)))))   ### NotAllEx 7
% 36.67/36.87  9. (T_1 != T_1)   ### Refl(=)
% 36.67/36.87  10. (cLeptotyphlopidae T_1) (-. (cLeptotyphlopidae T_1))   ### Axiom
% 36.67/36.87  11. (-. (rfamily_name T_1 (xsd_string_8))) (rfamily_name T_1 (xsd_string_8))   ### Axiom
% 36.67/36.87  12. ((cLeptotyphlopidae T_1) => (rfamily_name T_1 (xsd_string_8))) (-. (rfamily_name T_1 (xsd_string_8))) (cLeptotyphlopidae T_1)   ### Imply 10 11
% 36.67/36.87  13. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_1) (-. (rfamily_name T_1 (xsd_string_8)))   ### All 12
% 36.67/36.87  14. (T_1 != T_1)   ### Refl(=)
% 36.67/36.87  15. (cBipedidae T_1) (-. (cBipedidae T_1))   ### Axiom
% 36.67/36.87  16. (-. (rfamily_name T_1 (xsd_string_3))) (rfamily_name T_1 (xsd_string_3))   ### Axiom
% 36.67/36.87  17. ((cBipedidae T_1) => (rfamily_name T_1 (xsd_string_3))) (-. (rfamily_name T_1 (xsd_string_3))) (cBipedidae T_1)   ### Imply 15 16
% 36.67/36.87  18. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_1) (-. (rfamily_name T_1 (xsd_string_3)))   ### All 17
% 36.67/36.87  19. (cLeptotyphlopidae T_1) (-. (cLeptotyphlopidae T_1))   ### Axiom
% 36.67/36.87  20. (-. (cReptile T_1)) (cReptile T_1)   ### Axiom
% 36.67/36.87  21. ((cLeptotyphlopidae T_1) => (cReptile T_1)) (-. (cReptile T_1)) (cLeptotyphlopidae T_1)   ### Imply 19 20
% 36.67/36.87  22. (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_1) (-. (cReptile T_1))   ### All 21
% 36.67/36.87  23. (rfamily_name T_1 (xsd_string_8)) (-. (rfamily_name T_1 (xsd_string_8)))   ### Axiom
% 36.67/36.87  24. (rfamily_name T_1 (xsd_string_3)) (-. (rfamily_name T_1 (xsd_string_3)))   ### Axiom
% 36.67/36.87  25. ((xsd_string_3) != (xsd_string_8)) ((xsd_string_8) = (xsd_string_3))   ### Sym(=)
% 36.67/36.87  26. (((rfamily_name T_1 (xsd_string_8)) /\ (rfamily_name T_1 (xsd_string_3))) => ((xsd_string_8) = (xsd_string_3))) ((xsd_string_3) != (xsd_string_8)) (rfamily_name T_1 (xsd_string_3)) (rfamily_name T_1 (xsd_string_8))   ### DisjTree 23 24 25
% 36.67/36.87  27. (All Y1, (((rfamily_name T_1 (xsd_string_8)) /\ (rfamily_name T_1 Y1)) => ((xsd_string_8) = Y1))) (rfamily_name T_1 (xsd_string_8)) (rfamily_name T_1 (xsd_string_3)) ((xsd_string_3) != (xsd_string_8))   ### All 26
% 36.67/36.87  28. (All Y0, (All Y1, (((rfamily_name T_1 Y0) /\ (rfamily_name T_1 Y1)) => (Y0 = Y1)))) ((xsd_string_3) != (xsd_string_8)) (rfamily_name T_1 (xsd_string_3)) (rfamily_name T_1 (xsd_string_8))   ### All 27
% 36.67/36.87  29. ((Ex Y0, (rfamily_name T_1 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_1 Y0) /\ (rfamily_name T_1 Y1)) => (Y0 = Y1))))) (rfamily_name T_1 (xsd_string_8)) (rfamily_name T_1 (xsd_string_3)) ((xsd_string_3) != (xsd_string_8))   ### And 28
% 36.67/36.87  30. ((cReptile T_1) => ((Ex Y0, (rfamily_name T_1 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_1 Y0) /\ (rfamily_name T_1 Y1)) => (Y0 = Y1)))))) ((xsd_string_3) != (xsd_string_8)) (rfamily_name T_1 (xsd_string_3)) (rfamily_name T_1 (xsd_string_8)) (cLeptotyphlopidae T_1) (All X, ((cLeptotyphlopidae X) => (cReptile X)))   ### Imply 22 29
% 36.67/36.87  31. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_1) (rfamily_name T_1 (xsd_string_8)) (rfamily_name T_1 (xsd_string_3)) ((xsd_string_3) != (xsd_string_8))   ### All 30
% 36.67/36.87  32. (((T_1 = T_1) /\ (rfamily_name T_1 (xsd_string_3))) => (rfamily_name T_1 (xsd_string_3))) ((xsd_string_3) != (xsd_string_8)) (rfamily_name T_1 (xsd_string_8)) (cLeptotyphlopidae T_1) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cBipedidae T_1) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### DisjTree 14 18 31
% 36.67/36.87  33. (All C, (((T_1 = T_1) /\ (rfamily_name T_1 C)) => (rfamily_name T_1 C))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_1) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_1) (rfamily_name T_1 (xsd_string_8)) ((xsd_string_3) != (xsd_string_8))   ### All 32
% 36.67/36.87  34. (((T_1 = T_1) /\ (rfamily_name T_1 (xsd_string_8))) => (rfamily_name T_1 (xsd_string_8))) ((xsd_string_3) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cBipedidae T_1) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All C, (((T_1 = T_1) /\ (rfamily_name T_1 C)) => (rfamily_name T_1 C))) (cLeptotyphlopidae T_1) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### DisjTree 9 13 33
% 36.67/36.87  35. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_1) (All C, (((T_1 = T_1) /\ (rfamily_name T_1 C)) => (rfamily_name T_1 C))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_1) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_8))   ### All 34
% 36.67/36.87  36. (All B, (All C, (((T_1 = B) /\ (rfamily_name T_1 C)) => (rfamily_name B C)))) ((xsd_string_3) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cBipedidae T_1) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cLeptotyphlopidae T_1) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### All 35
% 36.67/36.87  37. (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_1) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_1) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_8))   ### All 36
% 36.67/36.87  38. ((cLeptotyphlopidae T_1) /\ (cBipedidae T_1)) ((xsd_string_3) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### And 37
% 36.67/36.87  39. (-. (-. ((cLeptotyphlopidae T_1) /\ (cBipedidae T_1)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_8))   ### NotNot 38
% 36.67/36.87  40. (-. (All X, (-. ((cLeptotyphlopidae X) /\ (cBipedidae X))))) ((xsd_string_3) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### NotAllEx 39
% 36.67/36.89  41. (cAnomalepidae T_2) (-. (cAnomalepidae T_2))   ### Axiom
% 36.67/36.89  42. (cAnomalepidae T_2) (-. (cAnomalepidae T_2))   ### Axiom
% 36.67/36.89  43. (-. (cReptile T_2)) (cReptile T_2)   ### Axiom
% 36.67/36.89  44. ((cAnomalepidae T_2) => (cReptile T_2)) (-. (cReptile T_2)) (cAnomalepidae T_2)   ### Imply 42 43
% 36.67/36.89  45. (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_2) (-. (cReptile T_2))   ### All 44
% 36.67/36.89  46. (cBipedidae T_2) (-. (cBipedidae T_2))   ### Axiom
% 36.67/36.89  47. (-. (rfamily_name T_2 (xsd_string_3))) (rfamily_name T_2 (xsd_string_3))   ### Axiom
% 36.67/36.89  48. ((cBipedidae T_2) => (rfamily_name T_2 (xsd_string_3))) (-. (rfamily_name T_2 (xsd_string_3))) (cBipedidae T_2)   ### Imply 46 47
% 36.67/36.89  49. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_2) (-. (rfamily_name T_2 (xsd_string_3)))   ### All 48
% 36.67/36.89  50. (rfamily_name T_2 (xsd_string_2)) (-. (rfamily_name T_2 (xsd_string_2)))   ### Axiom
% 36.67/36.89  51. ((xsd_string_2) != (xsd_string_3)) ((xsd_string_3) = (xsd_string_2))   ### Sym(=)
% 36.67/36.89  52. (((rfamily_name T_2 (xsd_string_3)) /\ (rfamily_name T_2 (xsd_string_2))) => ((xsd_string_3) = (xsd_string_2))) ((xsd_string_2) != (xsd_string_3)) (rfamily_name T_2 (xsd_string_2)) (cBipedidae T_2) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### DisjTree 49 50 51
% 36.67/36.89  53. (All Y1, (((rfamily_name T_2 (xsd_string_3)) /\ (rfamily_name T_2 Y1)) => ((xsd_string_3) = Y1))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_2) (rfamily_name T_2 (xsd_string_2)) ((xsd_string_2) != (xsd_string_3))   ### All 52
% 36.67/36.89  54. (All Y0, (All Y1, (((rfamily_name T_2 Y0) /\ (rfamily_name T_2 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_3)) (rfamily_name T_2 (xsd_string_2)) (cBipedidae T_2) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### All 53
% 36.67/36.89  55. ((Ex Y0, (rfamily_name T_2 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_2 Y0) /\ (rfamily_name T_2 Y1)) => (Y0 = Y1))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_2) (rfamily_name T_2 (xsd_string_2)) ((xsd_string_2) != (xsd_string_3))   ### And 54
% 36.67/36.89  56. ((cReptile T_2) => ((Ex Y0, (rfamily_name T_2 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_2 Y0) /\ (rfamily_name T_2 Y1)) => (Y0 = Y1)))))) ((xsd_string_2) != (xsd_string_3)) (rfamily_name T_2 (xsd_string_2)) (cBipedidae T_2) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cAnomalepidae T_2) (All X, ((cAnomalepidae X) => (cReptile X)))   ### Imply 45 55
% 36.67/36.89  57. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_2) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_2) (rfamily_name T_2 (xsd_string_2)) ((xsd_string_2) != (xsd_string_3))   ### All 56
% 36.67/36.89  58. ((cAnomalepidae T_2) => (rfamily_name T_2 (xsd_string_2))) ((xsd_string_2) != (xsd_string_3)) (cBipedidae T_2) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cAnomalepidae T_2)   ### Imply 41 57
% 36.67/36.89  59. (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_2) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_2) ((xsd_string_2) != (xsd_string_3))   ### All 58
% 36.67/36.89  60. ((cBipedidae T_2) /\ (cAnomalepidae T_2)) ((xsd_string_2) != (xsd_string_3)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### And 59
% 36.67/36.89  61. (-. (-. ((cBipedidae T_2) /\ (cAnomalepidae T_2)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) ((xsd_string_2) != (xsd_string_3))   ### NotNot 60
% 36.67/36.89  62. (-. (All X, (-. ((cBipedidae X) /\ (cAnomalepidae X))))) ((xsd_string_2) != (xsd_string_3)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### NotAllEx 61
% 36.67/36.89  63. (T_3 != T_3)   ### Refl(=)
% 36.67/36.89  64. (cGekkonidae T_3) (-. (cGekkonidae T_3))   ### Axiom
% 36.67/36.89  65. (-. (rfamily_name T_3 (xsd_string_7))) (rfamily_name T_3 (xsd_string_7))   ### Axiom
% 36.67/36.89  66. ((cGekkonidae T_3) => (rfamily_name T_3 (xsd_string_7))) (-. (rfamily_name T_3 (xsd_string_7))) (cGekkonidae T_3)   ### Imply 64 65
% 36.67/36.89  67. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_3) (-. (rfamily_name T_3 (xsd_string_7)))   ### All 66
% 36.67/36.89  68. (T_3 != T_3)   ### Refl(=)
% 36.67/36.89  69. (cLeptotyphlopidae T_3) (-. (cLeptotyphlopidae T_3))   ### Axiom
% 36.67/36.89  70. (-. (rfamily_name T_3 (xsd_string_8))) (rfamily_name T_3 (xsd_string_8))   ### Axiom
% 36.67/36.89  71. ((cLeptotyphlopidae T_3) => (rfamily_name T_3 (xsd_string_8))) (-. (rfamily_name T_3 (xsd_string_8))) (cLeptotyphlopidae T_3)   ### Imply 69 70
% 36.67/36.89  72. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_3) (-. (rfamily_name T_3 (xsd_string_8)))   ### All 71
% 36.67/36.89  73. (cGekkonidae T_3) (-. (cGekkonidae T_3))   ### Axiom
% 36.67/36.89  74. (-. (cReptile T_3)) (cReptile T_3)   ### Axiom
% 36.67/36.89  75. ((cGekkonidae T_3) => (cReptile T_3)) (-. (cReptile T_3)) (cGekkonidae T_3)   ### Imply 73 74
% 36.67/36.89  76. (All X, ((cGekkonidae X) => (cReptile X))) (cGekkonidae T_3) (-. (cReptile T_3))   ### All 75
% 36.67/36.89  77. (rfamily_name T_3 (xsd_string_8)) (-. (rfamily_name T_3 (xsd_string_8)))   ### Axiom
% 36.67/36.89  78. (rfamily_name T_3 (xsd_string_7)) (-. (rfamily_name T_3 (xsd_string_7)))   ### Axiom
% 36.67/36.89  79. ((xsd_string_7) != (xsd_string_8)) ((xsd_string_8) = (xsd_string_7))   ### Sym(=)
% 36.67/36.89  80. (((rfamily_name T_3 (xsd_string_8)) /\ (rfamily_name T_3 (xsd_string_7))) => ((xsd_string_8) = (xsd_string_7))) ((xsd_string_7) != (xsd_string_8)) (rfamily_name T_3 (xsd_string_7)) (rfamily_name T_3 (xsd_string_8))   ### DisjTree 77 78 79
% 36.67/36.89  81. (All Y1, (((rfamily_name T_3 (xsd_string_8)) /\ (rfamily_name T_3 Y1)) => ((xsd_string_8) = Y1))) (rfamily_name T_3 (xsd_string_8)) (rfamily_name T_3 (xsd_string_7)) ((xsd_string_7) != (xsd_string_8))   ### All 80
% 36.67/36.89  82. (All Y0, (All Y1, (((rfamily_name T_3 Y0) /\ (rfamily_name T_3 Y1)) => (Y0 = Y1)))) ((xsd_string_7) != (xsd_string_8)) (rfamily_name T_3 (xsd_string_7)) (rfamily_name T_3 (xsd_string_8))   ### All 81
% 36.67/36.89  83. ((Ex Y0, (rfamily_name T_3 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_3 Y0) /\ (rfamily_name T_3 Y1)) => (Y0 = Y1))))) (rfamily_name T_3 (xsd_string_8)) (rfamily_name T_3 (xsd_string_7)) ((xsd_string_7) != (xsd_string_8))   ### And 82
% 36.67/36.89  84. ((cReptile T_3) => ((Ex Y0, (rfamily_name T_3 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_3 Y0) /\ (rfamily_name T_3 Y1)) => (Y0 = Y1)))))) ((xsd_string_7) != (xsd_string_8)) (rfamily_name T_3 (xsd_string_7)) (rfamily_name T_3 (xsd_string_8)) (cGekkonidae T_3) (All X, ((cGekkonidae X) => (cReptile X)))   ### Imply 76 83
% 36.67/36.89  85. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) (cGekkonidae T_3) (rfamily_name T_3 (xsd_string_8)) (rfamily_name T_3 (xsd_string_7)) ((xsd_string_7) != (xsd_string_8))   ### All 84
% 36.67/36.89  86. (((T_3 = T_3) /\ (rfamily_name T_3 (xsd_string_8))) => (rfamily_name T_3 (xsd_string_8))) ((xsd_string_7) != (xsd_string_8)) (rfamily_name T_3 (xsd_string_7)) (cGekkonidae T_3) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLeptotyphlopidae T_3) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### DisjTree 68 72 85
% 36.67/36.90  87. (All C, (((T_3 = T_3) /\ (rfamily_name T_3 C)) => (rfamily_name T_3 C))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_3) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) (cGekkonidae T_3) (rfamily_name T_3 (xsd_string_7)) ((xsd_string_7) != (xsd_string_8))   ### All 86
% 36.67/36.90  88. (((T_3 = T_3) /\ (rfamily_name T_3 (xsd_string_7))) => (rfamily_name T_3 (xsd_string_7))) ((xsd_string_7) != (xsd_string_8)) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLeptotyphlopidae T_3) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All C, (((T_3 = T_3) /\ (rfamily_name T_3 C)) => (rfamily_name T_3 C))) (cGekkonidae T_3) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### DisjTree 63 67 87
% 36.67/36.90  89. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_3) (All C, (((T_3 = T_3) /\ (rfamily_name T_3 C)) => (rfamily_name T_3 C))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_3) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) ((xsd_string_7) != (xsd_string_8))   ### All 88
% 36.67/36.90  90. (All B, (All C, (((T_3 = B) /\ (rfamily_name T_3 C)) => (rfamily_name B C)))) ((xsd_string_7) != (xsd_string_8)) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLeptotyphlopidae T_3) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cGekkonidae T_3) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### All 89
% 36.67/36.90  91. (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_3) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_3) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) ((xsd_string_7) != (xsd_string_8))   ### All 90
% 36.67/36.90  92. ((cLeptotyphlopidae T_3) /\ (cGekkonidae T_3)) ((xsd_string_7) != (xsd_string_8)) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### And 91
% 36.67/36.90  93. (-. (-. ((cLeptotyphlopidae T_3) /\ (cGekkonidae T_3)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) ((xsd_string_7) != (xsd_string_8))   ### NotNot 92
% 36.67/36.90  94. (-. (All X, (-. ((cLeptotyphlopidae X) /\ (cGekkonidae X))))) ((xsd_string_7) != (xsd_string_8)) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### NotAllEx 93
% 36.67/36.90  95. (cSphenodontidae T_4) (-. (cSphenodontidae T_4))   ### Axiom
% 36.67/36.90  96. (-. (cReptile T_4)) (cReptile T_4)   ### Axiom
% 36.67/36.90  97. ((cSphenodontidae T_4) => (cReptile T_4)) (-. (cReptile T_4)) (cSphenodontidae T_4)   ### Imply 95 96
% 36.67/36.90  98. (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_4) (-. (cReptile T_4))   ### All 97
% 36.67/36.90  99. (cSphenodontidae T_4) (-. (cSphenodontidae T_4))   ### Axiom
% 36.67/36.90  100. (-. (rfamily_name T_4 (xsd_string_10))) (rfamily_name T_4 (xsd_string_10))   ### Axiom
% 36.67/36.90  101. ((cSphenodontidae T_4) => (rfamily_name T_4 (xsd_string_10))) (-. (rfamily_name T_4 (xsd_string_10))) (cSphenodontidae T_4)   ### Imply 99 100
% 36.67/36.90  102. (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_4) (-. (rfamily_name T_4 (xsd_string_10)))   ### All 101
% 36.67/36.90  103. (cAmphisbaenidae T_4) (-. (cAmphisbaenidae T_4))   ### Axiom
% 36.67/36.90  104. (-. (rfamily_name T_4 (xsd_string_1))) (rfamily_name T_4 (xsd_string_1))   ### Axiom
% 36.67/36.90  105. ((cAmphisbaenidae T_4) => (rfamily_name T_4 (xsd_string_1))) (-. (rfamily_name T_4 (xsd_string_1))) (cAmphisbaenidae T_4)   ### Imply 103 104
% 36.67/36.90  106. (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_4) (-. (rfamily_name T_4 (xsd_string_1)))   ### All 105
% 36.67/36.90  107. ((xsd_string_1) != (xsd_string_10)) ((xsd_string_10) = (xsd_string_1))   ### Sym(=)
% 36.67/36.90  108. (((rfamily_name T_4 (xsd_string_10)) /\ (rfamily_name T_4 (xsd_string_1))) => ((xsd_string_10) = (xsd_string_1))) ((xsd_string_1) != (xsd_string_10)) (cAmphisbaenidae T_4) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cSphenodontidae T_4) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### DisjTree 102 106 107
% 36.67/36.90  109. (All Y1, (((rfamily_name T_4 (xsd_string_10)) /\ (rfamily_name T_4 Y1)) => ((xsd_string_10) = Y1))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_4) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_4) ((xsd_string_1) != (xsd_string_10))   ### All 108
% 36.67/36.90  110. (All Y0, (All Y1, (((rfamily_name T_4 Y0) /\ (rfamily_name T_4 Y1)) => (Y0 = Y1)))) ((xsd_string_1) != (xsd_string_10)) (cAmphisbaenidae T_4) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cSphenodontidae T_4) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### All 109
% 36.67/36.90  111. ((Ex Y0, (rfamily_name T_4 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_4 Y0) /\ (rfamily_name T_4 Y1)) => (Y0 = Y1))))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_4) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_4) ((xsd_string_1) != (xsd_string_10))   ### And 110
% 36.67/36.90  112. ((cReptile T_4) => ((Ex Y0, (rfamily_name T_4 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_4 Y0) /\ (rfamily_name T_4 Y1)) => (Y0 = Y1)))))) ((xsd_string_1) != (xsd_string_10)) (cAmphisbaenidae T_4) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_4) (All X, ((cSphenodontidae X) => (cReptile X)))   ### Imply 98 111
% 36.67/36.90  113. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_4) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_4) ((xsd_string_1) != (xsd_string_10))   ### All 112
% 36.67/36.90  114. ((cAmphisbaenidae T_4) /\ (cSphenodontidae T_4)) ((xsd_string_1) != (xsd_string_10)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 113
% 36.95/37.15  115. (-. (-. ((cAmphisbaenidae T_4) /\ (cSphenodontidae T_4)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) ((xsd_string_1) != (xsd_string_10))   ### NotNot 114
% 36.95/37.15  116. (-. (All X, (-. ((cAmphisbaenidae X) /\ (cSphenodontidae X))))) ((xsd_string_1) != (xsd_string_10)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 115
% 36.95/37.15  117. (cCrocodylidae T_5) (-. (cCrocodylidae T_5))   ### Axiom
% 36.95/37.15  118. (-. (cReptile T_5)) (cReptile T_5)   ### Axiom
% 36.95/37.15  119. ((cCrocodylidae T_5) => (cReptile T_5)) (-. (cReptile T_5)) (cCrocodylidae T_5)   ### Imply 117 118
% 36.95/37.15  120. (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_5) (-. (cReptile T_5))   ### All 119
% 36.95/37.15  121. (cCrocodylidae T_5) (-. (cCrocodylidae T_5))   ### Axiom
% 36.95/37.15  122. (-. (rfamily_name T_5 (xsd_string_5))) (rfamily_name T_5 (xsd_string_5))   ### Axiom
% 36.95/37.15  123. ((cCrocodylidae T_5) => (rfamily_name T_5 (xsd_string_5))) (-. (rfamily_name T_5 (xsd_string_5))) (cCrocodylidae T_5)   ### Imply 121 122
% 36.95/37.15  124. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_5) (-. (rfamily_name T_5 (xsd_string_5)))   ### All 123
% 36.95/37.15  125. (cBipedidae T_5) (-. (cBipedidae T_5))   ### Axiom
% 36.95/37.15  126. (-. (rfamily_name T_5 (xsd_string_3))) (rfamily_name T_5 (xsd_string_3))   ### Axiom
% 36.95/37.15  127. ((cBipedidae T_5) => (rfamily_name T_5 (xsd_string_3))) (-. (rfamily_name T_5 (xsd_string_3))) (cBipedidae T_5)   ### Imply 125 126
% 36.95/37.15  128. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_5) (-. (rfamily_name T_5 (xsd_string_3)))   ### All 127
% 36.95/37.15  129. ((xsd_string_3) != (xsd_string_5)) ((xsd_string_5) = (xsd_string_3))   ### Sym(=)
% 36.95/37.15  130. (((rfamily_name T_5 (xsd_string_5)) /\ (rfamily_name T_5 (xsd_string_3))) => ((xsd_string_5) = (xsd_string_3))) ((xsd_string_3) != (xsd_string_5)) (cBipedidae T_5) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cCrocodylidae T_5) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### DisjTree 124 128 129
% 36.95/37.15  131. (All Y1, (((rfamily_name T_5 (xsd_string_5)) /\ (rfamily_name T_5 Y1)) => ((xsd_string_5) = Y1))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_5) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_5) ((xsd_string_3) != (xsd_string_5))   ### All 130
% 36.95/37.15  132. (All Y0, (All Y1, (((rfamily_name T_5 Y0) /\ (rfamily_name T_5 Y1)) => (Y0 = Y1)))) ((xsd_string_3) != (xsd_string_5)) (cBipedidae T_5) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cCrocodylidae T_5) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### All 131
% 36.95/37.15  133. ((Ex Y0, (rfamily_name T_5 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_5 Y0) /\ (rfamily_name T_5 Y1)) => (Y0 = Y1))))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_5) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_5) ((xsd_string_3) != (xsd_string_5))   ### And 132
% 36.95/37.15  134. ((cReptile T_5) => ((Ex Y0, (rfamily_name T_5 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_5 Y0) /\ (rfamily_name T_5 Y1)) => (Y0 = Y1)))))) ((xsd_string_3) != (xsd_string_5)) (cBipedidae T_5) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_5) (All X, ((cCrocodylidae X) => (cReptile X)))   ### Imply 120 133
% 36.95/37.15  135. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_5) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_5) ((xsd_string_3) != (xsd_string_5))   ### All 134
% 36.95/37.15  136. ((cBipedidae T_5) /\ (cCrocodylidae T_5)) ((xsd_string_3) != (xsd_string_5)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 135
% 36.95/37.15  137. (-. (-. ((cBipedidae T_5) /\ (cCrocodylidae T_5)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) ((xsd_string_3) != (xsd_string_5))   ### NotNot 136
% 36.95/37.15  138. (-. (All X, (-. ((cBipedidae X) /\ (cCrocodylidae X))))) ((xsd_string_3) != (xsd_string_5)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 137
% 36.95/37.15  139. (T_6 != T_6)   ### Refl(=)
% 36.95/37.15  140. (cBipedidae T_6) (-. (cBipedidae T_6))   ### Axiom
% 36.95/37.15  141. (-. (rfamily_name T_6 (xsd_string_3))) (rfamily_name T_6 (xsd_string_3))   ### Axiom
% 36.95/37.15  142. ((cBipedidae T_6) => (rfamily_name T_6 (xsd_string_3))) (-. (rfamily_name T_6 (xsd_string_3))) (cBipedidae T_6)   ### Imply 140 141
% 36.95/37.15  143. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_6) (-. (rfamily_name T_6 (xsd_string_3)))   ### All 142
% 36.95/37.15  144. (T_6 != T_6)   ### Refl(=)
% 36.95/37.15  145. (cGekkonidae T_6) (-. (cGekkonidae T_6))   ### Axiom
% 36.95/37.15  146. (-. (rfamily_name T_6 (xsd_string_7))) (rfamily_name T_6 (xsd_string_7))   ### Axiom
% 36.95/37.15  147. ((cGekkonidae T_6) => (rfamily_name T_6 (xsd_string_7))) (-. (rfamily_name T_6 (xsd_string_7))) (cGekkonidae T_6)   ### Imply 145 146
% 36.95/37.15  148. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_6) (-. (rfamily_name T_6 (xsd_string_7)))   ### All 147
% 36.95/37.15  149. (cGekkonidae T_6) (-. (cGekkonidae T_6))   ### Axiom
% 36.95/37.15  150. (-. (cReptile T_6)) (cReptile T_6)   ### Axiom
% 36.95/37.15  151. ((cGekkonidae T_6) => (cReptile T_6)) (-. (cReptile T_6)) (cGekkonidae T_6)   ### Imply 149 150
% 36.95/37.15  152. (All X, ((cGekkonidae X) => (cReptile X))) (cGekkonidae T_6) (-. (cReptile T_6))   ### All 151
% 36.95/37.15  153. (rfamily_name T_6 (xsd_string_7)) (-. (rfamily_name T_6 (xsd_string_7)))   ### Axiom
% 36.95/37.15  154. (rfamily_name T_6 (xsd_string_3)) (-. (rfamily_name T_6 (xsd_string_3)))   ### Axiom
% 36.95/37.15  155. ((xsd_string_3) != (xsd_string_7)) ((xsd_string_7) = (xsd_string_3))   ### Sym(=)
% 36.95/37.15  156. (((rfamily_name T_6 (xsd_string_7)) /\ (rfamily_name T_6 (xsd_string_3))) => ((xsd_string_7) = (xsd_string_3))) ((xsd_string_3) != (xsd_string_7)) (rfamily_name T_6 (xsd_string_3)) (rfamily_name T_6 (xsd_string_7))   ### DisjTree 153 154 155
% 36.95/37.15  157. (All Y1, (((rfamily_name T_6 (xsd_string_7)) /\ (rfamily_name T_6 Y1)) => ((xsd_string_7) = Y1))) (rfamily_name T_6 (xsd_string_7)) (rfamily_name T_6 (xsd_string_3)) ((xsd_string_3) != (xsd_string_7))   ### All 156
% 36.95/37.15  158. (All Y0, (All Y1, (((rfamily_name T_6 Y0) /\ (rfamily_name T_6 Y1)) => (Y0 = Y1)))) ((xsd_string_3) != (xsd_string_7)) (rfamily_name T_6 (xsd_string_3)) (rfamily_name T_6 (xsd_string_7))   ### All 157
% 36.95/37.15  159. ((Ex Y0, (rfamily_name T_6 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_6 Y0) /\ (rfamily_name T_6 Y1)) => (Y0 = Y1))))) (rfamily_name T_6 (xsd_string_7)) (rfamily_name T_6 (xsd_string_3)) ((xsd_string_3) != (xsd_string_7))   ### And 158
% 36.95/37.15  160. ((cReptile T_6) => ((Ex Y0, (rfamily_name T_6 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_6 Y0) /\ (rfamily_name T_6 Y1)) => (Y0 = Y1)))))) ((xsd_string_3) != (xsd_string_7)) (rfamily_name T_6 (xsd_string_3)) (rfamily_name T_6 (xsd_string_7)) (cGekkonidae T_6) (All X, ((cGekkonidae X) => (cReptile X)))   ### Imply 152 159
% 36.95/37.18  161. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) (cGekkonidae T_6) (rfamily_name T_6 (xsd_string_7)) (rfamily_name T_6 (xsd_string_3)) ((xsd_string_3) != (xsd_string_7))   ### All 160
% 36.95/37.18  162. (((T_6 = T_6) /\ (rfamily_name T_6 (xsd_string_7))) => (rfamily_name T_6 (xsd_string_7))) ((xsd_string_3) != (xsd_string_7)) (rfamily_name T_6 (xsd_string_3)) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cGekkonidae T_6) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### DisjTree 144 148 161
% 36.95/37.18  163. (All C, (((T_6 = T_6) /\ (rfamily_name T_6 C)) => (rfamily_name T_6 C))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_6) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) (rfamily_name T_6 (xsd_string_3)) ((xsd_string_3) != (xsd_string_7))   ### All 162
% 36.95/37.18  164. (((T_6 = T_6) /\ (rfamily_name T_6 (xsd_string_3))) => (rfamily_name T_6 (xsd_string_3))) ((xsd_string_3) != (xsd_string_7)) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cGekkonidae T_6) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All C, (((T_6 = T_6) /\ (rfamily_name T_6 C)) => (rfamily_name T_6 C))) (cBipedidae T_6) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### DisjTree 139 143 163
% 36.95/37.18  165. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_6) (All C, (((T_6 = T_6) /\ (rfamily_name T_6 C)) => (rfamily_name T_6 C))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_6) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_7))   ### All 164
% 36.95/37.18  166. (All B, (All C, (((T_6 = B) /\ (rfamily_name T_6 C)) => (rfamily_name B C)))) ((xsd_string_3) != (xsd_string_7)) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cGekkonidae T_6) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cBipedidae T_6) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### All 165
% 36.95/37.18  167. (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_6) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_6) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_7))   ### All 166
% 36.95/37.18  168. ((cBipedidae T_6) /\ (cGekkonidae T_6)) ((xsd_string_3) != (xsd_string_7)) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### And 167
% 36.95/37.18  169. (-. (-. ((cBipedidae T_6) /\ (cGekkonidae T_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_7))   ### NotNot 168
% 36.95/37.18  170. (-. (All X, (-. ((cBipedidae X) /\ (cGekkonidae X))))) ((xsd_string_3) != (xsd_string_7)) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### NotAllEx 169
% 36.95/37.18  171. (T_7 != T_7)   ### Refl(=)
% 36.95/37.18  172. (cSphenodontidae T_7) (-. (cSphenodontidae T_7))   ### Axiom
% 36.95/37.18  173. (-. (rfamily_name T_7 (xsd_string_10))) (rfamily_name T_7 (xsd_string_10))   ### Axiom
% 36.95/37.18  174. ((cSphenodontidae T_7) => (rfamily_name T_7 (xsd_string_10))) (-. (rfamily_name T_7 (xsd_string_10))) (cSphenodontidae T_7)   ### Imply 172 173
% 36.95/37.18  175. (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_7) (-. (rfamily_name T_7 (xsd_string_10)))   ### All 174
% 36.95/37.18  176. (T_7 != T_7)   ### Refl(=)
% 36.95/37.18  177. (cBipedidae T_7) (-. (cBipedidae T_7))   ### Axiom
% 36.95/37.18  178. (-. (rfamily_name T_7 (xsd_string_3))) (rfamily_name T_7 (xsd_string_3))   ### Axiom
% 36.95/37.18  179. ((cBipedidae T_7) => (rfamily_name T_7 (xsd_string_3))) (-. (rfamily_name T_7 (xsd_string_3))) (cBipedidae T_7)   ### Imply 177 178
% 36.95/37.18  180. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_7) (-. (rfamily_name T_7 (xsd_string_3)))   ### All 179
% 36.95/37.18  181. (cSphenodontidae T_7) (-. (cSphenodontidae T_7))   ### Axiom
% 36.95/37.18  182. (-. (cReptile T_7)) (cReptile T_7)   ### Axiom
% 36.95/37.18  183. ((cSphenodontidae T_7) => (cReptile T_7)) (-. (cReptile T_7)) (cSphenodontidae T_7)   ### Imply 181 182
% 36.95/37.18  184. (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_7) (-. (cReptile T_7))   ### All 183
% 36.95/37.18  185. (rfamily_name T_7 (xsd_string_10)) (-. (rfamily_name T_7 (xsd_string_10)))   ### Axiom
% 36.95/37.18  186. (rfamily_name T_7 (xsd_string_3)) (-. (rfamily_name T_7 (xsd_string_3)))   ### Axiom
% 36.95/37.18  187. ((xsd_string_3) != (xsd_string_10)) ((xsd_string_10) = (xsd_string_3))   ### Sym(=)
% 36.95/37.18  188. (((rfamily_name T_7 (xsd_string_10)) /\ (rfamily_name T_7 (xsd_string_3))) => ((xsd_string_10) = (xsd_string_3))) ((xsd_string_3) != (xsd_string_10)) (rfamily_name T_7 (xsd_string_3)) (rfamily_name T_7 (xsd_string_10))   ### DisjTree 185 186 187
% 36.95/37.18  189. (All Y1, (((rfamily_name T_7 (xsd_string_10)) /\ (rfamily_name T_7 Y1)) => ((xsd_string_10) = Y1))) (rfamily_name T_7 (xsd_string_10)) (rfamily_name T_7 (xsd_string_3)) ((xsd_string_3) != (xsd_string_10))   ### All 188
% 36.95/37.18  190. (All Y0, (All Y1, (((rfamily_name T_7 Y0) /\ (rfamily_name T_7 Y1)) => (Y0 = Y1)))) ((xsd_string_3) != (xsd_string_10)) (rfamily_name T_7 (xsd_string_3)) (rfamily_name T_7 (xsd_string_10))   ### All 189
% 36.95/37.18  191. ((Ex Y0, (rfamily_name T_7 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_7 Y0) /\ (rfamily_name T_7 Y1)) => (Y0 = Y1))))) (rfamily_name T_7 (xsd_string_10)) (rfamily_name T_7 (xsd_string_3)) ((xsd_string_3) != (xsd_string_10))   ### And 190
% 36.95/37.18  192. ((cReptile T_7) => ((Ex Y0, (rfamily_name T_7 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_7 Y0) /\ (rfamily_name T_7 Y1)) => (Y0 = Y1)))))) ((xsd_string_3) != (xsd_string_10)) (rfamily_name T_7 (xsd_string_3)) (rfamily_name T_7 (xsd_string_10)) (cSphenodontidae T_7) (All X, ((cSphenodontidae X) => (cReptile X)))   ### Imply 184 191
% 36.95/37.18  193. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_7) (rfamily_name T_7 (xsd_string_10)) (rfamily_name T_7 (xsd_string_3)) ((xsd_string_3) != (xsd_string_10))   ### All 192
% 36.95/37.18  194. (((T_7 = T_7) /\ (rfamily_name T_7 (xsd_string_3))) => (rfamily_name T_7 (xsd_string_3))) ((xsd_string_3) != (xsd_string_10)) (rfamily_name T_7 (xsd_string_10)) (cSphenodontidae T_7) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cBipedidae T_7) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### DisjTree 176 180 193
% 36.95/37.19  195. (((T_7 = T_7) /\ (rfamily_name T_7 (xsd_string_10))) => (rfamily_name T_7 (xsd_string_10))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_7) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_10)) (((T_7 = T_7) /\ (rfamily_name T_7 (xsd_string_3))) => (rfamily_name T_7 (xsd_string_3))) (cSphenodontidae T_7) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### DisjTree 171 175 194
% 36.95/37.19  196. (All C, (((T_7 = T_7) /\ (rfamily_name T_7 C)) => (rfamily_name T_7 C))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_7) (((T_7 = T_7) /\ (rfamily_name T_7 (xsd_string_3))) => (rfamily_name T_7 (xsd_string_3))) ((xsd_string_3) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cBipedidae T_7) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### All 195
% 36.95/37.19  197. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_7) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_10)) (cSphenodontidae T_7) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All C, (((T_7 = T_7) /\ (rfamily_name T_7 C)) => (rfamily_name T_7 C)))   ### All 196
% 36.95/37.19  198. (All B, (All C, (((T_7 = B) /\ (rfamily_name T_7 C)) => (rfamily_name B C)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_7) ((xsd_string_3) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cBipedidae T_7) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### All 197
% 36.95/37.19  199. (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_7) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_10)) (cSphenodontidae T_7) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### All 198
% 36.95/37.19  200. ((cBipedidae T_7) /\ (cSphenodontidae T_7)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) ((xsd_string_3) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### And 199
% 36.95/37.19  201. (-. (-. ((cBipedidae T_7) /\ (cSphenodontidae T_7)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### NotNot 200
% 36.95/37.19  202. (-. (All X, (-. ((cBipedidae X) /\ (cSphenodontidae X))))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) ((xsd_string_3) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### NotAllEx 201
% 36.95/37.19  203. (cCrocodylidae T_8) (-. (cCrocodylidae T_8))   ### Axiom
% 36.95/37.19  204. (-. (cReptile T_8)) (cReptile T_8)   ### Axiom
% 36.95/37.19  205. ((cCrocodylidae T_8) => (cReptile T_8)) (-. (cReptile T_8)) (cCrocodylidae T_8)   ### Imply 203 204
% 36.95/37.19  206. (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_8) (-. (cReptile T_8))   ### All 205
% 36.95/37.19  207. (cCrocodylidae T_8) (-. (cCrocodylidae T_8))   ### Axiom
% 36.95/37.19  208. (-. (rfamily_name T_8 (xsd_string_5))) (rfamily_name T_8 (xsd_string_5))   ### Axiom
% 36.95/37.19  209. ((cCrocodylidae T_8) => (rfamily_name T_8 (xsd_string_5))) (-. (rfamily_name T_8 (xsd_string_5))) (cCrocodylidae T_8)   ### Imply 207 208
% 36.95/37.19  210. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_8) (-. (rfamily_name T_8 (xsd_string_5)))   ### All 209
% 36.95/37.19  211. (cGekkonidae T_8) (-. (cGekkonidae T_8))   ### Axiom
% 36.95/37.19  212. (-. (rfamily_name T_8 (xsd_string_7))) (rfamily_name T_8 (xsd_string_7))   ### Axiom
% 36.95/37.19  213. ((cGekkonidae T_8) => (rfamily_name T_8 (xsd_string_7))) (-. (rfamily_name T_8 (xsd_string_7))) (cGekkonidae T_8)   ### Imply 211 212
% 36.95/37.19  214. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_8) (-. (rfamily_name T_8 (xsd_string_7)))   ### All 213
% 36.95/37.19  215. ((xsd_string_5) != (xsd_string_7)) ((xsd_string_5) = (xsd_string_7))   ### Axiom
% 36.95/37.19  216. (((rfamily_name T_8 (xsd_string_5)) /\ (rfamily_name T_8 (xsd_string_7))) => ((xsd_string_5) = (xsd_string_7))) ((xsd_string_5) != (xsd_string_7)) (cGekkonidae T_8) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cCrocodylidae T_8) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### DisjTree 210 214 215
% 36.95/37.19  217. (All Y1, (((rfamily_name T_8 (xsd_string_5)) /\ (rfamily_name T_8 Y1)) => ((xsd_string_5) = Y1))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_8) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_8) ((xsd_string_5) != (xsd_string_7))   ### All 216
% 36.95/37.19  218. (All Y0, (All Y1, (((rfamily_name T_8 Y0) /\ (rfamily_name T_8 Y1)) => (Y0 = Y1)))) ((xsd_string_5) != (xsd_string_7)) (cGekkonidae T_8) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cCrocodylidae T_8) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### All 217
% 36.95/37.19  219. ((Ex Y0, (rfamily_name T_8 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_8 Y0) /\ (rfamily_name T_8 Y1)) => (Y0 = Y1))))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_8) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_8) ((xsd_string_5) != (xsd_string_7))   ### And 218
% 36.95/37.19  220. ((cReptile T_8) => ((Ex Y0, (rfamily_name T_8 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_8 Y0) /\ (rfamily_name T_8 Y1)) => (Y0 = Y1)))))) ((xsd_string_5) != (xsd_string_7)) (cGekkonidae T_8) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_8) (All X, ((cCrocodylidae X) => (cReptile X)))   ### Imply 206 219
% 36.95/37.19  221. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_8) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_8) ((xsd_string_5) != (xsd_string_7))   ### All 220
% 36.95/37.19  222. ((cGekkonidae T_8) /\ (cCrocodylidae T_8)) ((xsd_string_5) != (xsd_string_7)) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 221
% 36.95/37.20  223. (-. (-. ((cGekkonidae T_8) /\ (cCrocodylidae T_8)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) ((xsd_string_5) != (xsd_string_7))   ### NotNot 222
% 36.95/37.20  224. (-. (All X, (-. ((cGekkonidae X) /\ (cCrocodylidae X))))) ((xsd_string_5) != (xsd_string_7)) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 223
% 36.95/37.20  225. (T_9 != T_9)   ### Refl(=)
% 36.95/37.20  226. (cGekkonidae T_9) (-. (cGekkonidae T_9))   ### Axiom
% 36.95/37.20  227. (-. (rfamily_name T_9 (xsd_string_7))) (rfamily_name T_9 (xsd_string_7))   ### Axiom
% 36.95/37.20  228. ((cGekkonidae T_9) => (rfamily_name T_9 (xsd_string_7))) (-. (rfamily_name T_9 (xsd_string_7))) (cGekkonidae T_9)   ### Imply 226 227
% 36.95/37.20  229. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_9) (-. (rfamily_name T_9 (xsd_string_7)))   ### All 228
% 36.95/37.20  230. (T_9 != T_9)   ### Refl(=)
% 36.95/37.20  231. (cSphenodontidae T_9) (-. (cSphenodontidae T_9))   ### Axiom
% 36.95/37.20  232. (-. (rfamily_name T_9 (xsd_string_10))) (rfamily_name T_9 (xsd_string_10))   ### Axiom
% 36.95/37.20  233. ((cSphenodontidae T_9) => (rfamily_name T_9 (xsd_string_10))) (-. (rfamily_name T_9 (xsd_string_10))) (cSphenodontidae T_9)   ### Imply 231 232
% 36.95/37.20  234. (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_9) (-. (rfamily_name T_9 (xsd_string_10)))   ### All 233
% 36.95/37.20  235. (cSphenodontidae T_9) (-. (cSphenodontidae T_9))   ### Axiom
% 36.95/37.20  236. (-. (cReptile T_9)) (cReptile T_9)   ### Axiom
% 36.95/37.20  237. ((cSphenodontidae T_9) => (cReptile T_9)) (-. (cReptile T_9)) (cSphenodontidae T_9)   ### Imply 235 236
% 36.95/37.20  238. (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_9) (-. (cReptile T_9))   ### All 237
% 36.95/37.20  239. (rfamily_name T_9 (xsd_string_10)) (-. (rfamily_name T_9 (xsd_string_10)))   ### Axiom
% 36.95/37.20  240. (rfamily_name T_9 (xsd_string_7)) (-. (rfamily_name T_9 (xsd_string_7)))   ### Axiom
% 36.95/37.20  241. ((xsd_string_7) != (xsd_string_10)) ((xsd_string_10) = (xsd_string_7))   ### Sym(=)
% 36.95/37.20  242. (((rfamily_name T_9 (xsd_string_10)) /\ (rfamily_name T_9 (xsd_string_7))) => ((xsd_string_10) = (xsd_string_7))) ((xsd_string_7) != (xsd_string_10)) (rfamily_name T_9 (xsd_string_7)) (rfamily_name T_9 (xsd_string_10))   ### DisjTree 239 240 241
% 36.95/37.20  243. (All Y1, (((rfamily_name T_9 (xsd_string_10)) /\ (rfamily_name T_9 Y1)) => ((xsd_string_10) = Y1))) (rfamily_name T_9 (xsd_string_10)) (rfamily_name T_9 (xsd_string_7)) ((xsd_string_7) != (xsd_string_10))   ### All 242
% 36.95/37.20  244. (All Y0, (All Y1, (((rfamily_name T_9 Y0) /\ (rfamily_name T_9 Y1)) => (Y0 = Y1)))) ((xsd_string_7) != (xsd_string_10)) (rfamily_name T_9 (xsd_string_7)) (rfamily_name T_9 (xsd_string_10))   ### All 243
% 36.95/37.20  245. ((Ex Y0, (rfamily_name T_9 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_9 Y0) /\ (rfamily_name T_9 Y1)) => (Y0 = Y1))))) (rfamily_name T_9 (xsd_string_10)) (rfamily_name T_9 (xsd_string_7)) ((xsd_string_7) != (xsd_string_10))   ### And 244
% 36.95/37.20  246. ((cReptile T_9) => ((Ex Y0, (rfamily_name T_9 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_9 Y0) /\ (rfamily_name T_9 Y1)) => (Y0 = Y1)))))) ((xsd_string_7) != (xsd_string_10)) (rfamily_name T_9 (xsd_string_7)) (rfamily_name T_9 (xsd_string_10)) (cSphenodontidae T_9) (All X, ((cSphenodontidae X) => (cReptile X)))   ### Imply 238 245
% 36.95/37.20  247. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_9) (rfamily_name T_9 (xsd_string_10)) (rfamily_name T_9 (xsd_string_7)) ((xsd_string_7) != (xsd_string_10))   ### All 246
% 36.95/37.20  248. (((T_9 = T_9) /\ (rfamily_name T_9 (xsd_string_10))) => (rfamily_name T_9 (xsd_string_10))) ((xsd_string_7) != (xsd_string_10)) (rfamily_name T_9 (xsd_string_7)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cSphenodontidae T_9) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### DisjTree 230 234 247
% 36.95/37.20  249. (All C, (((T_9 = T_9) /\ (rfamily_name T_9 C)) => (rfamily_name T_9 C))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_9) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (rfamily_name T_9 (xsd_string_7)) ((xsd_string_7) != (xsd_string_10))   ### All 248
% 36.95/37.20  250. (((T_9 = T_9) /\ (rfamily_name T_9 (xsd_string_7))) => (rfamily_name T_9 (xsd_string_7))) ((xsd_string_7) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cSphenodontidae T_9) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All C, (((T_9 = T_9) /\ (rfamily_name T_9 C)) => (rfamily_name T_9 C))) (cGekkonidae T_9) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### DisjTree 225 229 249
% 36.95/37.20  251. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_9) (All C, (((T_9 = T_9) /\ (rfamily_name T_9 C)) => (rfamily_name T_9 C))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_9) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) ((xsd_string_7) != (xsd_string_10))   ### All 250
% 36.95/37.20  252. (All B, (All C, (((T_9 = B) /\ (rfamily_name T_9 C)) => (rfamily_name B C)))) ((xsd_string_7) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cSphenodontidae T_9) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cGekkonidae T_9) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### All 251
% 36.95/37.20  253. (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_9) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_9) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) ((xsd_string_7) != (xsd_string_10))   ### All 252
% 36.95/37.20  254. ((cGekkonidae T_9) /\ (cSphenodontidae T_9)) ((xsd_string_7) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### And 253
% 36.95/37.20  255. (-. (-. ((cGekkonidae T_9) /\ (cSphenodontidae T_9)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) ((xsd_string_7) != (xsd_string_10))   ### NotNot 254
% 36.95/37.20  256. (-. (All X, (-. ((cGekkonidae X) /\ (cSphenodontidae X))))) ((xsd_string_7) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### NotAllEx 255
% 37.04/37.21  257. (cSphenodontidae T_10) (-. (cSphenodontidae T_10))   ### Axiom
% 37.04/37.21  258. (-. (cReptile T_10)) (cReptile T_10)   ### Axiom
% 37.04/37.21  259. ((cSphenodontidae T_10) => (cReptile T_10)) (-. (cReptile T_10)) (cSphenodontidae T_10)   ### Imply 257 258
% 37.04/37.21  260. (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_10) (-. (cReptile T_10))   ### All 259
% 37.04/37.21  261. (cSphenodontidae T_10) (-. (cSphenodontidae T_10))   ### Axiom
% 37.04/37.21  262. (-. (rfamily_name T_10 (xsd_string_10))) (rfamily_name T_10 (xsd_string_10))   ### Axiom
% 37.04/37.21  263. ((cSphenodontidae T_10) => (rfamily_name T_10 (xsd_string_10))) (-. (rfamily_name T_10 (xsd_string_10))) (cSphenodontidae T_10)   ### Imply 261 262
% 37.04/37.21  264. (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_10) (-. (rfamily_name T_10 (xsd_string_10)))   ### All 263
% 37.04/37.21  265. (cAgamidae T_10) (-. (cAgamidae T_10))   ### Axiom
% 37.04/37.21  266. (-. (rfamily_name T_10 (xsd_string_0))) (rfamily_name T_10 (xsd_string_0))   ### Axiom
% 37.04/37.21  267. ((cAgamidae T_10) => (rfamily_name T_10 (xsd_string_0))) (-. (rfamily_name T_10 (xsd_string_0))) (cAgamidae T_10)   ### Imply 265 266
% 37.04/37.21  268. (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_10) (-. (rfamily_name T_10 (xsd_string_0)))   ### All 267
% 37.04/37.21  269. ((xsd_string_0) != (xsd_string_10)) ((xsd_string_10) = (xsd_string_0))   ### Sym(=)
% 37.04/37.21  270. (((rfamily_name T_10 (xsd_string_10)) /\ (rfamily_name T_10 (xsd_string_0))) => ((xsd_string_10) = (xsd_string_0))) ((xsd_string_0) != (xsd_string_10)) (cAgamidae T_10) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cSphenodontidae T_10) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### DisjTree 264 268 269
% 37.04/37.21  271. (All Y1, (((rfamily_name T_10 (xsd_string_10)) /\ (rfamily_name T_10 Y1)) => ((xsd_string_10) = Y1))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_10) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_10) ((xsd_string_0) != (xsd_string_10))   ### All 270
% 37.04/37.21  272. (All Y0, (All Y1, (((rfamily_name T_10 Y0) /\ (rfamily_name T_10 Y1)) => (Y0 = Y1)))) ((xsd_string_0) != (xsd_string_10)) (cAgamidae T_10) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cSphenodontidae T_10) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### All 271
% 37.04/37.21  273. ((Ex Y0, (rfamily_name T_10 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_10 Y0) /\ (rfamily_name T_10 Y1)) => (Y0 = Y1))))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_10) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_10) ((xsd_string_0) != (xsd_string_10))   ### And 272
% 37.04/37.21  274. ((cReptile T_10) => ((Ex Y0, (rfamily_name T_10 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_10 Y0) /\ (rfamily_name T_10 Y1)) => (Y0 = Y1)))))) ((xsd_string_0) != (xsd_string_10)) (cAgamidae T_10) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_10) (All X, ((cSphenodontidae X) => (cReptile X)))   ### Imply 260 273
% 37.04/37.21  275. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_10) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_10) ((xsd_string_0) != (xsd_string_10))   ### All 274
% 37.04/37.21  276. ((cAgamidae T_10) /\ (cSphenodontidae T_10)) ((xsd_string_0) != (xsd_string_10)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 275
% 37.04/37.21  277. (-. (-. ((cAgamidae T_10) /\ (cSphenodontidae T_10)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) ((xsd_string_0) != (xsd_string_10))   ### NotNot 276
% 37.04/37.21  278. (-. (All X, (-. ((cAgamidae X) /\ (cSphenodontidae X))))) ((xsd_string_0) != (xsd_string_10)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 277
% 37.04/37.21  279. (cAnomalepidae T_11) (-. (cAnomalepidae T_11))   ### Axiom
% 37.04/37.21  280. (-. (cReptile T_11)) (cReptile T_11)   ### Axiom
% 37.04/37.21  281. ((cAnomalepidae T_11) => (cReptile T_11)) (-. (cReptile T_11)) (cAnomalepidae T_11)   ### Imply 279 280
% 37.04/37.21  282. (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_11) (-. (cReptile T_11))   ### All 281
% 37.04/37.21  283. (cAnomalepidae T_11) (-. (cAnomalepidae T_11))   ### Axiom
% 37.04/37.21  284. (cCrocodylidae T_11) (-. (cCrocodylidae T_11))   ### Axiom
% 37.04/37.21  285. (-. (rfamily_name T_11 (xsd_string_5))) (rfamily_name T_11 (xsd_string_5))   ### Axiom
% 37.04/37.21  286. ((cCrocodylidae T_11) => (rfamily_name T_11 (xsd_string_5))) (-. (rfamily_name T_11 (xsd_string_5))) (cCrocodylidae T_11)   ### Imply 284 285
% 37.04/37.21  287. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_11) (-. (rfamily_name T_11 (xsd_string_5)))   ### All 286
% 37.04/37.21  288. (rfamily_name T_11 (xsd_string_2)) (-. (rfamily_name T_11 (xsd_string_2)))   ### Axiom
% 37.04/37.21  289. ((xsd_string_2) != (xsd_string_5)) ((xsd_string_5) = (xsd_string_2))   ### Sym(=)
% 37.04/37.21  290. (((rfamily_name T_11 (xsd_string_5)) /\ (rfamily_name T_11 (xsd_string_2))) => ((xsd_string_5) = (xsd_string_2))) ((xsd_string_2) != (xsd_string_5)) (rfamily_name T_11 (xsd_string_2)) (cCrocodylidae T_11) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### DisjTree 287 288 289
% 37.04/37.21  291. (All Y1, (((rfamily_name T_11 (xsd_string_5)) /\ (rfamily_name T_11 Y1)) => ((xsd_string_5) = Y1))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_11) (rfamily_name T_11 (xsd_string_2)) ((xsd_string_2) != (xsd_string_5))   ### All 290
% 37.04/37.21  292. (All Y0, (All Y1, (((rfamily_name T_11 Y0) /\ (rfamily_name T_11 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_5)) (rfamily_name T_11 (xsd_string_2)) (cCrocodylidae T_11) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### All 291
% 37.04/37.21  293. ((cAnomalepidae T_11) => (rfamily_name T_11 (xsd_string_2))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_11) ((xsd_string_2) != (xsd_string_5)) (All Y0, (All Y1, (((rfamily_name T_11 Y0) /\ (rfamily_name T_11 Y1)) => (Y0 = Y1)))) (cAnomalepidae T_11)   ### Imply 283 292
% 37.04/37.21  294. (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_11) (All Y0, (All Y1, (((rfamily_name T_11 Y0) /\ (rfamily_name T_11 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_5)) (cCrocodylidae T_11) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### All 293
% 37.04/37.21  295. ((Ex Y0, (rfamily_name T_11 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_11 Y0) /\ (rfamily_name T_11 Y1)) => (Y0 = Y1))))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_11) ((xsd_string_2) != (xsd_string_5)) (cAnomalepidae T_11) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### And 294
% 37.04/37.21  296. ((cReptile T_11) => ((Ex Y0, (rfamily_name T_11 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_11 Y0) /\ (rfamily_name T_11 Y1)) => (Y0 = Y1)))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_2) != (xsd_string_5)) (cCrocodylidae T_11) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cAnomalepidae T_11) (All X, ((cAnomalepidae X) => (cReptile X)))   ### Imply 282 295
% 37.04/37.21  297. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_11) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_11) ((xsd_string_2) != (xsd_string_5)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### All 296
% 37.04/37.21  298. ((cAnomalepidae T_11) /\ (cCrocodylidae T_11)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_2) != (xsd_string_5)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 297
% 37.04/37.21  299. (-. (-. ((cAnomalepidae T_11) /\ (cCrocodylidae T_11)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) ((xsd_string_2) != (xsd_string_5)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### NotNot 298
% 37.04/37.21  300. (-. (All X, (-. ((cAnomalepidae X) /\ (cCrocodylidae X))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_2) != (xsd_string_5)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 299
% 37.04/37.21  301. ((xsd_string_6) != (xsd_string_6))   ### NotEqual
% 37.04/37.21  302. (cEmydidae T_12) (-. (cEmydidae T_12))   ### Axiom
% 37.04/37.21  303. (-. (rfamily_name T_12 (xsd_string_6))) (rfamily_name T_12 (xsd_string_6))   ### Axiom
% 37.04/37.21  304. ((cEmydidae T_12) => (rfamily_name T_12 (xsd_string_6))) (-. (rfamily_name T_12 (xsd_string_6))) (cEmydidae T_12)   ### Imply 302 303
% 37.04/37.21  305. (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_12) (-. (rfamily_name T_12 (xsd_string_6)))   ### All 304
% 37.04/37.21  306. (cCrocodylidae T_12) (-. (cCrocodylidae T_12))   ### Axiom
% 37.04/37.21  307. (-. (cReptile T_12)) (cReptile T_12)   ### Axiom
% 37.04/37.21  308. ((cCrocodylidae T_12) => (cReptile T_12)) (-. (cReptile T_12)) (cCrocodylidae T_12)   ### Imply 306 307
% 37.04/37.21  309. (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_12) (-. (cReptile T_12))   ### All 308
% 37.04/37.21  310. (rfamily_name T_12 (xsd_string_6)) (-. (rfamily_name T_12 (xsd_string_6)))   ### Axiom
% 37.04/37.21  311. (cCrocodylidae T_12) (-. (cCrocodylidae T_12))   ### Axiom
% 37.04/37.21  312. (-. (rfamily_name T_12 (xsd_string_5))) (rfamily_name T_12 (xsd_string_5))   ### Axiom
% 37.04/37.21  313. ((cCrocodylidae T_12) => (rfamily_name T_12 (xsd_string_5))) (-. (rfamily_name T_12 (xsd_string_5))) (cCrocodylidae T_12)   ### Imply 311 312
% 37.04/37.21  314. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_12) (-. (rfamily_name T_12 (xsd_string_5)))   ### All 313
% 37.04/37.21  315. ((xsd_string_5) != (xsd_string_6)) ((xsd_string_6) = (xsd_string_5))   ### Sym(=)
% 37.04/37.21  316. (((rfamily_name T_12 (xsd_string_6)) /\ (rfamily_name T_12 (xsd_string_5))) => ((xsd_string_6) = (xsd_string_5))) ((xsd_string_5) != (xsd_string_6)) (cCrocodylidae T_12) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (rfamily_name T_12 (xsd_string_6))   ### DisjTree 310 314 315
% 37.04/37.21  317. (All Y1, (((rfamily_name T_12 (xsd_string_6)) /\ (rfamily_name T_12 Y1)) => ((xsd_string_6) = Y1))) (rfamily_name T_12 (xsd_string_6)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_12) ((xsd_string_5) != (xsd_string_6))   ### All 316
% 37.04/37.21  318. (All Y0, (All Y1, (((rfamily_name T_12 Y0) /\ (rfamily_name T_12 Y1)) => (Y0 = Y1)))) ((xsd_string_5) != (xsd_string_6)) (cCrocodylidae T_12) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (rfamily_name T_12 (xsd_string_6))   ### All 317
% 37.04/37.21  319. ((Ex Y0, (rfamily_name T_12 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_12 Y0) /\ (rfamily_name T_12 Y1)) => (Y0 = Y1))))) (rfamily_name T_12 (xsd_string_6)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_12) ((xsd_string_5) != (xsd_string_6))   ### And 318
% 37.04/37.21  320. ((cReptile T_12) => ((Ex Y0, (rfamily_name T_12 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_12 Y0) /\ (rfamily_name T_12 Y1)) => (Y0 = Y1)))))) ((xsd_string_5) != (xsd_string_6)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (rfamily_name T_12 (xsd_string_6)) (cCrocodylidae T_12) (All X, ((cCrocodylidae X) => (cReptile X)))   ### Imply 309 319
% 37.04/37.21  321. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_12) (rfamily_name T_12 (xsd_string_6)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) ((xsd_string_5) != (xsd_string_6))   ### All 320
% 37.04/37.21  322. ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name T_12 (xsd_string_6))) => (rfamily_name T_12 (xsd_string_6))) ((xsd_string_5) != (xsd_string_6)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_12) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_12) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### DisjTree 301 305 321
% 37.04/37.21  323. (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_12) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_12) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) ((xsd_string_5) != (xsd_string_6))   ### All 322
% 37.04/37.21  324. (All B, (All C, ((((xsd_string_6) = B) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C B)))) ((xsd_string_5) != (xsd_string_6)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_12) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_12) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### All 323
% 37.04/37.21  325. (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_12) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_12) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) ((xsd_string_5) != (xsd_string_6))   ### All 324
% 37.04/37.21  326. ((cCrocodylidae T_12) /\ (cEmydidae T_12)) ((xsd_string_5) != (xsd_string_6)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### And 325
% 37.04/37.21  327. (-. (-. ((cCrocodylidae T_12) /\ (cEmydidae T_12)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) ((xsd_string_5) != (xsd_string_6))   ### NotNot 326
% 37.04/37.21  328. (-. (All X, (-. ((cCrocodylidae X) /\ (cEmydidae X))))) ((xsd_string_5) != (xsd_string_6)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### NotAllEx 327
% 37.04/37.25  329. (cLoxocemidae T_13) (-. (cLoxocemidae T_13))   ### Axiom
% 37.04/37.25  330. (-. (cReptile T_13)) (cReptile T_13)   ### Axiom
% 37.04/37.25  331. ((cLoxocemidae T_13) => (cReptile T_13)) (-. (cReptile T_13)) (cLoxocemidae T_13)   ### Imply 329 330
% 37.04/37.25  332. (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_13) (-. (cReptile T_13))   ### All 331
% 37.04/37.25  333. (cLoxocemidae T_13) (-. (cLoxocemidae T_13))   ### Axiom
% 37.04/37.25  334. (-. (rfamily_name T_13 (xsd_string_9))) (rfamily_name T_13 (xsd_string_9))   ### Axiom
% 37.04/37.25  335. ((cLoxocemidae T_13) => (rfamily_name T_13 (xsd_string_9))) (-. (rfamily_name T_13 (xsd_string_9))) (cLoxocemidae T_13)   ### Imply 333 334
% 37.04/37.25  336. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_13) (-. (rfamily_name T_13 (xsd_string_9)))   ### All 335
% 37.04/37.25  337. (cAmphisbaenidae T_13) (-. (cAmphisbaenidae T_13))   ### Axiom
% 37.04/37.25  338. (-. (rfamily_name T_13 (xsd_string_1))) (rfamily_name T_13 (xsd_string_1))   ### Axiom
% 37.04/37.25  339. ((cAmphisbaenidae T_13) => (rfamily_name T_13 (xsd_string_1))) (-. (rfamily_name T_13 (xsd_string_1))) (cAmphisbaenidae T_13)   ### Imply 337 338
% 37.04/37.25  340. (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_13) (-. (rfamily_name T_13 (xsd_string_1)))   ### All 339
% 37.04/37.25  341. ((xsd_string_1) != (xsd_string_9)) ((xsd_string_9) = (xsd_string_1))   ### Sym(=)
% 37.04/37.25  342. (((rfamily_name T_13 (xsd_string_9)) /\ (rfamily_name T_13 (xsd_string_1))) => ((xsd_string_9) = (xsd_string_1))) ((xsd_string_1) != (xsd_string_9)) (cAmphisbaenidae T_13) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cLoxocemidae T_13) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### DisjTree 336 340 341
% 37.04/37.25  343. (All Y1, (((rfamily_name T_13 (xsd_string_9)) /\ (rfamily_name T_13 Y1)) => ((xsd_string_9) = Y1))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_13) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_13) ((xsd_string_1) != (xsd_string_9))   ### All 342
% 37.04/37.25  344. (All Y0, (All Y1, (((rfamily_name T_13 Y0) /\ (rfamily_name T_13 Y1)) => (Y0 = Y1)))) ((xsd_string_1) != (xsd_string_9)) (cAmphisbaenidae T_13) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cLoxocemidae T_13) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### All 343
% 37.04/37.25  345. ((Ex Y0, (rfamily_name T_13 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_13 Y0) /\ (rfamily_name T_13 Y1)) => (Y0 = Y1))))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_13) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_13) ((xsd_string_1) != (xsd_string_9))   ### And 344
% 37.04/37.25  346. ((cReptile T_13) => ((Ex Y0, (rfamily_name T_13 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_13 Y0) /\ (rfamily_name T_13 Y1)) => (Y0 = Y1)))))) ((xsd_string_1) != (xsd_string_9)) (cAmphisbaenidae T_13) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_13) (All X, ((cLoxocemidae X) => (cReptile X)))   ### Imply 332 345
% 37.04/37.25  347. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_13) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_13) ((xsd_string_1) != (xsd_string_9))   ### All 346
% 37.04/37.25  348. ((cAmphisbaenidae T_13) /\ (cLoxocemidae T_13)) ((xsd_string_1) != (xsd_string_9)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 347
% 37.04/37.25  349. (-. (-. ((cAmphisbaenidae T_13) /\ (cLoxocemidae T_13)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) ((xsd_string_1) != (xsd_string_9))   ### NotNot 348
% 37.04/37.25  350. (-. (All X, (-. ((cAmphisbaenidae X) /\ (cLoxocemidae X))))) ((xsd_string_1) != (xsd_string_9)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 349
% 37.04/37.25  351. (cLeptotyphlopidae T_14) (-. (cLeptotyphlopidae T_14))   ### Axiom
% 37.04/37.25  352. (-. (cReptile T_14)) (cReptile T_14)   ### Axiom
% 37.04/37.25  353. ((cLeptotyphlopidae T_14) => (cReptile T_14)) (-. (cReptile T_14)) (cLeptotyphlopidae T_14)   ### Imply 351 352
% 37.04/37.25  354. (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_14) (-. (cReptile T_14))   ### All 353
% 37.04/37.25  355. (cLeptotyphlopidae T_14) (-. (cLeptotyphlopidae T_14))   ### Axiom
% 37.04/37.25  356. (-. (rfamily_name T_14 (xsd_string_8))) (rfamily_name T_14 (xsd_string_8))   ### Axiom
% 37.04/37.25  357. ((cLeptotyphlopidae T_14) => (rfamily_name T_14 (xsd_string_8))) (-. (rfamily_name T_14 (xsd_string_8))) (cLeptotyphlopidae T_14)   ### Imply 355 356
% 37.04/37.25  358. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_14) (-. (rfamily_name T_14 (xsd_string_8)))   ### All 357
% 37.04/37.25  359. (rfamily_name T_14 T_15) (-. (rfamily_name T_14 T_15))   ### Axiom
% 37.04/37.25  360. (rfamily_name T_14 T_15) (-. (rfamily_name T_14 T_15))   ### Axiom
% 37.04/37.25  361. (cAgamidae T_14) (-. (cAgamidae T_14))   ### Axiom
% 37.04/37.25  362. (-. (rfamily_name T_14 (xsd_string_0))) (rfamily_name T_14 (xsd_string_0))   ### Axiom
% 37.04/37.25  363. ((cAgamidae T_14) => (rfamily_name T_14 (xsd_string_0))) (-. (rfamily_name T_14 (xsd_string_0))) (cAgamidae T_14)   ### Imply 361 362
% 37.04/37.25  364. (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_14) (-. (rfamily_name T_14 (xsd_string_0)))   ### All 363
% 37.04/37.25  365. ((xsd_string_8) != (xsd_string_8))   ### NotEqual
% 37.04/37.25  366. (T_15 = (xsd_string_0)) (T_15 != (xsd_string_0))   ### Axiom
% 37.04/37.25  367. ((xsd_string_0) != (xsd_string_8)) ((xsd_string_8) = T_15) (T_15 = (xsd_string_0))   ### TransEq-sym 365 365 366
% 37.04/37.25  368. (((rfamily_name T_14 T_15) /\ (rfamily_name T_14 (xsd_string_0))) => (T_15 = (xsd_string_0))) ((xsd_string_8) = T_15) ((xsd_string_0) != (xsd_string_8)) (cAgamidae T_14) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (rfamily_name T_14 T_15)   ### DisjTree 360 364 367
% 37.04/37.25  369. (All Y1, (((rfamily_name T_14 T_15) /\ (rfamily_name T_14 Y1)) => (T_15 = Y1))) (rfamily_name T_14 T_15) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_14) ((xsd_string_0) != (xsd_string_8)) ((xsd_string_8) = T_15)   ### All 368
% 37.04/37.25  370. (((rfamily_name T_14 (xsd_string_8)) /\ (rfamily_name T_14 T_15)) => ((xsd_string_8) = T_15)) ((xsd_string_0) != (xsd_string_8)) (cAgamidae T_14) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All Y1, (((rfamily_name T_14 T_15) /\ (rfamily_name T_14 Y1)) => (T_15 = Y1))) (rfamily_name T_14 T_15) (cLeptotyphlopidae T_14) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### DisjTree 358 359 369
% 37.04/37.25  371. (All Y1, (((rfamily_name T_14 (xsd_string_8)) /\ (rfamily_name T_14 Y1)) => ((xsd_string_8) = Y1))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_14) (rfamily_name T_14 T_15) (All Y1, (((rfamily_name T_14 T_15) /\ (rfamily_name T_14 Y1)) => (T_15 = Y1))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_14) ((xsd_string_0) != (xsd_string_8))   ### All 370
% 37.04/37.26  372. (All Y0, (All Y1, (((rfamily_name T_14 Y0) /\ (rfamily_name T_14 Y1)) => (Y0 = Y1)))) ((xsd_string_0) != (xsd_string_8)) (cAgamidae T_14) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (rfamily_name T_14 T_15) (cLeptotyphlopidae T_14) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All Y1, (((rfamily_name T_14 (xsd_string_8)) /\ (rfamily_name T_14 Y1)) => ((xsd_string_8) = Y1)))   ### All 371
% 37.04/37.26  373. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_14) (rfamily_name T_14 T_15) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_14) ((xsd_string_0) != (xsd_string_8)) (All Y0, (All Y1, (((rfamily_name T_14 Y0) /\ (rfamily_name T_14 Y1)) => (Y0 = Y1))))   ### All 372
% 37.04/37.26  374. (Ex Y0, (rfamily_name T_14 Y0)) (All Y0, (All Y1, (((rfamily_name T_14 Y0) /\ (rfamily_name T_14 Y1)) => (Y0 = Y1)))) ((xsd_string_0) != (xsd_string_8)) (cAgamidae T_14) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cLeptotyphlopidae T_14) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### Exists 373
% 37.04/37.26  375. ((Ex Y0, (rfamily_name T_14 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_14 Y0) /\ (rfamily_name T_14 Y1)) => (Y0 = Y1))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_14) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_14) ((xsd_string_0) != (xsd_string_8))   ### And 374
% 37.04/37.26  376. ((cReptile T_14) => ((Ex Y0, (rfamily_name T_14 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_14 Y0) /\ (rfamily_name T_14 Y1)) => (Y0 = Y1)))))) ((xsd_string_0) != (xsd_string_8)) (cAgamidae T_14) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_14) (All X, ((cLeptotyphlopidae X) => (cReptile X)))   ### Imply 354 375
% 37.04/37.26  377. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_14) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_14) ((xsd_string_0) != (xsd_string_8))   ### All 376
% 37.04/37.26  378. ((cLeptotyphlopidae T_14) /\ (cAgamidae T_14)) ((xsd_string_0) != (xsd_string_8)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 377
% 37.04/37.26  379. (-. (-. ((cLeptotyphlopidae T_14) /\ (cAgamidae T_14)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) ((xsd_string_0) != (xsd_string_8))   ### NotNot 378
% 37.04/37.26  380. (-. (All X, (-. ((cLeptotyphlopidae X) /\ (cAgamidae X))))) ((xsd_string_0) != (xsd_string_8)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 379
% 37.04/37.26  381. (cCrocodylidae T_16) (-. (cCrocodylidae T_16))   ### Axiom
% 37.04/37.26  382. (-. (cReptile T_16)) (cReptile T_16)   ### Axiom
% 37.04/37.26  383. ((cCrocodylidae T_16) => (cReptile T_16)) (-. (cReptile T_16)) (cCrocodylidae T_16)   ### Imply 381 382
% 37.04/37.26  384. (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_16) (-. (cReptile T_16))   ### All 383
% 37.04/37.26  385. (cCrocodylidae T_16) (-. (cCrocodylidae T_16))   ### Axiom
% 37.04/37.26  386. (-. (rfamily_name T_16 (xsd_string_5))) (rfamily_name T_16 (xsd_string_5))   ### Axiom
% 37.04/37.26  387. ((cCrocodylidae T_16) => (rfamily_name T_16 (xsd_string_5))) (-. (rfamily_name T_16 (xsd_string_5))) (cCrocodylidae T_16)   ### Imply 385 386
% 37.04/37.26  388. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_16) (-. (rfamily_name T_16 (xsd_string_5)))   ### All 387
% 37.04/37.26  389. (cAmphisbaenidae T_16) (-. (cAmphisbaenidae T_16))   ### Axiom
% 37.04/37.26  390. (-. (rfamily_name T_16 (xsd_string_1))) (rfamily_name T_16 (xsd_string_1))   ### Axiom
% 37.04/37.26  391. ((cAmphisbaenidae T_16) => (rfamily_name T_16 (xsd_string_1))) (-. (rfamily_name T_16 (xsd_string_1))) (cAmphisbaenidae T_16)   ### Imply 389 390
% 37.04/37.26  392. (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_16) (-. (rfamily_name T_16 (xsd_string_1)))   ### All 391
% 37.04/37.26  393. ((xsd_string_1) != (xsd_string_5)) ((xsd_string_5) = (xsd_string_1))   ### Sym(=)
% 37.04/37.26  394. (((rfamily_name T_16 (xsd_string_5)) /\ (rfamily_name T_16 (xsd_string_1))) => ((xsd_string_5) = (xsd_string_1))) ((xsd_string_1) != (xsd_string_5)) (cAmphisbaenidae T_16) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cCrocodylidae T_16) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### DisjTree 388 392 393
% 37.04/37.26  395. (All Y1, (((rfamily_name T_16 (xsd_string_5)) /\ (rfamily_name T_16 Y1)) => ((xsd_string_5) = Y1))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_16) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_16) ((xsd_string_1) != (xsd_string_5))   ### All 394
% 37.04/37.26  396. (All Y0, (All Y1, (((rfamily_name T_16 Y0) /\ (rfamily_name T_16 Y1)) => (Y0 = Y1)))) ((xsd_string_1) != (xsd_string_5)) (cAmphisbaenidae T_16) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cCrocodylidae T_16) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### All 395
% 37.04/37.26  397. ((Ex Y0, (rfamily_name T_16 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_16 Y0) /\ (rfamily_name T_16 Y1)) => (Y0 = Y1))))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_16) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_16) ((xsd_string_1) != (xsd_string_5))   ### And 396
% 37.04/37.26  398. ((cReptile T_16) => ((Ex Y0, (rfamily_name T_16 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_16 Y0) /\ (rfamily_name T_16 Y1)) => (Y0 = Y1)))))) ((xsd_string_1) != (xsd_string_5)) (cAmphisbaenidae T_16) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_16) (All X, ((cCrocodylidae X) => (cReptile X)))   ### Imply 384 397
% 37.04/37.26  399. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_16) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_16) ((xsd_string_1) != (xsd_string_5))   ### All 398
% 37.04/37.26  400. ((cAmphisbaenidae T_16) /\ (cCrocodylidae T_16)) ((xsd_string_1) != (xsd_string_5)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 399
% 37.04/37.26  401. (-. (-. ((cAmphisbaenidae T_16) /\ (cCrocodylidae T_16)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) ((xsd_string_1) != (xsd_string_5))   ### NotNot 400
% 37.04/37.26  402. (-. (All X, (-. ((cAmphisbaenidae X) /\ (cCrocodylidae X))))) ((xsd_string_1) != (xsd_string_5)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 401
% 37.04/37.27  403. (cLoxocemidae T_17) (-. (cLoxocemidae T_17))   ### Axiom
% 37.04/37.27  404. (-. (cReptile T_17)) (cReptile T_17)   ### Axiom
% 37.04/37.27  405. ((cLoxocemidae T_17) => (cReptile T_17)) (-. (cReptile T_17)) (cLoxocemidae T_17)   ### Imply 403 404
% 37.04/37.27  406. (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_17) (-. (cReptile T_17))   ### All 405
% 37.04/37.27  407. (cLoxocemidae T_17) (-. (cLoxocemidae T_17))   ### Axiom
% 37.04/37.27  408. (-. (rfamily_name T_17 (xsd_string_9))) (rfamily_name T_17 (xsd_string_9))   ### Axiom
% 37.04/37.27  409. ((cLoxocemidae T_17) => (rfamily_name T_17 (xsd_string_9))) (-. (rfamily_name T_17 (xsd_string_9))) (cLoxocemidae T_17)   ### Imply 407 408
% 37.04/37.27  410. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_17) (-. (rfamily_name T_17 (xsd_string_9)))   ### All 409
% 37.04/37.27  411. (rfamily_name T_17 T_18) (-. (rfamily_name T_17 T_18))   ### Axiom
% 37.04/37.27  412. (cCrocodylidae T_17) (-. (cCrocodylidae T_17))   ### Axiom
% 37.04/37.27  413. (-. (rfamily_name T_17 (xsd_string_5))) (rfamily_name T_17 (xsd_string_5))   ### Axiom
% 37.04/37.27  414. ((cCrocodylidae T_17) => (rfamily_name T_17 (xsd_string_5))) (-. (rfamily_name T_17 (xsd_string_5))) (cCrocodylidae T_17)   ### Imply 412 413
% 37.04/37.27  415. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_17) (-. (rfamily_name T_17 (xsd_string_5)))   ### All 414
% 37.04/37.27  416. (rfamily_name T_17 T_18) (-. (rfamily_name T_17 T_18))   ### Axiom
% 37.04/37.27  417. ((xsd_string_9) != (xsd_string_9))   ### NotEqual
% 37.04/37.27  418. (rfamily_name T_17 T_18) (-. (rfamily_name T_17 T_18))   ### Axiom
% 37.04/37.27  419. (T_18 != (xsd_string_5)) ((xsd_string_5) = T_18)   ### Sym(=)
% 37.04/37.27  420. (((rfamily_name T_17 (xsd_string_5)) /\ (rfamily_name T_17 T_18)) => ((xsd_string_5) = T_18)) (T_18 != (xsd_string_5)) (rfamily_name T_17 T_18) (cCrocodylidae T_17) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### DisjTree 415 418 419
% 37.04/37.27  421. ((xsd_string_5) = T_18) (T_18 != (xsd_string_5))   ### Sym(=)
% 37.04/37.27  422. ((xsd_string_5) != (xsd_string_9)) ((xsd_string_9) = T_18) ((xsd_string_5) = T_18) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_17) (rfamily_name T_17 T_18) (((rfamily_name T_17 (xsd_string_5)) /\ (rfamily_name T_17 T_18)) => ((xsd_string_5) = T_18))   ### TransEq-sym 417 420 421
% 37.04/37.27  423. (((rfamily_name T_17 (xsd_string_5)) /\ (rfamily_name T_17 T_18)) => ((xsd_string_5) = T_18)) ((xsd_string_9) = T_18) ((xsd_string_5) != (xsd_string_9)) (rfamily_name T_17 T_18) (cCrocodylidae T_17) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### DisjTree 415 416 422
% 37.04/37.27  424. (All Y1, (((rfamily_name T_17 (xsd_string_5)) /\ (rfamily_name T_17 Y1)) => ((xsd_string_5) = Y1))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_17) (rfamily_name T_17 T_18) ((xsd_string_5) != (xsd_string_9)) ((xsd_string_9) = T_18)   ### All 423
% 37.04/37.27  425. (((rfamily_name T_17 (xsd_string_9)) /\ (rfamily_name T_17 T_18)) => ((xsd_string_9) = T_18)) ((xsd_string_5) != (xsd_string_9)) (cCrocodylidae T_17) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All Y1, (((rfamily_name T_17 (xsd_string_5)) /\ (rfamily_name T_17 Y1)) => ((xsd_string_5) = Y1))) (rfamily_name T_17 T_18) (cLoxocemidae T_17) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### DisjTree 410 411 424
% 37.04/37.27  426. (All Y1, (((rfamily_name T_17 (xsd_string_9)) /\ (rfamily_name T_17 Y1)) => ((xsd_string_9) = Y1))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_17) (rfamily_name T_17 T_18) (All Y1, (((rfamily_name T_17 (xsd_string_5)) /\ (rfamily_name T_17 Y1)) => ((xsd_string_5) = Y1))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_17) ((xsd_string_5) != (xsd_string_9))   ### All 425
% 37.04/37.27  427. (All Y0, (All Y1, (((rfamily_name T_17 Y0) /\ (rfamily_name T_17 Y1)) => (Y0 = Y1)))) ((xsd_string_5) != (xsd_string_9)) (cCrocodylidae T_17) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (rfamily_name T_17 T_18) (cLoxocemidae T_17) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All Y1, (((rfamily_name T_17 (xsd_string_9)) /\ (rfamily_name T_17 Y1)) => ((xsd_string_9) = Y1)))   ### All 426
% 37.04/37.27  428. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_17) (rfamily_name T_17 T_18) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_17) ((xsd_string_5) != (xsd_string_9)) (All Y0, (All Y1, (((rfamily_name T_17 Y0) /\ (rfamily_name T_17 Y1)) => (Y0 = Y1))))   ### All 427
% 37.04/37.27  429. (Ex Y0, (rfamily_name T_17 Y0)) (All Y0, (All Y1, (((rfamily_name T_17 Y0) /\ (rfamily_name T_17 Y1)) => (Y0 = Y1)))) ((xsd_string_5) != (xsd_string_9)) (cCrocodylidae T_17) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cLoxocemidae T_17) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### Exists 428
% 37.04/37.27  430. ((Ex Y0, (rfamily_name T_17 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_17 Y0) /\ (rfamily_name T_17 Y1)) => (Y0 = Y1))))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_17) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_17) ((xsd_string_5) != (xsd_string_9))   ### And 429
% 37.04/37.27  431. ((cReptile T_17) => ((Ex Y0, (rfamily_name T_17 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_17 Y0) /\ (rfamily_name T_17 Y1)) => (Y0 = Y1)))))) ((xsd_string_5) != (xsd_string_9)) (cCrocodylidae T_17) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_17) (All X, ((cLoxocemidae X) => (cReptile X)))   ### Imply 406 430
% 37.04/37.27  432. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_17) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_17) ((xsd_string_5) != (xsd_string_9))   ### All 431
% 37.04/37.27  433. ((cCrocodylidae T_17) /\ (cLoxocemidae T_17)) ((xsd_string_5) != (xsd_string_9)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 432
% 37.04/37.27  434. (-. (-. ((cCrocodylidae T_17) /\ (cLoxocemidae T_17)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) ((xsd_string_5) != (xsd_string_9))   ### NotNot 433
% 37.04/37.27  435. (-. (All X, (-. ((cCrocodylidae X) /\ (cLoxocemidae X))))) ((xsd_string_5) != (xsd_string_9)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 434
% 37.04/37.27  436. (cXantusiidae T_19) (-. (cXantusiidae T_19))   ### Axiom
% 37.04/37.27  437. (-. (cReptile T_19)) (cReptile T_19)   ### Axiom
% 37.04/37.27  438. ((cXantusiidae T_19) => (cReptile T_19)) (-. (cReptile T_19)) (cXantusiidae T_19)   ### Imply 436 437
% 37.04/37.27  439. (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_19) (-. (cReptile T_19))   ### All 438
% 37.04/37.27  440. (cXantusiidae T_19) (-. (cXantusiidae T_19))   ### Axiom
% 37.04/37.27  441. (-. (rfamily_name T_19 (xsd_string_11))) (rfamily_name T_19 (xsd_string_11))   ### Axiom
% 37.04/37.27  442. ((cXantusiidae T_19) => (rfamily_name T_19 (xsd_string_11))) (-. (rfamily_name T_19 (xsd_string_11))) (cXantusiidae T_19)   ### Imply 440 441
% 37.04/37.27  443. (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_19) (-. (rfamily_name T_19 (xsd_string_11)))   ### All 442
% 37.04/37.27  444. (cCrocodylidae T_19) (-. (cCrocodylidae T_19))   ### Axiom
% 37.04/37.27  445. (-. (rfamily_name T_19 (xsd_string_5))) (rfamily_name T_19 (xsd_string_5))   ### Axiom
% 37.04/37.27  446. ((cCrocodylidae T_19) => (rfamily_name T_19 (xsd_string_5))) (-. (rfamily_name T_19 (xsd_string_5))) (cCrocodylidae T_19)   ### Imply 444 445
% 37.04/37.27  447. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_19) (-. (rfamily_name T_19 (xsd_string_5)))   ### All 446
% 37.04/37.27  448. ((xsd_string_5) != (xsd_string_11)) ((xsd_string_11) = (xsd_string_5))   ### Sym(=)
% 37.04/37.27  449. (((rfamily_name T_19 (xsd_string_11)) /\ (rfamily_name T_19 (xsd_string_5))) => ((xsd_string_11) = (xsd_string_5))) ((xsd_string_5) != (xsd_string_11)) (cCrocodylidae T_19) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cXantusiidae T_19) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### DisjTree 443 447 448
% 37.04/37.27  450. (All Y1, (((rfamily_name T_19 (xsd_string_11)) /\ (rfamily_name T_19 Y1)) => ((xsd_string_11) = Y1))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_19) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_19) ((xsd_string_5) != (xsd_string_11))   ### All 449
% 37.04/37.27  451. (All Y0, (All Y1, (((rfamily_name T_19 Y0) /\ (rfamily_name T_19 Y1)) => (Y0 = Y1)))) ((xsd_string_5) != (xsd_string_11)) (cCrocodylidae T_19) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cXantusiidae T_19) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### All 450
% 37.04/37.27  452. ((Ex Y0, (rfamily_name T_19 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_19 Y0) /\ (rfamily_name T_19 Y1)) => (Y0 = Y1))))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_19) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_19) ((xsd_string_5) != (xsd_string_11))   ### And 451
% 37.04/37.27  453. ((cReptile T_19) => ((Ex Y0, (rfamily_name T_19 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_19 Y0) /\ (rfamily_name T_19 Y1)) => (Y0 = Y1)))))) ((xsd_string_5) != (xsd_string_11)) (cCrocodylidae T_19) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_19) (All X, ((cXantusiidae X) => (cReptile X)))   ### Imply 439 452
% 37.04/37.27  454. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_19) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_19) ((xsd_string_5) != (xsd_string_11))   ### All 453
% 37.04/37.27  455. ((cXantusiidae T_19) /\ (cCrocodylidae T_19)) ((xsd_string_5) != (xsd_string_11)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 454
% 37.04/37.27  456. (-. (-. ((cXantusiidae T_19) /\ (cCrocodylidae T_19)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) ((xsd_string_5) != (xsd_string_11))   ### NotNot 455
% 37.04/37.27  457. (-. (All X, (-. ((cXantusiidae X) /\ (cCrocodylidae X))))) ((xsd_string_5) != (xsd_string_11)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 456
% 37.04/37.27  458. (cEmydidae T_20) (-. (cEmydidae T_20))   ### Axiom
% 37.04/37.27  459. (-. (rfamily_name T_20 (xsd_string_6))) (rfamily_name T_20 (xsd_string_6))   ### Axiom
% 37.04/37.27  460. ((cEmydidae T_20) => (rfamily_name T_20 (xsd_string_6))) (-. (rfamily_name T_20 (xsd_string_6))) (cEmydidae T_20)   ### Imply 458 459
% 37.04/37.27  461. (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_20) (-. (rfamily_name T_20 (xsd_string_6)))   ### All 460
% 37.04/37.27  462. (cEmydidae T_20) (-. (cEmydidae T_20))   ### Axiom
% 37.04/37.27  463. (-. (cReptile T_20)) (cReptile T_20)   ### Axiom
% 37.04/37.27  464. ((cEmydidae T_20) => (cReptile T_20)) (-. (cReptile T_20)) (cEmydidae T_20)   ### Imply 462 463
% 37.04/37.27  465. (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_20) (-. (cReptile T_20))   ### All 464
% 37.04/37.27  466. (rfamily_name T_20 (xsd_string_6)) (-. (rfamily_name T_20 (xsd_string_6)))   ### Axiom
% 37.04/37.27  467. (cBipedidae T_20) (-. (cBipedidae T_20))   ### Axiom
% 37.04/37.27  468. (-. (rfamily_name T_20 (xsd_string_3))) (rfamily_name T_20 (xsd_string_3))   ### Axiom
% 37.04/37.27  469. ((cBipedidae T_20) => (rfamily_name T_20 (xsd_string_3))) (-. (rfamily_name T_20 (xsd_string_3))) (cBipedidae T_20)   ### Imply 467 468
% 37.04/37.27  470. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_20) (-. (rfamily_name T_20 (xsd_string_3)))   ### All 469
% 37.04/37.27  471. ((xsd_string_3) != (xsd_string_6)) ((xsd_string_6) = (xsd_string_3))   ### Sym(=)
% 37.04/37.27  472. (((rfamily_name T_20 (xsd_string_6)) /\ (rfamily_name T_20 (xsd_string_3))) => ((xsd_string_6) = (xsd_string_3))) ((xsd_string_3) != (xsd_string_6)) (cBipedidae T_20) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (rfamily_name T_20 (xsd_string_6))   ### DisjTree 466 470 471
% 37.04/37.27  473. (All Y1, (((rfamily_name T_20 (xsd_string_6)) /\ (rfamily_name T_20 Y1)) => ((xsd_string_6) = Y1))) (rfamily_name T_20 (xsd_string_6)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_20) ((xsd_string_3) != (xsd_string_6))   ### All 472
% 37.04/37.27  474. (All Y0, (All Y1, (((rfamily_name T_20 Y0) /\ (rfamily_name T_20 Y1)) => (Y0 = Y1)))) ((xsd_string_3) != (xsd_string_6)) (cBipedidae T_20) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (rfamily_name T_20 (xsd_string_6))   ### All 473
% 37.04/37.27  475. ((Ex Y0, (rfamily_name T_20 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_20 Y0) /\ (rfamily_name T_20 Y1)) => (Y0 = Y1))))) (rfamily_name T_20 (xsd_string_6)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_20) ((xsd_string_3) != (xsd_string_6))   ### And 474
% 37.04/37.27  476. ((cReptile T_20) => ((Ex Y0, (rfamily_name T_20 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_20 Y0) /\ (rfamily_name T_20 Y1)) => (Y0 = Y1)))))) ((xsd_string_3) != (xsd_string_6)) (cBipedidae T_20) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (rfamily_name T_20 (xsd_string_6)) (cEmydidae T_20) (All X, ((cEmydidae X) => (cReptile X)))   ### Imply 465 475
% 37.04/37.27  477. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_20) (rfamily_name T_20 (xsd_string_6)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_20) ((xsd_string_3) != (xsd_string_6))   ### All 476
% 37.04/37.27  478. ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name T_20 (xsd_string_6))) => (rfamily_name T_20 (xsd_string_6))) ((xsd_string_3) != (xsd_string_6)) (cBipedidae T_20) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_20) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### DisjTree 301 461 477
% 37.04/37.27  479. (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_20) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_20) ((xsd_string_3) != (xsd_string_6))   ### All 478
% 37.11/37.31  480. (All B, (All C, ((((xsd_string_6) = B) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C B)))) ((xsd_string_3) != (xsd_string_6)) (cBipedidae T_20) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_20) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### All 479
% 37.11/37.31  481. (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_20) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_20) ((xsd_string_3) != (xsd_string_6))   ### All 480
% 37.11/37.31  482. ((cBipedidae T_20) /\ (cEmydidae T_20)) ((xsd_string_3) != (xsd_string_6)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### And 481
% 37.11/37.31  483. (-. (-. ((cBipedidae T_20) /\ (cEmydidae T_20)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) ((xsd_string_3) != (xsd_string_6))   ### NotNot 482
% 37.11/37.31  484. (-. (All X, (-. ((cBipedidae X) /\ (cEmydidae X))))) ((xsd_string_3) != (xsd_string_6)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### NotAllEx 483
% 37.11/37.31  485. (cEmydidae T_21) (-. (cEmydidae T_21))   ### Axiom
% 37.11/37.31  486. (-. (cReptile T_21)) (cReptile T_21)   ### Axiom
% 37.11/37.31  487. ((cEmydidae T_21) => (cReptile T_21)) (-. (cReptile T_21)) (cEmydidae T_21)   ### Imply 485 486
% 37.11/37.31  488. (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_21) (-. (cReptile T_21))   ### All 487
% 37.11/37.31  489. (cEmydidae T_21) (-. (cEmydidae T_21))   ### Axiom
% 37.11/37.31  490. (-. (rfamily_name T_21 (xsd_string_6))) (rfamily_name T_21 (xsd_string_6))   ### Axiom
% 37.11/37.31  491. ((cEmydidae T_21) => (rfamily_name T_21 (xsd_string_6))) (-. (rfamily_name T_21 (xsd_string_6))) (cEmydidae T_21)   ### Imply 489 490
% 37.11/37.31  492. (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_21) (-. (rfamily_name T_21 (xsd_string_6)))   ### All 491
% 37.11/37.31  493. (cAmphisbaenidae T_21) (-. (cAmphisbaenidae T_21))   ### Axiom
% 37.11/37.31  494. (-. (rfamily_name T_21 (xsd_string_1))) (rfamily_name T_21 (xsd_string_1))   ### Axiom
% 37.11/37.31  495. ((cAmphisbaenidae T_21) => (rfamily_name T_21 (xsd_string_1))) (-. (rfamily_name T_21 (xsd_string_1))) (cAmphisbaenidae T_21)   ### Imply 493 494
% 37.11/37.31  496. (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_21) (-. (rfamily_name T_21 (xsd_string_1)))   ### All 495
% 37.11/37.31  497. ((xsd_string_1) != (xsd_string_6)) ((xsd_string_6) = (xsd_string_1))   ### Sym(=)
% 37.11/37.31  498. (((rfamily_name T_21 (xsd_string_6)) /\ (rfamily_name T_21 (xsd_string_1))) => ((xsd_string_6) = (xsd_string_1))) ((xsd_string_1) != (xsd_string_6)) (cAmphisbaenidae T_21) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cEmydidae T_21) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### DisjTree 492 496 497
% 37.11/37.31  499. (All Y1, (((rfamily_name T_21 (xsd_string_6)) /\ (rfamily_name T_21 Y1)) => ((xsd_string_6) = Y1))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_21) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_21) ((xsd_string_1) != (xsd_string_6))   ### All 498
% 37.11/37.31  500. (All Y0, (All Y1, (((rfamily_name T_21 Y0) /\ (rfamily_name T_21 Y1)) => (Y0 = Y1)))) ((xsd_string_1) != (xsd_string_6)) (cAmphisbaenidae T_21) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cEmydidae T_21) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### All 499
% 37.11/37.31  501. ((Ex Y0, (rfamily_name T_21 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_21 Y0) /\ (rfamily_name T_21 Y1)) => (Y0 = Y1))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_21) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_21) ((xsd_string_1) != (xsd_string_6))   ### And 500
% 37.11/37.31  502. ((cReptile T_21) => ((Ex Y0, (rfamily_name T_21 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_21 Y0) /\ (rfamily_name T_21 Y1)) => (Y0 = Y1)))))) ((xsd_string_1) != (xsd_string_6)) (cAmphisbaenidae T_21) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_21) (All X, ((cEmydidae X) => (cReptile X)))   ### Imply 488 501
% 37.11/37.31  503. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_21) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_21) ((xsd_string_1) != (xsd_string_6))   ### All 502
% 37.11/37.31  504. ((cAmphisbaenidae T_21) /\ (cEmydidae T_21)) ((xsd_string_1) != (xsd_string_6)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 503
% 37.11/37.31  505. (-. (-. ((cAmphisbaenidae T_21) /\ (cEmydidae T_21)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) ((xsd_string_1) != (xsd_string_6))   ### NotNot 504
% 37.11/37.31  506. (-. (All X, (-. ((cAmphisbaenidae X) /\ (cEmydidae X))))) ((xsd_string_1) != (xsd_string_6)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 505
% 37.11/37.31  507. (cCrocodylidae T_22) (-. (cCrocodylidae T_22))   ### Axiom
% 37.11/37.31  508. (-. (cReptile T_22)) (cReptile T_22)   ### Axiom
% 37.11/37.31  509. ((cCrocodylidae T_22) => (cReptile T_22)) (-. (cReptile T_22)) (cCrocodylidae T_22)   ### Imply 507 508
% 37.11/37.31  510. (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_22) (-. (cReptile T_22))   ### All 509
% 37.11/37.31  511. (cCrocodylidae T_22) (-. (cCrocodylidae T_22))   ### Axiom
% 37.11/37.31  512. (-. (rfamily_name T_22 (xsd_string_5))) (rfamily_name T_22 (xsd_string_5))   ### Axiom
% 37.11/37.31  513. ((cCrocodylidae T_22) => (rfamily_name T_22 (xsd_string_5))) (-. (rfamily_name T_22 (xsd_string_5))) (cCrocodylidae T_22)   ### Imply 511 512
% 37.11/37.31  514. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_22) (-. (rfamily_name T_22 (xsd_string_5)))   ### All 513
% 37.11/37.31  515. (cAgamidae T_22) (-. (cAgamidae T_22))   ### Axiom
% 37.11/37.31  516. (-. (rfamily_name T_22 (xsd_string_0))) (rfamily_name T_22 (xsd_string_0))   ### Axiom
% 37.11/37.31  517. ((cAgamidae T_22) => (rfamily_name T_22 (xsd_string_0))) (-. (rfamily_name T_22 (xsd_string_0))) (cAgamidae T_22)   ### Imply 515 516
% 37.11/37.32  518. (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_22) (-. (rfamily_name T_22 (xsd_string_0)))   ### All 517
% 37.11/37.32  519. ((xsd_string_0) != (xsd_string_5)) ((xsd_string_5) = (xsd_string_0))   ### Sym(=)
% 37.11/37.32  520. (((rfamily_name T_22 (xsd_string_5)) /\ (rfamily_name T_22 (xsd_string_0))) => ((xsd_string_5) = (xsd_string_0))) ((xsd_string_0) != (xsd_string_5)) (cAgamidae T_22) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cCrocodylidae T_22) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### DisjTree 514 518 519
% 37.11/37.32  521. (All Y1, (((rfamily_name T_22 (xsd_string_5)) /\ (rfamily_name T_22 Y1)) => ((xsd_string_5) = Y1))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_22) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_22) ((xsd_string_0) != (xsd_string_5))   ### All 520
% 37.11/37.32  522. (All Y0, (All Y1, (((rfamily_name T_22 Y0) /\ (rfamily_name T_22 Y1)) => (Y0 = Y1)))) ((xsd_string_0) != (xsd_string_5)) (cAgamidae T_22) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cCrocodylidae T_22) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### All 521
% 37.11/37.32  523. ((Ex Y0, (rfamily_name T_22 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_22 Y0) /\ (rfamily_name T_22 Y1)) => (Y0 = Y1))))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_22) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_22) ((xsd_string_0) != (xsd_string_5))   ### And 522
% 37.11/37.32  524. ((cReptile T_22) => ((Ex Y0, (rfamily_name T_22 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_22 Y0) /\ (rfamily_name T_22 Y1)) => (Y0 = Y1)))))) ((xsd_string_0) != (xsd_string_5)) (cAgamidae T_22) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_22) (All X, ((cCrocodylidae X) => (cReptile X)))   ### Imply 510 523
% 37.11/37.32  525. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_22) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_22) ((xsd_string_0) != (xsd_string_5))   ### All 524
% 37.11/37.32  526. ((cAgamidae T_22) /\ (cCrocodylidae T_22)) ((xsd_string_0) != (xsd_string_5)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 525
% 37.11/37.32  527. (-. (-. ((cAgamidae T_22) /\ (cCrocodylidae T_22)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) ((xsd_string_0) != (xsd_string_5))   ### NotNot 526
% 37.11/37.32  528. (-. (All X, (-. ((cAgamidae X) /\ (cCrocodylidae X))))) ((xsd_string_0) != (xsd_string_5)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 527
% 37.11/37.32  529. (cXantusiidae T_23) (-. (cXantusiidae T_23))   ### Axiom
% 37.11/37.32  530. (-. (cReptile T_23)) (cReptile T_23)   ### Axiom
% 37.11/37.32  531. ((cXantusiidae T_23) => (cReptile T_23)) (-. (cReptile T_23)) (cXantusiidae T_23)   ### Imply 529 530
% 37.11/37.32  532. (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_23) (-. (cReptile T_23))   ### All 531
% 37.11/37.32  533. (cXantusiidae T_23) (-. (cXantusiidae T_23))   ### Axiom
% 37.11/37.32  534. (-. (rfamily_name T_23 (xsd_string_11))) (rfamily_name T_23 (xsd_string_11))   ### Axiom
% 37.11/37.32  535. ((cXantusiidae T_23) => (rfamily_name T_23 (xsd_string_11))) (-. (rfamily_name T_23 (xsd_string_11))) (cXantusiidae T_23)   ### Imply 533 534
% 37.11/37.32  536. (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_23) (-. (rfamily_name T_23 (xsd_string_11)))   ### All 535
% 37.11/37.32  537. (cLoxocemidae T_23) (-. (cLoxocemidae T_23))   ### Axiom
% 37.11/37.32  538. (-. (rfamily_name T_23 (xsd_string_9))) (rfamily_name T_23 (xsd_string_9))   ### Axiom
% 37.11/37.32  539. ((cLoxocemidae T_23) => (rfamily_name T_23 (xsd_string_9))) (-. (rfamily_name T_23 (xsd_string_9))) (cLoxocemidae T_23)   ### Imply 537 538
% 37.11/37.32  540. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_23) (-. (rfamily_name T_23 (xsd_string_9)))   ### All 539
% 37.11/37.32  541. ((xsd_string_9) != (xsd_string_11)) ((xsd_string_11) = (xsd_string_9))   ### Sym(=)
% 37.11/37.32  542. (((rfamily_name T_23 (xsd_string_11)) /\ (rfamily_name T_23 (xsd_string_9))) => ((xsd_string_11) = (xsd_string_9))) ((xsd_string_9) != (xsd_string_11)) (cLoxocemidae T_23) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cXantusiidae T_23) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### DisjTree 536 540 541
% 37.11/37.32  543. (All Y1, (((rfamily_name T_23 (xsd_string_11)) /\ (rfamily_name T_23 Y1)) => ((xsd_string_11) = Y1))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_23) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_23) ((xsd_string_9) != (xsd_string_11))   ### All 542
% 37.11/37.32  544. (All Y0, (All Y1, (((rfamily_name T_23 Y0) /\ (rfamily_name T_23 Y1)) => (Y0 = Y1)))) ((xsd_string_9) != (xsd_string_11)) (cLoxocemidae T_23) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cXantusiidae T_23) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### All 543
% 37.11/37.32  545. ((Ex Y0, (rfamily_name T_23 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_23 Y0) /\ (rfamily_name T_23 Y1)) => (Y0 = Y1))))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_23) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_23) ((xsd_string_9) != (xsd_string_11))   ### And 544
% 37.11/37.32  546. ((cReptile T_23) => ((Ex Y0, (rfamily_name T_23 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_23 Y0) /\ (rfamily_name T_23 Y1)) => (Y0 = Y1)))))) ((xsd_string_9) != (xsd_string_11)) (cLoxocemidae T_23) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_23) (All X, ((cXantusiidae X) => (cReptile X)))   ### Imply 532 545
% 37.11/37.32  547. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_23) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_23) ((xsd_string_9) != (xsd_string_11))   ### All 546
% 37.11/37.32  548. ((cXantusiidae T_23) /\ (cLoxocemidae T_23)) ((xsd_string_9) != (xsd_string_11)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 547
% 37.11/37.32  549. (-. (-. ((cXantusiidae T_23) /\ (cLoxocemidae T_23)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) ((xsd_string_9) != (xsd_string_11))   ### NotNot 548
% 37.11/37.32  550. (-. (All X, (-. ((cXantusiidae X) /\ (cLoxocemidae X))))) ((xsd_string_9) != (xsd_string_11)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 549
% 37.11/37.33  551. (cXantusiidae T_24) (-. (cXantusiidae T_24))   ### Axiom
% 37.11/37.33  552. (-. (cReptile T_24)) (cReptile T_24)   ### Axiom
% 37.11/37.33  553. ((cXantusiidae T_24) => (cReptile T_24)) (-. (cReptile T_24)) (cXantusiidae T_24)   ### Imply 551 552
% 37.11/37.33  554. (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_24) (-. (cReptile T_24))   ### All 553
% 37.11/37.33  555. (cXantusiidae T_24) (-. (cXantusiidae T_24))   ### Axiom
% 37.11/37.33  556. (-. (rfamily_name T_24 (xsd_string_11))) (rfamily_name T_24 (xsd_string_11))   ### Axiom
% 37.11/37.33  557. ((cXantusiidae T_24) => (rfamily_name T_24 (xsd_string_11))) (-. (rfamily_name T_24 (xsd_string_11))) (cXantusiidae T_24)   ### Imply 555 556
% 37.11/37.33  558. (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_24) (-. (rfamily_name T_24 (xsd_string_11)))   ### All 557
% 37.11/37.33  559. (cEmydidae T_24) (-. (cEmydidae T_24))   ### Axiom
% 37.11/37.33  560. (-. (rfamily_name T_24 (xsd_string_6))) (rfamily_name T_24 (xsd_string_6))   ### Axiom
% 37.11/37.33  561. ((cEmydidae T_24) => (rfamily_name T_24 (xsd_string_6))) (-. (rfamily_name T_24 (xsd_string_6))) (cEmydidae T_24)   ### Imply 559 560
% 37.11/37.33  562. (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_24) (-. (rfamily_name T_24 (xsd_string_6)))   ### All 561
% 37.11/37.33  563. ((xsd_string_6) != (xsd_string_11)) ((xsd_string_11) = (xsd_string_6))   ### Sym(=)
% 37.11/37.33  564. (((rfamily_name T_24 (xsd_string_11)) /\ (rfamily_name T_24 (xsd_string_6))) => ((xsd_string_11) = (xsd_string_6))) ((xsd_string_6) != (xsd_string_11)) (cEmydidae T_24) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cXantusiidae T_24) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### DisjTree 558 562 563
% 37.11/37.33  565. (All Y1, (((rfamily_name T_24 (xsd_string_11)) /\ (rfamily_name T_24 Y1)) => ((xsd_string_11) = Y1))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_24) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_24) ((xsd_string_6) != (xsd_string_11))   ### All 564
% 37.11/37.33  566. (All Y0, (All Y1, (((rfamily_name T_24 Y0) /\ (rfamily_name T_24 Y1)) => (Y0 = Y1)))) ((xsd_string_6) != (xsd_string_11)) (cEmydidae T_24) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cXantusiidae T_24) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### All 565
% 37.11/37.33  567. ((Ex Y0, (rfamily_name T_24 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_24 Y0) /\ (rfamily_name T_24 Y1)) => (Y0 = Y1))))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_24) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_24) ((xsd_string_6) != (xsd_string_11))   ### And 566
% 37.11/37.33  568. ((cReptile T_24) => ((Ex Y0, (rfamily_name T_24 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_24 Y0) /\ (rfamily_name T_24 Y1)) => (Y0 = Y1)))))) ((xsd_string_6) != (xsd_string_11)) (cEmydidae T_24) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_24) (All X, ((cXantusiidae X) => (cReptile X)))   ### Imply 554 567
% 37.11/37.33  569. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_24) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_24) ((xsd_string_6) != (xsd_string_11))   ### All 568
% 37.11/37.33  570. ((cXantusiidae T_24) /\ (cEmydidae T_24)) ((xsd_string_6) != (xsd_string_11)) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 569
% 37.11/37.33  571. (-. (-. ((cXantusiidae T_24) /\ (cEmydidae T_24)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) ((xsd_string_6) != (xsd_string_11))   ### NotNot 570
% 37.11/37.33  572. (-. (All X, (-. ((cXantusiidae X) /\ (cEmydidae X))))) ((xsd_string_6) != (xsd_string_11)) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 571
% 37.11/37.33  573. (T_25 != T_25)   ### Refl(=)
% 37.11/37.33  574. (cBipedidae T_25) (-. (cBipedidae T_25))   ### Axiom
% 37.11/37.33  575. (-. (rfamily_name T_25 (xsd_string_3))) (rfamily_name T_25 (xsd_string_3))   ### Axiom
% 37.11/37.33  576. ((cBipedidae T_25) => (rfamily_name T_25 (xsd_string_3))) (-. (rfamily_name T_25 (xsd_string_3))) (cBipedidae T_25)   ### Imply 574 575
% 37.11/37.33  577. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_25) (-. (rfamily_name T_25 (xsd_string_3)))   ### All 576
% 37.11/37.33  578. (T_25 != T_25)   ### Refl(=)
% 37.11/37.33  579. (cLoxocemidae T_25) (-. (cLoxocemidae T_25))   ### Axiom
% 37.11/37.33  580. (-. (rfamily_name T_25 (xsd_string_9))) (rfamily_name T_25 (xsd_string_9))   ### Axiom
% 37.11/37.33  581. ((cLoxocemidae T_25) => (rfamily_name T_25 (xsd_string_9))) (-. (rfamily_name T_25 (xsd_string_9))) (cLoxocemidae T_25)   ### Imply 579 580
% 37.11/37.33  582. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_25) (-. (rfamily_name T_25 (xsd_string_9)))   ### All 581
% 37.11/37.33  583. (cBipedidae T_25) (-. (cBipedidae T_25))   ### Axiom
% 37.11/37.33  584. (-. (cReptile T_25)) (cReptile T_25)   ### Axiom
% 37.11/37.33  585. ((cBipedidae T_25) => (cReptile T_25)) (-. (cReptile T_25)) (cBipedidae T_25)   ### Imply 583 584
% 37.11/37.33  586. (All X, ((cBipedidae X) => (cReptile X))) (cBipedidae T_25) (-. (cReptile T_25))   ### All 585
% 37.11/37.33  587. (rfamily_name T_25 (xsd_string_9)) (-. (rfamily_name T_25 (xsd_string_9)))   ### Axiom
% 37.11/37.33  588. (rfamily_name T_25 (xsd_string_3)) (-. (rfamily_name T_25 (xsd_string_3)))   ### Axiom
% 37.11/37.33  589. ((xsd_string_3) != (xsd_string_9)) ((xsd_string_9) = (xsd_string_3))   ### Sym(=)
% 37.11/37.33  590. (((rfamily_name T_25 (xsd_string_9)) /\ (rfamily_name T_25 (xsd_string_3))) => ((xsd_string_9) = (xsd_string_3))) ((xsd_string_3) != (xsd_string_9)) (rfamily_name T_25 (xsd_string_3)) (rfamily_name T_25 (xsd_string_9))   ### DisjTree 587 588 589
% 37.11/37.33  591. (All Y1, (((rfamily_name T_25 (xsd_string_9)) /\ (rfamily_name T_25 Y1)) => ((xsd_string_9) = Y1))) (rfamily_name T_25 (xsd_string_9)) (rfamily_name T_25 (xsd_string_3)) ((xsd_string_3) != (xsd_string_9))   ### All 590
% 37.11/37.33  592. (All Y0, (All Y1, (((rfamily_name T_25 Y0) /\ (rfamily_name T_25 Y1)) => (Y0 = Y1)))) ((xsd_string_3) != (xsd_string_9)) (rfamily_name T_25 (xsd_string_3)) (rfamily_name T_25 (xsd_string_9))   ### All 591
% 37.11/37.33  593. ((Ex Y0, (rfamily_name T_25 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_25 Y0) /\ (rfamily_name T_25 Y1)) => (Y0 = Y1))))) (rfamily_name T_25 (xsd_string_9)) (rfamily_name T_25 (xsd_string_3)) ((xsd_string_3) != (xsd_string_9))   ### And 592
% 37.11/37.33  594. ((cReptile T_25) => ((Ex Y0, (rfamily_name T_25 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_25 Y0) /\ (rfamily_name T_25 Y1)) => (Y0 = Y1)))))) ((xsd_string_3) != (xsd_string_9)) (rfamily_name T_25 (xsd_string_3)) (rfamily_name T_25 (xsd_string_9)) (cBipedidae T_25) (All X, ((cBipedidae X) => (cReptile X)))   ### Imply 586 593
% 37.11/37.33  595. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cBipedidae X) => (cReptile X))) (cBipedidae T_25) (rfamily_name T_25 (xsd_string_9)) (rfamily_name T_25 (xsd_string_3)) ((xsd_string_3) != (xsd_string_9))   ### All 594
% 37.11/37.33  596. (((T_25 = T_25) /\ (rfamily_name T_25 (xsd_string_9))) => (rfamily_name T_25 (xsd_string_9))) ((xsd_string_3) != (xsd_string_9)) (rfamily_name T_25 (xsd_string_3)) (cBipedidae T_25) (All X, ((cBipedidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLoxocemidae T_25) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### DisjTree 578 582 595
% 37.11/37.33  597. (All C, (((T_25 = T_25) /\ (rfamily_name T_25 C)) => (rfamily_name T_25 C))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_25) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cBipedidae X) => (cReptile X))) (cBipedidae T_25) (rfamily_name T_25 (xsd_string_3)) ((xsd_string_3) != (xsd_string_9))   ### All 596
% 37.11/37.33  598. (((T_25 = T_25) /\ (rfamily_name T_25 (xsd_string_3))) => (rfamily_name T_25 (xsd_string_3))) ((xsd_string_3) != (xsd_string_9)) (All X, ((cBipedidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLoxocemidae T_25) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All C, (((T_25 = T_25) /\ (rfamily_name T_25 C)) => (rfamily_name T_25 C))) (cBipedidae T_25) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### DisjTree 573 577 597
% 37.11/37.33  599. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_25) (All C, (((T_25 = T_25) /\ (rfamily_name T_25 C)) => (rfamily_name T_25 C))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_25) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cBipedidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_9))   ### All 598
% 37.11/37.33  600. (All B, (All C, (((T_25 = B) /\ (rfamily_name T_25 C)) => (rfamily_name B C)))) ((xsd_string_3) != (xsd_string_9)) (All X, ((cBipedidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLoxocemidae T_25) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cBipedidae T_25) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### All 599
% 37.11/37.33  601. (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_25) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_25) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cBipedidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_9))   ### All 600
% 37.11/37.33  602. ((cBipedidae T_25) /\ (cLoxocemidae T_25)) ((xsd_string_3) != (xsd_string_9)) (All X, ((cBipedidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### And 601
% 37.11/37.33  603. (-. (-. ((cBipedidae T_25) /\ (cLoxocemidae T_25)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cBipedidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_9))   ### NotNot 602
% 37.11/37.33  604. (-. (All X, (-. ((cBipedidae X) /\ (cLoxocemidae X))))) ((xsd_string_3) != (xsd_string_9)) (All X, ((cBipedidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### NotAllEx 603
% 37.11/37.33  605. (cAgamidae T_26) (-. (cAgamidae T_26))   ### Axiom
% 37.11/37.33  606. (-. (cReptile T_26)) (cReptile T_26)   ### Axiom
% 37.11/37.33  607. ((cAgamidae T_26) => (cReptile T_26)) (-. (cReptile T_26)) (cAgamidae T_26)   ### Imply 605 606
% 37.11/37.33  608. (All X, ((cAgamidae X) => (cReptile X))) (cAgamidae T_26) (-. (cReptile T_26))   ### All 607
% 37.11/37.33  609. (cAgamidae T_26) (-. (cAgamidae T_26))   ### Axiom
% 37.11/37.33  610. (-. (rfamily_name T_26 (xsd_string_0))) (rfamily_name T_26 (xsd_string_0))   ### Axiom
% 37.11/37.33  611. ((cAgamidae T_26) => (rfamily_name T_26 (xsd_string_0))) (-. (rfamily_name T_26 (xsd_string_0))) (cAgamidae T_26)   ### Imply 609 610
% 37.11/37.33  612. (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_26) (-. (rfamily_name T_26 (xsd_string_0)))   ### All 611
% 37.11/37.33  613. (cBipedidae T_26) (-. (cBipedidae T_26))   ### Axiom
% 37.11/37.33  614. (-. (rfamily_name T_26 (xsd_string_3))) (rfamily_name T_26 (xsd_string_3))   ### Axiom
% 37.11/37.33  615. ((cBipedidae T_26) => (rfamily_name T_26 (xsd_string_3))) (-. (rfamily_name T_26 (xsd_string_3))) (cBipedidae T_26)   ### Imply 613 614
% 37.11/37.33  616. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_26) (-. (rfamily_name T_26 (xsd_string_3)))   ### All 615
% 37.11/37.33  617. ((xsd_string_0) != (xsd_string_3)) ((xsd_string_0) = (xsd_string_3))   ### Axiom
% 37.11/37.33  618. (((rfamily_name T_26 (xsd_string_0)) /\ (rfamily_name T_26 (xsd_string_3))) => ((xsd_string_0) = (xsd_string_3))) ((xsd_string_0) != (xsd_string_3)) (cBipedidae T_26) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cAgamidae T_26) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0))))   ### DisjTree 612 616 617
% 37.11/37.33  619. (All Y1, (((rfamily_name T_26 (xsd_string_0)) /\ (rfamily_name T_26 Y1)) => ((xsd_string_0) = Y1))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_26) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_26) ((xsd_string_0) != (xsd_string_3))   ### All 618
% 37.11/37.33  620. (All Y0, (All Y1, (((rfamily_name T_26 Y0) /\ (rfamily_name T_26 Y1)) => (Y0 = Y1)))) ((xsd_string_0) != (xsd_string_3)) (cBipedidae T_26) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cAgamidae T_26) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0))))   ### All 619
% 37.11/37.33  621. ((Ex Y0, (rfamily_name T_26 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_26 Y0) /\ (rfamily_name T_26 Y1)) => (Y0 = Y1))))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_26) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_26) ((xsd_string_0) != (xsd_string_3))   ### And 620
% 37.11/37.33  622. ((cReptile T_26) => ((Ex Y0, (rfamily_name T_26 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_26 Y0) /\ (rfamily_name T_26 Y1)) => (Y0 = Y1)))))) ((xsd_string_0) != (xsd_string_3)) (cBipedidae T_26) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_26) (All X, ((cAgamidae X) => (cReptile X)))   ### Imply 608 621
% 37.11/37.33  623. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAgamidae X) => (cReptile X))) (cAgamidae T_26) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_26) ((xsd_string_0) != (xsd_string_3))   ### All 622
% 37.11/37.33  624. ((cBipedidae T_26) /\ (cAgamidae T_26)) ((xsd_string_0) != (xsd_string_3)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cAgamidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 623
% 37.11/37.33  625. (-. (-. ((cBipedidae T_26) /\ (cAgamidae T_26)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAgamidae X) => (cReptile X))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) ((xsd_string_0) != (xsd_string_3))   ### NotNot 624
% 37.11/37.35  626. (-. (All X, (-. ((cBipedidae X) /\ (cAgamidae X))))) ((xsd_string_0) != (xsd_string_3)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cAgamidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 625
% 37.11/37.35  627. (cGekkonidae T_27) (-. (cGekkonidae T_27))   ### Axiom
% 37.11/37.35  628. (-. (cReptile T_27)) (cReptile T_27)   ### Axiom
% 37.11/37.35  629. ((cGekkonidae T_27) => (cReptile T_27)) (-. (cReptile T_27)) (cGekkonidae T_27)   ### Imply 627 628
% 37.11/37.35  630. (All X, ((cGekkonidae X) => (cReptile X))) (cGekkonidae T_27) (-. (cReptile T_27))   ### All 629
% 37.11/37.35  631. (cGekkonidae T_27) (-. (cGekkonidae T_27))   ### Axiom
% 37.11/37.35  632. (-. (rfamily_name T_27 (xsd_string_7))) (rfamily_name T_27 (xsd_string_7))   ### Axiom
% 37.11/37.35  633. ((cGekkonidae T_27) => (rfamily_name T_27 (xsd_string_7))) (-. (rfamily_name T_27 (xsd_string_7))) (cGekkonidae T_27)   ### Imply 631 632
% 37.11/37.35  634. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_27) (-. (rfamily_name T_27 (xsd_string_7)))   ### All 633
% 37.11/37.35  635. (cAmphisbaenidae T_27) (-. (cAmphisbaenidae T_27))   ### Axiom
% 37.11/37.35  636. (-. (rfamily_name T_27 (xsd_string_1))) (rfamily_name T_27 (xsd_string_1))   ### Axiom
% 37.11/37.35  637. ((cAmphisbaenidae T_27) => (rfamily_name T_27 (xsd_string_1))) (-. (rfamily_name T_27 (xsd_string_1))) (cAmphisbaenidae T_27)   ### Imply 635 636
% 37.11/37.35  638. (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_27) (-. (rfamily_name T_27 (xsd_string_1)))   ### All 637
% 37.11/37.35  639. ((xsd_string_1) != (xsd_string_7)) ((xsd_string_7) = (xsd_string_1))   ### Sym(=)
% 37.11/37.35  640. (((rfamily_name T_27 (xsd_string_7)) /\ (rfamily_name T_27 (xsd_string_1))) => ((xsd_string_7) = (xsd_string_1))) ((xsd_string_1) != (xsd_string_7)) (cAmphisbaenidae T_27) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cGekkonidae T_27) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### DisjTree 634 638 639
% 37.11/37.35  641. (All Y1, (((rfamily_name T_27 (xsd_string_7)) /\ (rfamily_name T_27 Y1)) => ((xsd_string_7) = Y1))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_27) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_27) ((xsd_string_1) != (xsd_string_7))   ### All 640
% 37.11/37.35  642. (All Y0, (All Y1, (((rfamily_name T_27 Y0) /\ (rfamily_name T_27 Y1)) => (Y0 = Y1)))) ((xsd_string_1) != (xsd_string_7)) (cAmphisbaenidae T_27) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cGekkonidae T_27) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### All 641
% 37.11/37.35  643. ((Ex Y0, (rfamily_name T_27 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_27 Y0) /\ (rfamily_name T_27 Y1)) => (Y0 = Y1))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_27) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_27) ((xsd_string_1) != (xsd_string_7))   ### And 642
% 37.11/37.35  644. ((cReptile T_27) => ((Ex Y0, (rfamily_name T_27 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_27 Y0) /\ (rfamily_name T_27 Y1)) => (Y0 = Y1)))))) ((xsd_string_1) != (xsd_string_7)) (cAmphisbaenidae T_27) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_27) (All X, ((cGekkonidae X) => (cReptile X)))   ### Imply 630 643
% 37.11/37.35  645. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) (cGekkonidae T_27) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_27) ((xsd_string_1) != (xsd_string_7))   ### All 644
% 37.11/37.35  646. ((cGekkonidae T_27) /\ (cAmphisbaenidae T_27)) ((xsd_string_1) != (xsd_string_7)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 645
% 37.11/37.35  647. (-. (-. ((cGekkonidae T_27) /\ (cAmphisbaenidae T_27)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) ((xsd_string_1) != (xsd_string_7))   ### NotNot 646
% 37.11/37.35  648. (-. (All X, (-. ((cGekkonidae X) /\ (cAmphisbaenidae X))))) ((xsd_string_1) != (xsd_string_7)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 647
% 37.11/37.35  649. (cCrocodylidae T_28) (-. (cCrocodylidae T_28))   ### Axiom
% 37.11/37.35  650. (-. (cReptile T_28)) (cReptile T_28)   ### Axiom
% 37.11/37.35  651. ((cCrocodylidae T_28) => (cReptile T_28)) (-. (cReptile T_28)) (cCrocodylidae T_28)   ### Imply 649 650
% 37.11/37.35  652. (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_28) (-. (cReptile T_28))   ### All 651
% 37.11/37.35  653. (cCrocodylidae T_28) (-. (cCrocodylidae T_28))   ### Axiom
% 37.11/37.35  654. (-. (rfamily_name T_28 (xsd_string_5))) (rfamily_name T_28 (xsd_string_5))   ### Axiom
% 37.11/37.35  655. ((cCrocodylidae T_28) => (rfamily_name T_28 (xsd_string_5))) (-. (rfamily_name T_28 (xsd_string_5))) (cCrocodylidae T_28)   ### Imply 653 654
% 37.11/37.35  656. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_28) (-. (rfamily_name T_28 (xsd_string_5)))   ### All 655
% 37.11/37.35  657. (rfamily_name T_28 T_29) (-. (rfamily_name T_28 T_29))   ### Axiom
% 37.11/37.35  658. ((xsd_string_5) != (xsd_string_5))   ### NotEqual
% 37.11/37.35  659. (cLeptotyphlopidae T_28) (-. (cLeptotyphlopidae T_28))   ### Axiom
% 37.11/37.35  660. (-. (rfamily_name T_28 (xsd_string_8))) (rfamily_name T_28 (xsd_string_8))   ### Axiom
% 37.11/37.35  661. ((cLeptotyphlopidae T_28) => (rfamily_name T_28 (xsd_string_8))) (-. (rfamily_name T_28 (xsd_string_8))) (cLeptotyphlopidae T_28)   ### Imply 659 660
% 37.11/37.35  662. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_28) (-. (rfamily_name T_28 (xsd_string_8)))   ### All 661
% 37.11/37.35  663. (rfamily_name T_28 T_29) (-. (rfamily_name T_28 T_29))   ### Axiom
% 37.11/37.35  664. (T_29 != (xsd_string_8)) ((xsd_string_8) = T_29)   ### Sym(=)
% 37.11/37.35  665. (((rfamily_name T_28 (xsd_string_8)) /\ (rfamily_name T_28 T_29)) => ((xsd_string_8) = T_29)) (T_29 != (xsd_string_8)) (rfamily_name T_28 T_29) (cLeptotyphlopidae T_28) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### DisjTree 662 663 664
% 37.11/37.35  666. (All Y1, (((rfamily_name T_28 (xsd_string_8)) /\ (rfamily_name T_28 Y1)) => ((xsd_string_8) = Y1))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_28) (rfamily_name T_28 T_29) (T_29 != (xsd_string_8))   ### All 665
% 37.11/37.35  667. ((xsd_string_5) != (xsd_string_8)) ((xsd_string_5) = T_29) (rfamily_name T_28 T_29) (cLeptotyphlopidae T_28) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All Y1, (((rfamily_name T_28 (xsd_string_8)) /\ (rfamily_name T_28 Y1)) => ((xsd_string_8) = Y1)))   ### TransEq 658 658 666
% 37.11/37.35  668. (((rfamily_name T_28 (xsd_string_5)) /\ (rfamily_name T_28 T_29)) => ((xsd_string_5) = T_29)) (All Y1, (((rfamily_name T_28 (xsd_string_8)) /\ (rfamily_name T_28 Y1)) => ((xsd_string_8) = Y1))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_28) ((xsd_string_5) != (xsd_string_8)) (rfamily_name T_28 T_29) (cCrocodylidae T_28) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### DisjTree 656 657 667
% 37.11/37.35  669. (All Y1, (((rfamily_name T_28 (xsd_string_5)) /\ (rfamily_name T_28 Y1)) => ((xsd_string_5) = Y1))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_28) (rfamily_name T_28 T_29) ((xsd_string_5) != (xsd_string_8)) (cLeptotyphlopidae T_28) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All Y1, (((rfamily_name T_28 (xsd_string_8)) /\ (rfamily_name T_28 Y1)) => ((xsd_string_8) = Y1)))   ### All 668
% 37.21/37.37  670. (All Y0, (All Y1, (((rfamily_name T_28 Y0) /\ (rfamily_name T_28 Y1)) => (Y0 = Y1)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_28) ((xsd_string_5) != (xsd_string_8)) (rfamily_name T_28 T_29) (cCrocodylidae T_28) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All Y1, (((rfamily_name T_28 (xsd_string_5)) /\ (rfamily_name T_28 Y1)) => ((xsd_string_5) = Y1)))   ### All 669
% 37.21/37.37  671. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_28) (rfamily_name T_28 T_29) ((xsd_string_5) != (xsd_string_8)) (cLeptotyphlopidae T_28) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All Y0, (All Y1, (((rfamily_name T_28 Y0) /\ (rfamily_name T_28 Y1)) => (Y0 = Y1))))   ### All 670
% 37.21/37.37  672. (Ex Y0, (rfamily_name T_28 Y0)) (All Y0, (All Y1, (((rfamily_name T_28 Y0) /\ (rfamily_name T_28 Y1)) => (Y0 = Y1)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_28) ((xsd_string_5) != (xsd_string_8)) (cCrocodylidae T_28) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### Exists 671
% 37.21/37.37  673. ((Ex Y0, (rfamily_name T_28 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_28 Y0) /\ (rfamily_name T_28 Y1)) => (Y0 = Y1))))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_28) ((xsd_string_5) != (xsd_string_8)) (cLeptotyphlopidae T_28) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### And 672
% 37.21/37.37  674. ((cReptile T_28) => ((Ex Y0, (rfamily_name T_28 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_28 Y0) /\ (rfamily_name T_28 Y1)) => (Y0 = Y1)))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_28) ((xsd_string_5) != (xsd_string_8)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_28) (All X, ((cCrocodylidae X) => (cReptile X)))   ### Imply 652 673
% 37.21/37.37  675. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_28) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) ((xsd_string_5) != (xsd_string_8)) (cLeptotyphlopidae T_28) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### All 674
% 37.21/37.37  676. ((cLeptotyphlopidae T_28) /\ (cCrocodylidae T_28)) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) ((xsd_string_5) != (xsd_string_8)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 675
% 37.21/37.37  677. (-. (-. ((cLeptotyphlopidae T_28) /\ (cCrocodylidae T_28)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) ((xsd_string_5) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### NotNot 676
% 37.21/37.37  678. (-. (All X, (-. ((cLeptotyphlopidae X) /\ (cCrocodylidae X))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) ((xsd_string_5) != (xsd_string_8)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 677
% 37.21/37.37  679. (cSphenodontidae T_30) (-. (cSphenodontidae T_30))   ### Axiom
% 37.21/37.37  680. (-. (cReptile T_30)) (cReptile T_30)   ### Axiom
% 37.21/37.37  681. ((cSphenodontidae T_30) => (cReptile T_30)) (-. (cReptile T_30)) (cSphenodontidae T_30)   ### Imply 679 680
% 37.21/37.37  682. (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_30) (-. (cReptile T_30))   ### All 681
% 37.21/37.37  683. (cSphenodontidae T_30) (-. (cSphenodontidae T_30))   ### Axiom
% 37.21/37.37  684. (-. (rfamily_name T_30 (xsd_string_10))) (rfamily_name T_30 (xsd_string_10))   ### Axiom
% 37.21/37.37  685. ((cSphenodontidae T_30) => (rfamily_name T_30 (xsd_string_10))) (-. (rfamily_name T_30 (xsd_string_10))) (cSphenodontidae T_30)   ### Imply 683 684
% 37.21/37.37  686. (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_30) (-. (rfamily_name T_30 (xsd_string_10)))   ### All 685
% 37.21/37.37  687. (cCordylidae T_30) (-. (cCordylidae T_30))   ### Axiom
% 37.21/37.37  688. (-. (rfamily_name T_30 (xsd_string_4))) (rfamily_name T_30 (xsd_string_4))   ### Axiom
% 37.21/37.37  689. ((cCordylidae T_30) => (rfamily_name T_30 (xsd_string_4))) (-. (rfamily_name T_30 (xsd_string_4))) (cCordylidae T_30)   ### Imply 687 688
% 37.21/37.37  690. (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_30) (-. (rfamily_name T_30 (xsd_string_4)))   ### All 689
% 37.21/37.37  691. ((xsd_string_4) != (xsd_string_10)) ((xsd_string_10) = (xsd_string_4))   ### Sym(=)
% 37.21/37.37  692. (((rfamily_name T_30 (xsd_string_10)) /\ (rfamily_name T_30 (xsd_string_4))) => ((xsd_string_10) = (xsd_string_4))) ((xsd_string_4) != (xsd_string_10)) (cCordylidae T_30) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cSphenodontidae T_30) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### DisjTree 686 690 691
% 37.21/37.37  693. (All Y1, (((rfamily_name T_30 (xsd_string_10)) /\ (rfamily_name T_30 Y1)) => ((xsd_string_10) = Y1))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_30) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_30) ((xsd_string_4) != (xsd_string_10))   ### All 692
% 37.21/37.37  694. (All Y0, (All Y1, (((rfamily_name T_30 Y0) /\ (rfamily_name T_30 Y1)) => (Y0 = Y1)))) ((xsd_string_4) != (xsd_string_10)) (cCordylidae T_30) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cSphenodontidae T_30) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### All 693
% 37.21/37.37  695. ((Ex Y0, (rfamily_name T_30 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_30 Y0) /\ (rfamily_name T_30 Y1)) => (Y0 = Y1))))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_30) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_30) ((xsd_string_4) != (xsd_string_10))   ### And 694
% 37.21/37.37  696. ((cReptile T_30) => ((Ex Y0, (rfamily_name T_30 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_30 Y0) /\ (rfamily_name T_30 Y1)) => (Y0 = Y1)))))) ((xsd_string_4) != (xsd_string_10)) (cCordylidae T_30) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_30) (All X, ((cSphenodontidae X) => (cReptile X)))   ### Imply 682 695
% 37.21/37.37  697. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_30) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_30) ((xsd_string_4) != (xsd_string_10))   ### All 696
% 37.21/37.37  698. ((cSphenodontidae T_30) /\ (cCordylidae T_30)) ((xsd_string_4) != (xsd_string_10)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 697
% 37.21/37.37  699. (-. (-. ((cSphenodontidae T_30) /\ (cCordylidae T_30)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_4) != (xsd_string_10))   ### NotNot 698
% 37.21/37.38  700. (-. (All X, (-. ((cSphenodontidae X) /\ (cCordylidae X))))) ((xsd_string_4) != (xsd_string_10)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 699
% 37.21/37.38  701. (cAmphisbaenidae T_31) (-. (cAmphisbaenidae T_31))   ### Axiom
% 37.21/37.38  702. (-. (cReptile T_31)) (cReptile T_31)   ### Axiom
% 37.21/37.38  703. ((cAmphisbaenidae T_31) => (cReptile T_31)) (-. (cReptile T_31)) (cAmphisbaenidae T_31)   ### Imply 701 702
% 37.21/37.38  704. (All X, ((cAmphisbaenidae X) => (cReptile X))) (cAmphisbaenidae T_31) (-. (cReptile T_31))   ### All 703
% 37.21/37.38  705. (cAmphisbaenidae T_31) (-. (cAmphisbaenidae T_31))   ### Axiom
% 37.21/37.38  706. (-. (rfamily_name T_31 (xsd_string_1))) (rfamily_name T_31 (xsd_string_1))   ### Axiom
% 37.21/37.38  707. ((cAmphisbaenidae T_31) => (rfamily_name T_31 (xsd_string_1))) (-. (rfamily_name T_31 (xsd_string_1))) (cAmphisbaenidae T_31)   ### Imply 705 706
% 37.21/37.38  708. (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_31) (-. (rfamily_name T_31 (xsd_string_1)))   ### All 707
% 37.21/37.38  709. (cCordylidae T_31) (-. (cCordylidae T_31))   ### Axiom
% 37.21/37.38  710. (-. (rfamily_name T_31 (xsd_string_4))) (rfamily_name T_31 (xsd_string_4))   ### Axiom
% 37.21/37.38  711. ((cCordylidae T_31) => (rfamily_name T_31 (xsd_string_4))) (-. (rfamily_name T_31 (xsd_string_4))) (cCordylidae T_31)   ### Imply 709 710
% 37.21/37.38  712. (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_31) (-. (rfamily_name T_31 (xsd_string_4)))   ### All 711
% 37.21/37.38  713. ((xsd_string_1) != (xsd_string_4)) ((xsd_string_1) = (xsd_string_4))   ### Axiom
% 37.21/37.38  714. (((rfamily_name T_31 (xsd_string_1)) /\ (rfamily_name T_31 (xsd_string_4))) => ((xsd_string_1) = (xsd_string_4))) ((xsd_string_1) != (xsd_string_4)) (cCordylidae T_31) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cAmphisbaenidae T_31) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1))))   ### DisjTree 708 712 713
% 37.21/37.38  715. (All Y1, (((rfamily_name T_31 (xsd_string_1)) /\ (rfamily_name T_31 Y1)) => ((xsd_string_1) = Y1))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_31) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_31) ((xsd_string_1) != (xsd_string_4))   ### All 714
% 37.21/37.38  716. (All Y0, (All Y1, (((rfamily_name T_31 Y0) /\ (rfamily_name T_31 Y1)) => (Y0 = Y1)))) ((xsd_string_1) != (xsd_string_4)) (cCordylidae T_31) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cAmphisbaenidae T_31) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1))))   ### All 715
% 37.21/37.38  717. ((Ex Y0, (rfamily_name T_31 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_31 Y0) /\ (rfamily_name T_31 Y1)) => (Y0 = Y1))))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_31) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_31) ((xsd_string_1) != (xsd_string_4))   ### And 716
% 37.21/37.38  718. ((cReptile T_31) => ((Ex Y0, (rfamily_name T_31 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_31 Y0) /\ (rfamily_name T_31 Y1)) => (Y0 = Y1)))))) ((xsd_string_1) != (xsd_string_4)) (cCordylidae T_31) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_31) (All X, ((cAmphisbaenidae X) => (cReptile X)))   ### Imply 704 717
% 37.21/37.38  719. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAmphisbaenidae X) => (cReptile X))) (cAmphisbaenidae T_31) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_31) ((xsd_string_1) != (xsd_string_4))   ### All 718
% 37.21/37.38  720. ((cAmphisbaenidae T_31) /\ (cCordylidae T_31)) ((xsd_string_1) != (xsd_string_4)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cAmphisbaenidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 719
% 37.21/37.38  721. (-. (-. ((cAmphisbaenidae T_31) /\ (cCordylidae T_31)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAmphisbaenidae X) => (cReptile X))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_1) != (xsd_string_4))   ### NotNot 720
% 37.21/37.38  722. (-. (All X, (-. ((cAmphisbaenidae X) /\ (cCordylidae X))))) ((xsd_string_1) != (xsd_string_4)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cAmphisbaenidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 721
% 37.21/37.38  723. (cLoxocemidae T_32) (-. (cLoxocemidae T_32))   ### Axiom
% 37.21/37.38  724. (-. (cReptile T_32)) (cReptile T_32)   ### Axiom
% 37.21/37.38  725. ((cLoxocemidae T_32) => (cReptile T_32)) (-. (cReptile T_32)) (cLoxocemidae T_32)   ### Imply 723 724
% 37.21/37.38  726. (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_32) (-. (cReptile T_32))   ### All 725
% 37.21/37.38  727. (cLoxocemidae T_32) (-. (cLoxocemidae T_32))   ### Axiom
% 37.21/37.38  728. (-. (rfamily_name T_32 (xsd_string_9))) (rfamily_name T_32 (xsd_string_9))   ### Axiom
% 37.21/37.38  729. ((cLoxocemidae T_32) => (rfamily_name T_32 (xsd_string_9))) (-. (rfamily_name T_32 (xsd_string_9))) (cLoxocemidae T_32)   ### Imply 727 728
% 37.21/37.38  730. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_32) (-. (rfamily_name T_32 (xsd_string_9)))   ### All 729
% 37.21/37.38  731. (cCordylidae T_32) (-. (cCordylidae T_32))   ### Axiom
% 37.21/37.38  732. (-. (rfamily_name T_32 (xsd_string_4))) (rfamily_name T_32 (xsd_string_4))   ### Axiom
% 37.21/37.38  733. ((cCordylidae T_32) => (rfamily_name T_32 (xsd_string_4))) (-. (rfamily_name T_32 (xsd_string_4))) (cCordylidae T_32)   ### Imply 731 732
% 37.21/37.38  734. (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_32) (-. (rfamily_name T_32 (xsd_string_4)))   ### All 733
% 37.21/37.38  735. ((xsd_string_4) != (xsd_string_9)) ((xsd_string_9) = (xsd_string_4))   ### Sym(=)
% 37.21/37.38  736. (((rfamily_name T_32 (xsd_string_9)) /\ (rfamily_name T_32 (xsd_string_4))) => ((xsd_string_9) = (xsd_string_4))) ((xsd_string_4) != (xsd_string_9)) (cCordylidae T_32) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cLoxocemidae T_32) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### DisjTree 730 734 735
% 37.21/37.38  737. (All Y1, (((rfamily_name T_32 (xsd_string_9)) /\ (rfamily_name T_32 Y1)) => ((xsd_string_9) = Y1))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_32) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_32) ((xsd_string_4) != (xsd_string_9))   ### All 736
% 37.21/37.38  738. (All Y0, (All Y1, (((rfamily_name T_32 Y0) /\ (rfamily_name T_32 Y1)) => (Y0 = Y1)))) ((xsd_string_4) != (xsd_string_9)) (cCordylidae T_32) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cLoxocemidae T_32) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### All 737
% 37.21/37.38  739. ((Ex Y0, (rfamily_name T_32 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_32 Y0) /\ (rfamily_name T_32 Y1)) => (Y0 = Y1))))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_32) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_32) ((xsd_string_4) != (xsd_string_9))   ### And 738
% 37.21/37.38  740. ((cReptile T_32) => ((Ex Y0, (rfamily_name T_32 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_32 Y0) /\ (rfamily_name T_32 Y1)) => (Y0 = Y1)))))) ((xsd_string_4) != (xsd_string_9)) (cCordylidae T_32) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_32) (All X, ((cLoxocemidae X) => (cReptile X)))   ### Imply 726 739
% 37.22/37.39  741. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_32) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_32) ((xsd_string_4) != (xsd_string_9))   ### All 740
% 37.22/37.39  742. ((cCordylidae T_32) /\ (cLoxocemidae T_32)) ((xsd_string_4) != (xsd_string_9)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 741
% 37.22/37.39  743. (-. (-. ((cCordylidae T_32) /\ (cLoxocemidae T_32)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_4) != (xsd_string_9))   ### NotNot 742
% 37.22/37.39  744. (-. (All X, (-. ((cCordylidae X) /\ (cLoxocemidae X))))) ((xsd_string_4) != (xsd_string_9)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 743
% 37.22/37.39  745. (cGekkonidae T_33) (-. (cGekkonidae T_33))   ### Axiom
% 37.22/37.39  746. (-. (cReptile T_33)) (cReptile T_33)   ### Axiom
% 37.22/37.39  747. ((cGekkonidae T_33) => (cReptile T_33)) (-. (cReptile T_33)) (cGekkonidae T_33)   ### Imply 745 746
% 37.22/37.39  748. (All X, ((cGekkonidae X) => (cReptile X))) (cGekkonidae T_33) (-. (cReptile T_33))   ### All 747
% 37.22/37.39  749. (cGekkonidae T_33) (-. (cGekkonidae T_33))   ### Axiom
% 37.22/37.39  750. (-. (rfamily_name T_33 (xsd_string_7))) (rfamily_name T_33 (xsd_string_7))   ### Axiom
% 37.22/37.39  751. ((cGekkonidae T_33) => (rfamily_name T_33 (xsd_string_7))) (-. (rfamily_name T_33 (xsd_string_7))) (cGekkonidae T_33)   ### Imply 749 750
% 37.22/37.39  752. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_33) (-. (rfamily_name T_33 (xsd_string_7)))   ### All 751
% 37.22/37.39  753. (cCordylidae T_33) (-. (cCordylidae T_33))   ### Axiom
% 37.22/37.39  754. (-. (rfamily_name T_33 (xsd_string_4))) (rfamily_name T_33 (xsd_string_4))   ### Axiom
% 37.22/37.39  755. ((cCordylidae T_33) => (rfamily_name T_33 (xsd_string_4))) (-. (rfamily_name T_33 (xsd_string_4))) (cCordylidae T_33)   ### Imply 753 754
% 37.22/37.39  756. (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_33) (-. (rfamily_name T_33 (xsd_string_4)))   ### All 755
% 37.22/37.39  757. ((xsd_string_4) != (xsd_string_7)) ((xsd_string_7) = (xsd_string_4))   ### Sym(=)
% 37.22/37.39  758. (((rfamily_name T_33 (xsd_string_7)) /\ (rfamily_name T_33 (xsd_string_4))) => ((xsd_string_7) = (xsd_string_4))) ((xsd_string_4) != (xsd_string_7)) (cCordylidae T_33) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cGekkonidae T_33) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### DisjTree 752 756 757
% 37.22/37.39  759. (All Y1, (((rfamily_name T_33 (xsd_string_7)) /\ (rfamily_name T_33 Y1)) => ((xsd_string_7) = Y1))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_33) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_33) ((xsd_string_4) != (xsd_string_7))   ### All 758
% 37.22/37.39  760. (All Y0, (All Y1, (((rfamily_name T_33 Y0) /\ (rfamily_name T_33 Y1)) => (Y0 = Y1)))) ((xsd_string_4) != (xsd_string_7)) (cCordylidae T_33) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cGekkonidae T_33) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### All 759
% 37.22/37.39  761. ((Ex Y0, (rfamily_name T_33 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_33 Y0) /\ (rfamily_name T_33 Y1)) => (Y0 = Y1))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_33) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_33) ((xsd_string_4) != (xsd_string_7))   ### And 760
% 37.22/37.39  762. ((cReptile T_33) => ((Ex Y0, (rfamily_name T_33 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_33 Y0) /\ (rfamily_name T_33 Y1)) => (Y0 = Y1)))))) ((xsd_string_4) != (xsd_string_7)) (cCordylidae T_33) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_33) (All X, ((cGekkonidae X) => (cReptile X)))   ### Imply 748 761
% 37.22/37.39  763. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) (cGekkonidae T_33) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_33) ((xsd_string_4) != (xsd_string_7))   ### All 762
% 37.22/37.39  764. ((cGekkonidae T_33) /\ (cCordylidae T_33)) ((xsd_string_4) != (xsd_string_7)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 763
% 37.22/37.39  765. (-. (-. ((cGekkonidae T_33) /\ (cCordylidae T_33)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_4) != (xsd_string_7))   ### NotNot 764
% 37.22/37.39  766. (-. (All X, (-. ((cGekkonidae X) /\ (cCordylidae X))))) ((xsd_string_4) != (xsd_string_7)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 765
% 37.22/37.39  767. (cXantusiidae T_34) (-. (cXantusiidae T_34))   ### Axiom
% 37.22/37.39  768. (-. (cReptile T_34)) (cReptile T_34)   ### Axiom
% 37.22/37.39  769. ((cXantusiidae T_34) => (cReptile T_34)) (-. (cReptile T_34)) (cXantusiidae T_34)   ### Imply 767 768
% 37.22/37.39  770. (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_34) (-. (cReptile T_34))   ### All 769
% 37.22/37.39  771. (cXantusiidae T_34) (-. (cXantusiidae T_34))   ### Axiom
% 37.22/37.39  772. (-. (rfamily_name T_34 (xsd_string_11))) (rfamily_name T_34 (xsd_string_11))   ### Axiom
% 37.22/37.39  773. ((cXantusiidae T_34) => (rfamily_name T_34 (xsd_string_11))) (-. (rfamily_name T_34 (xsd_string_11))) (cXantusiidae T_34)   ### Imply 771 772
% 37.22/37.39  774. (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_34) (-. (rfamily_name T_34 (xsd_string_11)))   ### All 773
% 37.22/37.39  775. (cAgamidae T_34) (-. (cAgamidae T_34))   ### Axiom
% 37.22/37.39  776. (-. (rfamily_name T_34 (xsd_string_0))) (rfamily_name T_34 (xsd_string_0))   ### Axiom
% 37.22/37.39  777. ((cAgamidae T_34) => (rfamily_name T_34 (xsd_string_0))) (-. (rfamily_name T_34 (xsd_string_0))) (cAgamidae T_34)   ### Imply 775 776
% 37.22/37.39  778. (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_34) (-. (rfamily_name T_34 (xsd_string_0)))   ### All 777
% 37.22/37.39  779. ((xsd_string_0) != (xsd_string_11)) ((xsd_string_11) = (xsd_string_0))   ### Sym(=)
% 37.22/37.39  780. (((rfamily_name T_34 (xsd_string_11)) /\ (rfamily_name T_34 (xsd_string_0))) => ((xsd_string_11) = (xsd_string_0))) ((xsd_string_0) != (xsd_string_11)) (cAgamidae T_34) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cXantusiidae T_34) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### DisjTree 774 778 779
% 37.22/37.39  781. (All Y1, (((rfamily_name T_34 (xsd_string_11)) /\ (rfamily_name T_34 Y1)) => ((xsd_string_11) = Y1))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_34) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_34) ((xsd_string_0) != (xsd_string_11))   ### All 780
% 37.22/37.40  782. (All Y0, (All Y1, (((rfamily_name T_34 Y0) /\ (rfamily_name T_34 Y1)) => (Y0 = Y1)))) ((xsd_string_0) != (xsd_string_11)) (cAgamidae T_34) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cXantusiidae T_34) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### All 781
% 37.22/37.40  783. ((Ex Y0, (rfamily_name T_34 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_34 Y0) /\ (rfamily_name T_34 Y1)) => (Y0 = Y1))))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_34) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_34) ((xsd_string_0) != (xsd_string_11))   ### And 782
% 37.22/37.40  784. ((cReptile T_34) => ((Ex Y0, (rfamily_name T_34 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_34 Y0) /\ (rfamily_name T_34 Y1)) => (Y0 = Y1)))))) ((xsd_string_0) != (xsd_string_11)) (cAgamidae T_34) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_34) (All X, ((cXantusiidae X) => (cReptile X)))   ### Imply 770 783
% 37.22/37.40  785. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_34) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_34) ((xsd_string_0) != (xsd_string_11))   ### All 784
% 37.22/37.40  786. ((cXantusiidae T_34) /\ (cAgamidae T_34)) ((xsd_string_0) != (xsd_string_11)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 785
% 37.22/37.40  787. (-. (-. ((cXantusiidae T_34) /\ (cAgamidae T_34)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) ((xsd_string_0) != (xsd_string_11))   ### NotNot 786
% 37.22/37.40  788. (-. (All X, (-. ((cXantusiidae X) /\ (cAgamidae X))))) ((xsd_string_0) != (xsd_string_11)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 787
% 37.22/37.40  789. (cAnomalepidae T_35) (-. (cAnomalepidae T_35))   ### Axiom
% 37.22/37.40  790. (-. (cReptile T_35)) (cReptile T_35)   ### Axiom
% 37.22/37.40  791. ((cAnomalepidae T_35) => (cReptile T_35)) (-. (cReptile T_35)) (cAnomalepidae T_35)   ### Imply 789 790
% 37.22/37.40  792. (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_35) (-. (cReptile T_35))   ### All 791
% 37.22/37.40  793. (rfamily_name T_35 T_36) (-. (rfamily_name T_35 T_36))   ### Axiom
% 37.22/37.40  794. (cAnomalepidae T_35) (-. (cAnomalepidae T_35))   ### Axiom
% 37.22/37.40  795. (-. (rfamily_name T_35 (xsd_string_2))) (rfamily_name T_35 (xsd_string_2))   ### Axiom
% 37.22/37.40  796. ((cAnomalepidae T_35) => (rfamily_name T_35 (xsd_string_2))) (-. (rfamily_name T_35 (xsd_string_2))) (cAnomalepidae T_35)   ### Imply 794 795
% 37.22/37.40  797. (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_35) (-. (rfamily_name T_35 (xsd_string_2)))   ### All 796
% 37.22/37.40  798. (rfamily_name T_35 T_36) (-. (rfamily_name T_35 T_36))   ### Axiom
% 37.22/37.40  799. (cCordylidae T_35) (-. (cCordylidae T_35))   ### Axiom
% 37.22/37.40  800. (-. (rfamily_name T_35 (xsd_string_4))) (rfamily_name T_35 (xsd_string_4))   ### Axiom
% 37.22/37.40  801. ((cCordylidae T_35) => (rfamily_name T_35 (xsd_string_4))) (-. (rfamily_name T_35 (xsd_string_4))) (cCordylidae T_35)   ### Imply 799 800
% 37.22/37.40  802. (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_35) (-. (rfamily_name T_35 (xsd_string_4)))   ### All 801
% 37.22/37.40  803. (T_36 = (xsd_string_4)) ((xsd_string_4) != T_36)   ### Sym(=)
% 37.22/37.40  804. (T_36 = (xsd_string_4)) ((xsd_string_4) != T_36)   ### Sym(=)
% 37.22/37.40  805. ((xsd_string_2) != (xsd_string_2))   ### NotEqual
% 37.22/37.40  806. ((xsd_string_2) != (xsd_string_4)) (T_36 = (xsd_string_2)) (T_36 = (xsd_string_4))   ### TransEq-sym 803 804 805
% 37.22/37.40  807. (((rfamily_name T_35 T_36) /\ (rfamily_name T_35 (xsd_string_4))) => (T_36 = (xsd_string_4))) (T_36 = (xsd_string_2)) ((xsd_string_2) != (xsd_string_4)) (cCordylidae T_35) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (rfamily_name T_35 T_36)   ### DisjTree 798 802 806
% 37.22/37.40  808. (All Y1, (((rfamily_name T_35 T_36) /\ (rfamily_name T_35 Y1)) => (T_36 = Y1))) (rfamily_name T_35 T_36) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_35) ((xsd_string_2) != (xsd_string_4)) (T_36 = (xsd_string_2))   ### All 807
% 37.22/37.40  809. (((rfamily_name T_35 T_36) /\ (rfamily_name T_35 (xsd_string_2))) => (T_36 = (xsd_string_2))) ((xsd_string_2) != (xsd_string_4)) (cCordylidae T_35) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All Y1, (((rfamily_name T_35 T_36) /\ (rfamily_name T_35 Y1)) => (T_36 = Y1))) (cAnomalepidae T_35) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (rfamily_name T_35 T_36)   ### DisjTree 793 797 808
% 37.22/37.40  810. (rfamily_name T_35 T_36) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_35) (All Y1, (((rfamily_name T_35 T_36) /\ (rfamily_name T_35 Y1)) => (T_36 = Y1))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_35) ((xsd_string_2) != (xsd_string_4))   ### All 809
% 37.22/37.40  811. (All Y0, (All Y1, (((rfamily_name T_35 Y0) /\ (rfamily_name T_35 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_4)) (cCordylidae T_35) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cAnomalepidae T_35) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (rfamily_name T_35 T_36)   ### All 810
% 37.22/37.40  812. (Ex Y0, (rfamily_name T_35 Y0)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_35) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_35) ((xsd_string_2) != (xsd_string_4)) (All Y0, (All Y1, (((rfamily_name T_35 Y0) /\ (rfamily_name T_35 Y1)) => (Y0 = Y1))))   ### Exists 811
% 37.22/37.40  813. ((Ex Y0, (rfamily_name T_35 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_35 Y0) /\ (rfamily_name T_35 Y1)) => (Y0 = Y1))))) ((xsd_string_2) != (xsd_string_4)) (cCordylidae T_35) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cAnomalepidae T_35) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### And 812
% 37.22/37.40  814. ((cReptile T_35) => ((Ex Y0, (rfamily_name T_35 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_35 Y0) /\ (rfamily_name T_35 Y1)) => (Y0 = Y1)))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_35) ((xsd_string_2) != (xsd_string_4)) (cAnomalepidae T_35) (All X, ((cAnomalepidae X) => (cReptile X)))   ### Imply 792 813
% 37.22/37.40  815. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_35) ((xsd_string_2) != (xsd_string_4)) (cCordylidae T_35) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### All 814
% 37.22/37.40  816. ((cAnomalepidae T_35) /\ (cCordylidae T_35)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_2) != (xsd_string_4)) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 815
% 37.22/37.40  817. (-. (-. ((cAnomalepidae T_35) /\ (cCordylidae T_35)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_4)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### NotNot 816
% 37.25/37.43  818. (-. (All X, (-. ((cAnomalepidae X) /\ (cCordylidae X))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_2) != (xsd_string_4)) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 817
% 37.25/37.43  819. (cEmydidae T_37) (-. (cEmydidae T_37))   ### Axiom
% 37.25/37.43  820. (-. (cReptile T_37)) (cReptile T_37)   ### Axiom
% 37.25/37.43  821. ((cEmydidae T_37) => (cReptile T_37)) (-. (cReptile T_37)) (cEmydidae T_37)   ### Imply 819 820
% 37.25/37.43  822. (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_37) (-. (cReptile T_37))   ### All 821
% 37.25/37.43  823. (cEmydidae T_37) (-. (cEmydidae T_37))   ### Axiom
% 37.25/37.43  824. (-. (rfamily_name T_37 (xsd_string_6))) (rfamily_name T_37 (xsd_string_6))   ### Axiom
% 37.25/37.43  825. ((cEmydidae T_37) => (rfamily_name T_37 (xsd_string_6))) (-. (rfamily_name T_37 (xsd_string_6))) (cEmydidae T_37)   ### Imply 823 824
% 37.25/37.43  826. (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_37) (-. (rfamily_name T_37 (xsd_string_6)))   ### All 825
% 37.25/37.43  827. (cAgamidae T_37) (-. (cAgamidae T_37))   ### Axiom
% 37.25/37.43  828. (-. (rfamily_name T_37 (xsd_string_0))) (rfamily_name T_37 (xsd_string_0))   ### Axiom
% 37.25/37.43  829. ((cAgamidae T_37) => (rfamily_name T_37 (xsd_string_0))) (-. (rfamily_name T_37 (xsd_string_0))) (cAgamidae T_37)   ### Imply 827 828
% 37.25/37.43  830. (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_37) (-. (rfamily_name T_37 (xsd_string_0)))   ### All 829
% 37.25/37.43  831. ((xsd_string_0) != (xsd_string_6)) ((xsd_string_6) = (xsd_string_0))   ### Sym(=)
% 37.25/37.43  832. (((rfamily_name T_37 (xsd_string_6)) /\ (rfamily_name T_37 (xsd_string_0))) => ((xsd_string_6) = (xsd_string_0))) ((xsd_string_0) != (xsd_string_6)) (cAgamidae T_37) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cEmydidae T_37) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### DisjTree 826 830 831
% 37.25/37.43  833. (All Y1, (((rfamily_name T_37 (xsd_string_6)) /\ (rfamily_name T_37 Y1)) => ((xsd_string_6) = Y1))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_37) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_37) ((xsd_string_0) != (xsd_string_6))   ### All 832
% 37.25/37.43  834. (All Y0, (All Y1, (((rfamily_name T_37 Y0) /\ (rfamily_name T_37 Y1)) => (Y0 = Y1)))) ((xsd_string_0) != (xsd_string_6)) (cAgamidae T_37) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cEmydidae T_37) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### All 833
% 37.25/37.43  835. ((Ex Y0, (rfamily_name T_37 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_37 Y0) /\ (rfamily_name T_37 Y1)) => (Y0 = Y1))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_37) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_37) ((xsd_string_0) != (xsd_string_6))   ### And 834
% 37.25/37.43  836. ((cReptile T_37) => ((Ex Y0, (rfamily_name T_37 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_37 Y0) /\ (rfamily_name T_37 Y1)) => (Y0 = Y1)))))) ((xsd_string_0) != (xsd_string_6)) (cAgamidae T_37) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_37) (All X, ((cEmydidae X) => (cReptile X)))   ### Imply 822 835
% 37.25/37.43  837. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_37) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_37) ((xsd_string_0) != (xsd_string_6))   ### All 836
% 37.25/37.43  838. ((cAgamidae T_37) /\ (cEmydidae T_37)) ((xsd_string_0) != (xsd_string_6)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 837
% 37.25/37.43  839. (-. (-. ((cAgamidae T_37) /\ (cEmydidae T_37)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) ((xsd_string_0) != (xsd_string_6))   ### NotNot 838
% 37.25/37.43  840. (-. (All X, (-. ((cAgamidae X) /\ (cEmydidae X))))) ((xsd_string_0) != (xsd_string_6)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 839
% 37.25/37.43  841. (cEmydidae T_38) (-. (cEmydidae T_38))   ### Axiom
% 37.25/37.43  842. (-. (cReptile T_38)) (cReptile T_38)   ### Axiom
% 37.25/37.43  843. ((cEmydidae T_38) => (cReptile T_38)) (-. (cReptile T_38)) (cEmydidae T_38)   ### Imply 841 842
% 37.25/37.43  844. (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_38) (-. (cReptile T_38))   ### All 843
% 37.25/37.43  845. (cEmydidae T_38) (-. (cEmydidae T_38))   ### Axiom
% 37.25/37.43  846. (-. (rfamily_name T_38 (xsd_string_6))) (rfamily_name T_38 (xsd_string_6))   ### Axiom
% 37.25/37.43  847. ((cEmydidae T_38) => (rfamily_name T_38 (xsd_string_6))) (-. (rfamily_name T_38 (xsd_string_6))) (cEmydidae T_38)   ### Imply 845 846
% 37.25/37.43  848. (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_38) (-. (rfamily_name T_38 (xsd_string_6)))   ### All 847
% 37.25/37.43  849. (cCordylidae T_38) (-. (cCordylidae T_38))   ### Axiom
% 37.25/37.43  850. (-. (rfamily_name T_38 (xsd_string_4))) (rfamily_name T_38 (xsd_string_4))   ### Axiom
% 37.25/37.43  851. ((cCordylidae T_38) => (rfamily_name T_38 (xsd_string_4))) (-. (rfamily_name T_38 (xsd_string_4))) (cCordylidae T_38)   ### Imply 849 850
% 37.25/37.43  852. (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_38) (-. (rfamily_name T_38 (xsd_string_4)))   ### All 851
% 37.25/37.43  853. ((xsd_string_4) != (xsd_string_6)) ((xsd_string_6) = (xsd_string_4))   ### Sym(=)
% 37.25/37.43  854. (((rfamily_name T_38 (xsd_string_6)) /\ (rfamily_name T_38 (xsd_string_4))) => ((xsd_string_6) = (xsd_string_4))) ((xsd_string_4) != (xsd_string_6)) (cCordylidae T_38) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cEmydidae T_38) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### DisjTree 848 852 853
% 37.25/37.43  855. (All Y1, (((rfamily_name T_38 (xsd_string_6)) /\ (rfamily_name T_38 Y1)) => ((xsd_string_6) = Y1))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_38) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_38) ((xsd_string_4) != (xsd_string_6))   ### All 854
% 37.25/37.43  856. (All Y0, (All Y1, (((rfamily_name T_38 Y0) /\ (rfamily_name T_38 Y1)) => (Y0 = Y1)))) ((xsd_string_4) != (xsd_string_6)) (cCordylidae T_38) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cEmydidae T_38) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### All 855
% 37.25/37.43  857. ((Ex Y0, (rfamily_name T_38 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_38 Y0) /\ (rfamily_name T_38 Y1)) => (Y0 = Y1))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_38) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_38) ((xsd_string_4) != (xsd_string_6))   ### And 856
% 37.25/37.43  858. ((cReptile T_38) => ((Ex Y0, (rfamily_name T_38 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_38 Y0) /\ (rfamily_name T_38 Y1)) => (Y0 = Y1)))))) ((xsd_string_4) != (xsd_string_6)) (cCordylidae T_38) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_38) (All X, ((cEmydidae X) => (cReptile X)))   ### Imply 844 857
% 37.27/37.44  859. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_38) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_38) ((xsd_string_4) != (xsd_string_6))   ### All 858
% 37.27/37.44  860. ((cCordylidae T_38) /\ (cEmydidae T_38)) ((xsd_string_4) != (xsd_string_6)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 859
% 37.27/37.44  861. (-. (-. ((cCordylidae T_38) /\ (cEmydidae T_38)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_4) != (xsd_string_6))   ### NotNot 860
% 37.27/37.44  862. (-. (All X, (-. ((cCordylidae X) /\ (cEmydidae X))))) ((xsd_string_4) != (xsd_string_6)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 861
% 37.27/37.44  863. (cLoxocemidae T_39) (-. (cLoxocemidae T_39))   ### Axiom
% 37.27/37.44  864. (-. (cReptile T_39)) (cReptile T_39)   ### Axiom
% 37.27/37.44  865. ((cLoxocemidae T_39) => (cReptile T_39)) (-. (cReptile T_39)) (cLoxocemidae T_39)   ### Imply 863 864
% 37.27/37.44  866. (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_39) (-. (cReptile T_39))   ### All 865
% 37.27/37.44  867. (cLoxocemidae T_39) (-. (cLoxocemidae T_39))   ### Axiom
% 37.27/37.44  868. (-. (rfamily_name T_39 (xsd_string_9))) (rfamily_name T_39 (xsd_string_9))   ### Axiom
% 37.27/37.44  869. ((cLoxocemidae T_39) => (rfamily_name T_39 (xsd_string_9))) (-. (rfamily_name T_39 (xsd_string_9))) (cLoxocemidae T_39)   ### Imply 867 868
% 37.27/37.44  870. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_39) (-. (rfamily_name T_39 (xsd_string_9)))   ### All 869
% 37.27/37.44  871. (cAgamidae T_39) (-. (cAgamidae T_39))   ### Axiom
% 37.27/37.44  872. (-. (rfamily_name T_39 (xsd_string_0))) (rfamily_name T_39 (xsd_string_0))   ### Axiom
% 37.27/37.44  873. ((cAgamidae T_39) => (rfamily_name T_39 (xsd_string_0))) (-. (rfamily_name T_39 (xsd_string_0))) (cAgamidae T_39)   ### Imply 871 872
% 37.27/37.44  874. (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_39) (-. (rfamily_name T_39 (xsd_string_0)))   ### All 873
% 37.27/37.44  875. ((xsd_string_0) != (xsd_string_9)) ((xsd_string_9) = (xsd_string_0))   ### Sym(=)
% 37.27/37.44  876. (((rfamily_name T_39 (xsd_string_9)) /\ (rfamily_name T_39 (xsd_string_0))) => ((xsd_string_9) = (xsd_string_0))) ((xsd_string_0) != (xsd_string_9)) (cAgamidae T_39) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cLoxocemidae T_39) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### DisjTree 870 874 875
% 37.27/37.44  877. (All Y1, (((rfamily_name T_39 (xsd_string_9)) /\ (rfamily_name T_39 Y1)) => ((xsd_string_9) = Y1))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_39) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_39) ((xsd_string_0) != (xsd_string_9))   ### All 876
% 37.27/37.44  878. (All Y0, (All Y1, (((rfamily_name T_39 Y0) /\ (rfamily_name T_39 Y1)) => (Y0 = Y1)))) ((xsd_string_0) != (xsd_string_9)) (cAgamidae T_39) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cLoxocemidae T_39) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### All 877
% 37.27/37.44  879. ((Ex Y0, (rfamily_name T_39 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_39 Y0) /\ (rfamily_name T_39 Y1)) => (Y0 = Y1))))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_39) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_39) ((xsd_string_0) != (xsd_string_9))   ### And 878
% 37.27/37.44  880. ((cReptile T_39) => ((Ex Y0, (rfamily_name T_39 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_39 Y0) /\ (rfamily_name T_39 Y1)) => (Y0 = Y1)))))) ((xsd_string_0) != (xsd_string_9)) (cAgamidae T_39) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_39) (All X, ((cLoxocemidae X) => (cReptile X)))   ### Imply 866 879
% 37.27/37.44  881. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_39) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_39) ((xsd_string_0) != (xsd_string_9))   ### All 880
% 37.27/37.44  882. ((cAgamidae T_39) /\ (cLoxocemidae T_39)) ((xsd_string_0) != (xsd_string_9)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 881
% 37.27/37.44  883. (-. (-. ((cAgamidae T_39) /\ (cLoxocemidae T_39)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) ((xsd_string_0) != (xsd_string_9))   ### NotNot 882
% 37.27/37.44  884. (-. (All X, (-. ((cAgamidae X) /\ (cLoxocemidae X))))) ((xsd_string_0) != (xsd_string_9)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 883
% 37.27/37.44  885. (cXantusiidae T_40) (-. (cXantusiidae T_40))   ### Axiom
% 37.27/37.44  886. (-. (cReptile T_40)) (cReptile T_40)   ### Axiom
% 37.27/37.44  887. ((cXantusiidae T_40) => (cReptile T_40)) (-. (cReptile T_40)) (cXantusiidae T_40)   ### Imply 885 886
% 37.27/37.44  888. (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_40) (-. (cReptile T_40))   ### All 887
% 37.27/37.44  889. (cXantusiidae T_40) (-. (cXantusiidae T_40))   ### Axiom
% 37.27/37.44  890. (-. (rfamily_name T_40 (xsd_string_11))) (rfamily_name T_40 (xsd_string_11))   ### Axiom
% 37.27/37.44  891. ((cXantusiidae T_40) => (rfamily_name T_40 (xsd_string_11))) (-. (rfamily_name T_40 (xsd_string_11))) (cXantusiidae T_40)   ### Imply 889 890
% 37.27/37.44  892. (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_40) (-. (rfamily_name T_40 (xsd_string_11)))   ### All 891
% 37.27/37.44  893. (cGekkonidae T_40) (-. (cGekkonidae T_40))   ### Axiom
% 37.27/37.44  894. (-. (rfamily_name T_40 (xsd_string_7))) (rfamily_name T_40 (xsd_string_7))   ### Axiom
% 37.27/37.44  895. ((cGekkonidae T_40) => (rfamily_name T_40 (xsd_string_7))) (-. (rfamily_name T_40 (xsd_string_7))) (cGekkonidae T_40)   ### Imply 893 894
% 37.27/37.44  896. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_40) (-. (rfamily_name T_40 (xsd_string_7)))   ### All 895
% 37.27/37.44  897. ((xsd_string_7) != (xsd_string_11)) ((xsd_string_11) = (xsd_string_7))   ### Sym(=)
% 37.27/37.44  898. (((rfamily_name T_40 (xsd_string_11)) /\ (rfamily_name T_40 (xsd_string_7))) => ((xsd_string_11) = (xsd_string_7))) ((xsd_string_7) != (xsd_string_11)) (cGekkonidae T_40) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cXantusiidae T_40) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### DisjTree 892 896 897
% 37.27/37.44  899. (All Y1, (((rfamily_name T_40 (xsd_string_11)) /\ (rfamily_name T_40 Y1)) => ((xsd_string_11) = Y1))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_40) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_40) ((xsd_string_7) != (xsd_string_11))   ### All 898
% 37.27/37.45  900. (All Y0, (All Y1, (((rfamily_name T_40 Y0) /\ (rfamily_name T_40 Y1)) => (Y0 = Y1)))) ((xsd_string_7) != (xsd_string_11)) (cGekkonidae T_40) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cXantusiidae T_40) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### All 899
% 37.27/37.45  901. ((Ex Y0, (rfamily_name T_40 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_40 Y0) /\ (rfamily_name T_40 Y1)) => (Y0 = Y1))))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_40) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_40) ((xsd_string_7) != (xsd_string_11))   ### And 900
% 37.27/37.45  902. ((cReptile T_40) => ((Ex Y0, (rfamily_name T_40 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_40 Y0) /\ (rfamily_name T_40 Y1)) => (Y0 = Y1)))))) ((xsd_string_7) != (xsd_string_11)) (cGekkonidae T_40) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_40) (All X, ((cXantusiidae X) => (cReptile X)))   ### Imply 888 901
% 37.27/37.45  903. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_40) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_40) ((xsd_string_7) != (xsd_string_11))   ### All 902
% 37.27/37.45  904. ((cXantusiidae T_40) /\ (cGekkonidae T_40)) ((xsd_string_7) != (xsd_string_11)) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 903
% 37.27/37.45  905. (-. (-. ((cXantusiidae T_40) /\ (cGekkonidae T_40)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) ((xsd_string_7) != (xsd_string_11))   ### NotNot 904
% 37.27/37.45  906. (-. (All X, (-. ((cXantusiidae X) /\ (cGekkonidae X))))) ((xsd_string_7) != (xsd_string_11)) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 905
% 37.27/37.45  907. (cXantusiidae T_41) (-. (cXantusiidae T_41))   ### Axiom
% 37.27/37.45  908. (-. (cReptile T_41)) (cReptile T_41)   ### Axiom
% 37.27/37.45  909. ((cXantusiidae T_41) => (cReptile T_41)) (-. (cReptile T_41)) (cXantusiidae T_41)   ### Imply 907 908
% 37.27/37.45  910. (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_41) (-. (cReptile T_41))   ### All 909
% 37.27/37.45  911. (cXantusiidae T_41) (-. (cXantusiidae T_41))   ### Axiom
% 37.27/37.45  912. (-. (rfamily_name T_41 (xsd_string_11))) (rfamily_name T_41 (xsd_string_11))   ### Axiom
% 37.27/37.45  913. ((cXantusiidae T_41) => (rfamily_name T_41 (xsd_string_11))) (-. (rfamily_name T_41 (xsd_string_11))) (cXantusiidae T_41)   ### Imply 911 912
% 37.27/37.45  914. (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_41) (-. (rfamily_name T_41 (xsd_string_11)))   ### All 913
% 37.27/37.45  915. (cBipedidae T_41) (-. (cBipedidae T_41))   ### Axiom
% 37.27/37.45  916. (-. (rfamily_name T_41 (xsd_string_3))) (rfamily_name T_41 (xsd_string_3))   ### Axiom
% 37.27/37.45  917. ((cBipedidae T_41) => (rfamily_name T_41 (xsd_string_3))) (-. (rfamily_name T_41 (xsd_string_3))) (cBipedidae T_41)   ### Imply 915 916
% 37.27/37.45  918. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_41) (-. (rfamily_name T_41 (xsd_string_3)))   ### All 917
% 37.27/37.45  919. ((xsd_string_3) != (xsd_string_11)) ((xsd_string_11) = (xsd_string_3))   ### Sym(=)
% 37.27/37.45  920. (((rfamily_name T_41 (xsd_string_11)) /\ (rfamily_name T_41 (xsd_string_3))) => ((xsd_string_11) = (xsd_string_3))) ((xsd_string_3) != (xsd_string_11)) (cBipedidae T_41) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cXantusiidae T_41) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### DisjTree 914 918 919
% 37.27/37.45  921. (All Y1, (((rfamily_name T_41 (xsd_string_11)) /\ (rfamily_name T_41 Y1)) => ((xsd_string_11) = Y1))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_41) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_41) ((xsd_string_3) != (xsd_string_11))   ### All 920
% 37.27/37.45  922. (All Y0, (All Y1, (((rfamily_name T_41 Y0) /\ (rfamily_name T_41 Y1)) => (Y0 = Y1)))) ((xsd_string_3) != (xsd_string_11)) (cBipedidae T_41) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cXantusiidae T_41) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### All 921
% 37.27/37.45  923. ((Ex Y0, (rfamily_name T_41 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_41 Y0) /\ (rfamily_name T_41 Y1)) => (Y0 = Y1))))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_41) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_41) ((xsd_string_3) != (xsd_string_11))   ### And 922
% 37.27/37.45  924. ((cReptile T_41) => ((Ex Y0, (rfamily_name T_41 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_41 Y0) /\ (rfamily_name T_41 Y1)) => (Y0 = Y1)))))) ((xsd_string_3) != (xsd_string_11)) (cBipedidae T_41) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_41) (All X, ((cXantusiidae X) => (cReptile X)))   ### Imply 910 923
% 37.27/37.45  925. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_41) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_41) ((xsd_string_3) != (xsd_string_11))   ### All 924
% 37.27/37.45  926. ((cXantusiidae T_41) /\ (cBipedidae T_41)) ((xsd_string_3) != (xsd_string_11)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 925
% 37.27/37.45  927. (-. (-. ((cXantusiidae T_41) /\ (cBipedidae T_41)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) ((xsd_string_3) != (xsd_string_11))   ### NotNot 926
% 37.27/37.45  928. (-. (All X, (-. ((cXantusiidae X) /\ (cBipedidae X))))) ((xsd_string_3) != (xsd_string_11)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 927
% 37.27/37.45  929. (cEmydidae T_42) (-. (cEmydidae T_42))   ### Axiom
% 37.27/37.45  930. (-. (rfamily_name T_42 (xsd_string_6))) (rfamily_name T_42 (xsd_string_6))   ### Axiom
% 37.27/37.45  931. ((cEmydidae T_42) => (rfamily_name T_42 (xsd_string_6))) (-. (rfamily_name T_42 (xsd_string_6))) (cEmydidae T_42)   ### Imply 929 930
% 37.27/37.45  932. (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_42) (-. (rfamily_name T_42 (xsd_string_6)))   ### All 931
% 37.27/37.45  933. (cEmydidae T_42) (-. (cEmydidae T_42))   ### Axiom
% 37.27/37.45  934. (-. (cReptile T_42)) (cReptile T_42)   ### Axiom
% 37.27/37.45  935. ((cEmydidae T_42) => (cReptile T_42)) (-. (cReptile T_42)) (cEmydidae T_42)   ### Imply 933 934
% 37.27/37.45  936. (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_42) (-. (cReptile T_42))   ### All 935
% 37.27/37.46  937. (cAnomalepidae T_42) (-. (cAnomalepidae T_42))   ### Axiom
% 37.27/37.46  938. (rfamily_name T_42 (xsd_string_6)) (-. (rfamily_name T_42 (xsd_string_6)))   ### Axiom
% 37.27/37.46  939. (rfamily_name T_42 (xsd_string_2)) (-. (rfamily_name T_42 (xsd_string_2)))   ### Axiom
% 37.27/37.46  940. ((xsd_string_2) != (xsd_string_6)) ((xsd_string_6) = (xsd_string_2))   ### Sym(=)
% 37.27/37.46  941. (((rfamily_name T_42 (xsd_string_6)) /\ (rfamily_name T_42 (xsd_string_2))) => ((xsd_string_6) = (xsd_string_2))) ((xsd_string_2) != (xsd_string_6)) (rfamily_name T_42 (xsd_string_2)) (rfamily_name T_42 (xsd_string_6))   ### DisjTree 938 939 940
% 37.27/37.46  942. (All Y1, (((rfamily_name T_42 (xsd_string_6)) /\ (rfamily_name T_42 Y1)) => ((xsd_string_6) = Y1))) (rfamily_name T_42 (xsd_string_6)) (rfamily_name T_42 (xsd_string_2)) ((xsd_string_2) != (xsd_string_6))   ### All 941
% 37.27/37.46  943. (All Y0, (All Y1, (((rfamily_name T_42 Y0) /\ (rfamily_name T_42 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_6)) (rfamily_name T_42 (xsd_string_2)) (rfamily_name T_42 (xsd_string_6))   ### All 942
% 37.27/37.46  944. ((cAnomalepidae T_42) => (rfamily_name T_42 (xsd_string_2))) (rfamily_name T_42 (xsd_string_6)) ((xsd_string_2) != (xsd_string_6)) (All Y0, (All Y1, (((rfamily_name T_42 Y0) /\ (rfamily_name T_42 Y1)) => (Y0 = Y1)))) (cAnomalepidae T_42)   ### Imply 937 943
% 37.27/37.46  945. (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_42) (All Y0, (All Y1, (((rfamily_name T_42 Y0) /\ (rfamily_name T_42 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_6)) (rfamily_name T_42 (xsd_string_6))   ### All 944
% 37.27/37.46  946. ((Ex Y0, (rfamily_name T_42 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_42 Y0) /\ (rfamily_name T_42 Y1)) => (Y0 = Y1))))) (rfamily_name T_42 (xsd_string_6)) ((xsd_string_2) != (xsd_string_6)) (cAnomalepidae T_42) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### And 945
% 37.27/37.46  947. ((cReptile T_42) => ((Ex Y0, (rfamily_name T_42 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_42 Y0) /\ (rfamily_name T_42 Y1)) => (Y0 = Y1)))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_42) ((xsd_string_2) != (xsd_string_6)) (rfamily_name T_42 (xsd_string_6)) (cEmydidae T_42) (All X, ((cEmydidae X) => (cReptile X)))   ### Imply 936 946
% 37.27/37.46  948. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_42) (rfamily_name T_42 (xsd_string_6)) ((xsd_string_2) != (xsd_string_6)) (cAnomalepidae T_42) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### All 947
% 37.27/37.46  949. ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name T_42 (xsd_string_6))) => (rfamily_name T_42 (xsd_string_6))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_42) ((xsd_string_2) != (xsd_string_6)) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_42) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### DisjTree 301 932 948
% 37.27/37.46  950. (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_42) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_6)) (cAnomalepidae T_42) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### All 949
% 37.27/37.46  951. (All B, (All C, ((((xsd_string_6) = B) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C B)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_42) ((xsd_string_2) != (xsd_string_6)) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_42) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### All 950
% 37.27/37.46  952. (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_42) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_6)) (cAnomalepidae T_42) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### All 951
% 37.27/37.46  953. ((cAnomalepidae T_42) /\ (cEmydidae T_42)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_2) != (xsd_string_6)) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### And 952
% 37.27/37.46  954. (-. (-. ((cAnomalepidae T_42) /\ (cEmydidae T_42)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_6)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### NotNot 953
% 37.27/37.46  955. (-. (All X, (-. ((cAnomalepidae X) /\ (cEmydidae X))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_2) != (xsd_string_6)) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### NotAllEx 954
% 37.27/37.46  956. (cXantusiidae T_43) (-. (cXantusiidae T_43))   ### Axiom
% 37.27/37.46  957. (-. (cReptile T_43)) (cReptile T_43)   ### Axiom
% 37.27/37.46  958. ((cXantusiidae T_43) => (cReptile T_43)) (-. (cReptile T_43)) (cXantusiidae T_43)   ### Imply 956 957
% 37.27/37.46  959. (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_43) (-. (cReptile T_43))   ### All 958
% 37.27/37.46  960. (cXantusiidae T_43) (-. (cXantusiidae T_43))   ### Axiom
% 37.27/37.46  961. (-. (rfamily_name T_43 (xsd_string_11))) (rfamily_name T_43 (xsd_string_11))   ### Axiom
% 37.27/37.46  962. ((cXantusiidae T_43) => (rfamily_name T_43 (xsd_string_11))) (-. (rfamily_name T_43 (xsd_string_11))) (cXantusiidae T_43)   ### Imply 960 961
% 37.27/37.46  963. (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_43) (-. (rfamily_name T_43 (xsd_string_11)))   ### All 962
% 37.27/37.46  964. (cSphenodontidae T_43) (-. (cSphenodontidae T_43))   ### Axiom
% 37.27/37.46  965. (-. (rfamily_name T_43 (xsd_string_10))) (rfamily_name T_43 (xsd_string_10))   ### Axiom
% 37.27/37.46  966. ((cSphenodontidae T_43) => (rfamily_name T_43 (xsd_string_10))) (-. (rfamily_name T_43 (xsd_string_10))) (cSphenodontidae T_43)   ### Imply 964 965
% 37.27/37.46  967. (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_43) (-. (rfamily_name T_43 (xsd_string_10)))   ### All 966
% 37.27/37.46  968. ((xsd_string_10) != (xsd_string_11)) ((xsd_string_11) = (xsd_string_10))   ### Sym(=)
% 37.27/37.46  969. (((rfamily_name T_43 (xsd_string_11)) /\ (rfamily_name T_43 (xsd_string_10))) => ((xsd_string_11) = (xsd_string_10))) ((xsd_string_10) != (xsd_string_11)) (cSphenodontidae T_43) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cXantusiidae T_43) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### DisjTree 963 967 968
% 37.27/37.46  970. (All Y1, (((rfamily_name T_43 (xsd_string_11)) /\ (rfamily_name T_43 Y1)) => ((xsd_string_11) = Y1))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_43) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_43) ((xsd_string_10) != (xsd_string_11))   ### All 969
% 37.27/37.46  971. (All Y0, (All Y1, (((rfamily_name T_43 Y0) /\ (rfamily_name T_43 Y1)) => (Y0 = Y1)))) ((xsd_string_10) != (xsd_string_11)) (cSphenodontidae T_43) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cXantusiidae T_43) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### All 970
% 37.27/37.47  972. ((Ex Y0, (rfamily_name T_43 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_43 Y0) /\ (rfamily_name T_43 Y1)) => (Y0 = Y1))))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_43) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_43) ((xsd_string_10) != (xsd_string_11))   ### And 971
% 37.27/37.47  973. ((cReptile T_43) => ((Ex Y0, (rfamily_name T_43 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_43 Y0) /\ (rfamily_name T_43 Y1)) => (Y0 = Y1)))))) ((xsd_string_10) != (xsd_string_11)) (cSphenodontidae T_43) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_43) (All X, ((cXantusiidae X) => (cReptile X)))   ### Imply 959 972
% 37.27/37.47  974. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_43) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_43) ((xsd_string_10) != (xsd_string_11))   ### All 973
% 37.27/37.47  975. ((cXantusiidae T_43) /\ (cSphenodontidae T_43)) ((xsd_string_10) != (xsd_string_11)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 974
% 37.27/37.47  976. (-. (-. ((cXantusiidae T_43) /\ (cSphenodontidae T_43)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) ((xsd_string_10) != (xsd_string_11))   ### NotNot 975
% 37.27/37.47  977. (-. (All X, (-. ((cXantusiidae X) /\ (cSphenodontidae X))))) ((xsd_string_10) != (xsd_string_11)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 976
% 37.27/37.47  978. (cLeptotyphlopidae T_44) (-. (cLeptotyphlopidae T_44))   ### Axiom
% 37.27/37.47  979. (-. (cReptile T_44)) (cReptile T_44)   ### Axiom
% 37.27/37.47  980. ((cLeptotyphlopidae T_44) => (cReptile T_44)) (-. (cReptile T_44)) (cLeptotyphlopidae T_44)   ### Imply 978 979
% 37.27/37.47  981. (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_44) (-. (cReptile T_44))   ### All 980
% 37.27/37.47  982. (cLeptotyphlopidae T_44) (-. (cLeptotyphlopidae T_44))   ### Axiom
% 37.27/37.47  983. (-. (rfamily_name T_44 (xsd_string_8))) (rfamily_name T_44 (xsd_string_8))   ### Axiom
% 37.27/37.47  984. ((cLeptotyphlopidae T_44) => (rfamily_name T_44 (xsd_string_8))) (-. (rfamily_name T_44 (xsd_string_8))) (cLeptotyphlopidae T_44)   ### Imply 982 983
% 37.27/37.47  985. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_44) (-. (rfamily_name T_44 (xsd_string_8)))   ### All 984
% 37.27/37.47  986. (cAmphisbaenidae T_44) (-. (cAmphisbaenidae T_44))   ### Axiom
% 37.27/37.47  987. (-. (rfamily_name T_44 (xsd_string_1))) (rfamily_name T_44 (xsd_string_1))   ### Axiom
% 37.27/37.47  988. ((cAmphisbaenidae T_44) => (rfamily_name T_44 (xsd_string_1))) (-. (rfamily_name T_44 (xsd_string_1))) (cAmphisbaenidae T_44)   ### Imply 986 987
% 37.27/37.47  989. (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_44) (-. (rfamily_name T_44 (xsd_string_1)))   ### All 988
% 37.27/37.47  990. ((xsd_string_1) != (xsd_string_8)) ((xsd_string_8) = (xsd_string_1))   ### Sym(=)
% 37.27/37.47  991. (((rfamily_name T_44 (xsd_string_8)) /\ (rfamily_name T_44 (xsd_string_1))) => ((xsd_string_8) = (xsd_string_1))) ((xsd_string_1) != (xsd_string_8)) (cAmphisbaenidae T_44) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cLeptotyphlopidae T_44) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### DisjTree 985 989 990
% 37.27/37.47  992. (All Y1, (((rfamily_name T_44 (xsd_string_8)) /\ (rfamily_name T_44 Y1)) => ((xsd_string_8) = Y1))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_44) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_44) ((xsd_string_1) != (xsd_string_8))   ### All 991
% 37.27/37.47  993. (All Y0, (All Y1, (((rfamily_name T_44 Y0) /\ (rfamily_name T_44 Y1)) => (Y0 = Y1)))) ((xsd_string_1) != (xsd_string_8)) (cAmphisbaenidae T_44) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cLeptotyphlopidae T_44) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### All 992
% 37.27/37.47  994. ((Ex Y0, (rfamily_name T_44 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_44 Y0) /\ (rfamily_name T_44 Y1)) => (Y0 = Y1))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_44) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_44) ((xsd_string_1) != (xsd_string_8))   ### And 993
% 37.27/37.47  995. ((cReptile T_44) => ((Ex Y0, (rfamily_name T_44 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_44 Y0) /\ (rfamily_name T_44 Y1)) => (Y0 = Y1)))))) ((xsd_string_1) != (xsd_string_8)) (cAmphisbaenidae T_44) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_44) (All X, ((cLeptotyphlopidae X) => (cReptile X)))   ### Imply 981 994
% 37.27/37.47  996. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_44) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_44) ((xsd_string_1) != (xsd_string_8))   ### All 995
% 37.27/37.47  997. ((cLeptotyphlopidae T_44) /\ (cAmphisbaenidae T_44)) ((xsd_string_1) != (xsd_string_8)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 996
% 37.27/37.47  998. (-. (-. ((cLeptotyphlopidae T_44) /\ (cAmphisbaenidae T_44)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) ((xsd_string_1) != (xsd_string_8))   ### NotNot 997
% 37.27/37.47  999. (-. (All X, (-. ((cLeptotyphlopidae X) /\ (cAmphisbaenidae X))))) ((xsd_string_1) != (xsd_string_8)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 998
% 37.27/37.47  1000. (cEmydidae T_45) (-. (cEmydidae T_45))   ### Axiom
% 37.27/37.47  1001. (-. (rfamily_name T_45 (xsd_string_6))) (rfamily_name T_45 (xsd_string_6))   ### Axiom
% 37.27/37.47  1002. ((cEmydidae T_45) => (rfamily_name T_45 (xsd_string_6))) (-. (rfamily_name T_45 (xsd_string_6))) (cEmydidae T_45)   ### Imply 1000 1001
% 37.27/37.47  1003. (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_45) (-. (rfamily_name T_45 (xsd_string_6)))   ### All 1002
% 37.27/37.47  1004. (cSphenodontidae T_45) (-. (cSphenodontidae T_45))   ### Axiom
% 37.27/37.49  1005. (-. (cReptile T_45)) (cReptile T_45)   ### Axiom
% 37.27/37.49  1006. ((cSphenodontidae T_45) => (cReptile T_45)) (-. (cReptile T_45)) (cSphenodontidae T_45)   ### Imply 1004 1005
% 37.27/37.49  1007. (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_45) (-. (cReptile T_45))   ### All 1006
% 37.27/37.49  1008. (cSphenodontidae T_45) (-. (cSphenodontidae T_45))   ### Axiom
% 37.27/37.49  1009. (-. (rfamily_name T_45 (xsd_string_10))) (rfamily_name T_45 (xsd_string_10))   ### Axiom
% 37.27/37.49  1010. ((cSphenodontidae T_45) => (rfamily_name T_45 (xsd_string_10))) (-. (rfamily_name T_45 (xsd_string_10))) (cSphenodontidae T_45)   ### Imply 1008 1009
% 37.27/37.49  1011. (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_45) (-. (rfamily_name T_45 (xsd_string_10)))   ### All 1010
% 37.27/37.49  1012. (rfamily_name T_45 (xsd_string_6)) (-. (rfamily_name T_45 (xsd_string_6)))   ### Axiom
% 37.27/37.49  1013. ((xsd_string_6) != (xsd_string_10)) ((xsd_string_10) = (xsd_string_6))   ### Sym(=)
% 37.27/37.49  1014. (((rfamily_name T_45 (xsd_string_10)) /\ (rfamily_name T_45 (xsd_string_6))) => ((xsd_string_10) = (xsd_string_6))) ((xsd_string_6) != (xsd_string_10)) (rfamily_name T_45 (xsd_string_6)) (cSphenodontidae T_45) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### DisjTree 1011 1012 1013
% 37.27/37.49  1015. (All Y1, (((rfamily_name T_45 (xsd_string_10)) /\ (rfamily_name T_45 Y1)) => ((xsd_string_10) = Y1))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_45) (rfamily_name T_45 (xsd_string_6)) ((xsd_string_6) != (xsd_string_10))   ### All 1014
% 37.27/37.49  1016. (All Y0, (All Y1, (((rfamily_name T_45 Y0) /\ (rfamily_name T_45 Y1)) => (Y0 = Y1)))) ((xsd_string_6) != (xsd_string_10)) (rfamily_name T_45 (xsd_string_6)) (cSphenodontidae T_45) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### All 1015
% 37.27/37.49  1017. ((Ex Y0, (rfamily_name T_45 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_45 Y0) /\ (rfamily_name T_45 Y1)) => (Y0 = Y1))))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_45) (rfamily_name T_45 (xsd_string_6)) ((xsd_string_6) != (xsd_string_10))   ### And 1016
% 37.27/37.49  1018. ((cReptile T_45) => ((Ex Y0, (rfamily_name T_45 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_45 Y0) /\ (rfamily_name T_45 Y1)) => (Y0 = Y1)))))) ((xsd_string_6) != (xsd_string_10)) (rfamily_name T_45 (xsd_string_6)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_45) (All X, ((cSphenodontidae X) => (cReptile X)))   ### Imply 1007 1017
% 37.27/37.49  1019. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_45) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (rfamily_name T_45 (xsd_string_6)) ((xsd_string_6) != (xsd_string_10))   ### All 1018
% 37.27/37.49  1020. ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name T_45 (xsd_string_6))) => (rfamily_name T_45 (xsd_string_6))) ((xsd_string_6) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_45) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_45) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### DisjTree 301 1003 1019
% 37.27/37.49  1021. (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_45) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_45) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) ((xsd_string_6) != (xsd_string_10))   ### All 1020
% 37.27/37.49  1022. (All B, (All C, ((((xsd_string_6) = B) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C B)))) ((xsd_string_6) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_45) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_45) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### All 1021
% 37.27/37.49  1023. (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_45) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_45) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) ((xsd_string_6) != (xsd_string_10))   ### All 1022
% 37.27/37.49  1024. ((cSphenodontidae T_45) /\ (cEmydidae T_45)) ((xsd_string_6) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### And 1023
% 37.27/37.49  1025. (-. (-. ((cSphenodontidae T_45) /\ (cEmydidae T_45)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) ((xsd_string_6) != (xsd_string_10))   ### NotNot 1024
% 37.27/37.49  1026. (-. (All X, (-. ((cSphenodontidae X) /\ (cEmydidae X))))) ((xsd_string_6) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### NotAllEx 1025
% 37.27/37.49  1027. (cLeptotyphlopidae T_46) (-. (cLeptotyphlopidae T_46))   ### Axiom
% 37.27/37.49  1028. (-. (cReptile T_46)) (cReptile T_46)   ### Axiom
% 37.27/37.49  1029. ((cLeptotyphlopidae T_46) => (cReptile T_46)) (-. (cReptile T_46)) (cLeptotyphlopidae T_46)   ### Imply 1027 1028
% 37.27/37.49  1030. (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_46) (-. (cReptile T_46))   ### All 1029
% 37.27/37.49  1031. (cLeptotyphlopidae T_46) (-. (cLeptotyphlopidae T_46))   ### Axiom
% 37.27/37.49  1032. (-. (rfamily_name T_46 (xsd_string_8))) (rfamily_name T_46 (xsd_string_8))   ### Axiom
% 37.27/37.49  1033. ((cLeptotyphlopidae T_46) => (rfamily_name T_46 (xsd_string_8))) (-. (rfamily_name T_46 (xsd_string_8))) (cLeptotyphlopidae T_46)   ### Imply 1031 1032
% 37.27/37.49  1034. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_46) (-. (rfamily_name T_46 (xsd_string_8)))   ### All 1033
% 37.27/37.49  1035. (cCordylidae T_46) (-. (cCordylidae T_46))   ### Axiom
% 37.27/37.49  1036. (-. (rfamily_name T_46 (xsd_string_4))) (rfamily_name T_46 (xsd_string_4))   ### Axiom
% 37.27/37.49  1037. ((cCordylidae T_46) => (rfamily_name T_46 (xsd_string_4))) (-. (rfamily_name T_46 (xsd_string_4))) (cCordylidae T_46)   ### Imply 1035 1036
% 37.27/37.49  1038. (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_46) (-. (rfamily_name T_46 (xsd_string_4)))   ### All 1037
% 37.27/37.49  1039. ((xsd_string_4) != (xsd_string_8)) ((xsd_string_8) = (xsd_string_4))   ### Sym(=)
% 37.27/37.49  1040. (((rfamily_name T_46 (xsd_string_8)) /\ (rfamily_name T_46 (xsd_string_4))) => ((xsd_string_8) = (xsd_string_4))) ((xsd_string_4) != (xsd_string_8)) (cCordylidae T_46) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cLeptotyphlopidae T_46) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### DisjTree 1034 1038 1039
% 37.27/37.50  1041. (All Y1, (((rfamily_name T_46 (xsd_string_8)) /\ (rfamily_name T_46 Y1)) => ((xsd_string_8) = Y1))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_46) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_46) ((xsd_string_4) != (xsd_string_8))   ### All 1040
% 37.27/37.50  1042. (All Y0, (All Y1, (((rfamily_name T_46 Y0) /\ (rfamily_name T_46 Y1)) => (Y0 = Y1)))) ((xsd_string_4) != (xsd_string_8)) (cCordylidae T_46) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cLeptotyphlopidae T_46) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### All 1041
% 37.27/37.50  1043. ((Ex Y0, (rfamily_name T_46 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_46 Y0) /\ (rfamily_name T_46 Y1)) => (Y0 = Y1))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_46) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_46) ((xsd_string_4) != (xsd_string_8))   ### And 1042
% 37.27/37.50  1044. ((cReptile T_46) => ((Ex Y0, (rfamily_name T_46 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_46 Y0) /\ (rfamily_name T_46 Y1)) => (Y0 = Y1)))))) ((xsd_string_4) != (xsd_string_8)) (cCordylidae T_46) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_46) (All X, ((cLeptotyphlopidae X) => (cReptile X)))   ### Imply 1030 1043
% 37.27/37.50  1045. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_46) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_46) ((xsd_string_4) != (xsd_string_8))   ### All 1044
% 37.27/37.50  1046. ((cLeptotyphlopidae T_46) /\ (cCordylidae T_46)) ((xsd_string_4) != (xsd_string_8)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1045
% 37.27/37.50  1047. (-. (-. ((cLeptotyphlopidae T_46) /\ (cCordylidae T_46)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_4) != (xsd_string_8))   ### NotNot 1046
% 37.27/37.50  1048. (-. (All X, (-. ((cLeptotyphlopidae X) /\ (cCordylidae X))))) ((xsd_string_4) != (xsd_string_8)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1047
% 37.27/37.50  1049. ((xsd_string_7) != (xsd_string_7))   ### NotEqual
% 37.27/37.50  1050. (cGekkonidae T_47) (-. (cGekkonidae T_47))   ### Axiom
% 37.27/37.50  1051. (-. (rfamily_name T_47 (xsd_string_7))) (rfamily_name T_47 (xsd_string_7))   ### Axiom
% 37.27/37.50  1052. ((cGekkonidae T_47) => (rfamily_name T_47 (xsd_string_7))) (-. (rfamily_name T_47 (xsd_string_7))) (cGekkonidae T_47)   ### Imply 1050 1051
% 37.27/37.50  1053. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_47) (-. (rfamily_name T_47 (xsd_string_7)))   ### All 1052
% 37.27/37.50  1054. (cAnomalepidae T_47) (-. (cAnomalepidae T_47))   ### Axiom
% 37.27/37.50  1055. (-. (cReptile T_47)) (cReptile T_47)   ### Axiom
% 37.27/37.50  1056. ((cAnomalepidae T_47) => (cReptile T_47)) (-. (cReptile T_47)) (cAnomalepidae T_47)   ### Imply 1054 1055
% 37.27/37.50  1057. (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_47) (-. (cReptile T_47))   ### All 1056
% 37.27/37.50  1058. (cAnomalepidae T_47) (-. (cAnomalepidae T_47))   ### Axiom
% 37.27/37.50  1059. (rfamily_name T_47 (xsd_string_7)) (-. (rfamily_name T_47 (xsd_string_7)))   ### Axiom
% 37.27/37.50  1060. (rfamily_name T_47 (xsd_string_2)) (-. (rfamily_name T_47 (xsd_string_2)))   ### Axiom
% 37.27/37.50  1061. ((xsd_string_2) != (xsd_string_7)) ((xsd_string_7) = (xsd_string_2))   ### Sym(=)
% 37.27/37.50  1062. (((rfamily_name T_47 (xsd_string_7)) /\ (rfamily_name T_47 (xsd_string_2))) => ((xsd_string_7) = (xsd_string_2))) ((xsd_string_2) != (xsd_string_7)) (rfamily_name T_47 (xsd_string_2)) (rfamily_name T_47 (xsd_string_7))   ### DisjTree 1059 1060 1061
% 37.27/37.50  1063. (All Y1, (((rfamily_name T_47 (xsd_string_7)) /\ (rfamily_name T_47 Y1)) => ((xsd_string_7) = Y1))) (rfamily_name T_47 (xsd_string_7)) (rfamily_name T_47 (xsd_string_2)) ((xsd_string_2) != (xsd_string_7))   ### All 1062
% 37.27/37.50  1064. (All Y0, (All Y1, (((rfamily_name T_47 Y0) /\ (rfamily_name T_47 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_7)) (rfamily_name T_47 (xsd_string_2)) (rfamily_name T_47 (xsd_string_7))   ### All 1063
% 37.27/37.50  1065. ((cAnomalepidae T_47) => (rfamily_name T_47 (xsd_string_2))) (rfamily_name T_47 (xsd_string_7)) ((xsd_string_2) != (xsd_string_7)) (All Y0, (All Y1, (((rfamily_name T_47 Y0) /\ (rfamily_name T_47 Y1)) => (Y0 = Y1)))) (cAnomalepidae T_47)   ### Imply 1058 1064
% 37.27/37.50  1066. (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_47) (All Y0, (All Y1, (((rfamily_name T_47 Y0) /\ (rfamily_name T_47 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_7)) (rfamily_name T_47 (xsd_string_7))   ### All 1065
% 37.27/37.50  1067. ((Ex Y0, (rfamily_name T_47 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_47 Y0) /\ (rfamily_name T_47 Y1)) => (Y0 = Y1))))) (rfamily_name T_47 (xsd_string_7)) ((xsd_string_2) != (xsd_string_7)) (cAnomalepidae T_47) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### And 1066
% 37.27/37.50  1068. ((cReptile T_47) => ((Ex Y0, (rfamily_name T_47 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_47 Y0) /\ (rfamily_name T_47 Y1)) => (Y0 = Y1)))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_2) != (xsd_string_7)) (rfamily_name T_47 (xsd_string_7)) (cAnomalepidae T_47) (All X, ((cAnomalepidae X) => (cReptile X)))   ### Imply 1057 1067
% 37.27/37.50  1069. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_47) (rfamily_name T_47 (xsd_string_7)) ((xsd_string_2) != (xsd_string_7)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### All 1068
% 37.27/37.50  1070. ((((xsd_string_7) = (xsd_string_7)) /\ (rfamily_name T_47 (xsd_string_7))) => (rfamily_name T_47 (xsd_string_7))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_2) != (xsd_string_7)) (cAnomalepidae T_47) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cGekkonidae T_47) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### DisjTree 1049 1053 1069
% 37.27/37.50  1071. (All C, ((((xsd_string_7) = (xsd_string_7)) /\ (rfamily_name C (xsd_string_7))) => (rfamily_name C (xsd_string_7)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_47) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_47) ((xsd_string_2) != (xsd_string_7)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### All 1070
% 37.27/37.50  1072. (All B, (All C, ((((xsd_string_7) = B) /\ (rfamily_name C (xsd_string_7))) => (rfamily_name C B)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_2) != (xsd_string_7)) (cAnomalepidae T_47) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cGekkonidae T_47) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### All 1071
% 37.27/37.51  1073. (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_47) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_47) ((xsd_string_2) != (xsd_string_7)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### All 1072
% 37.27/37.51  1074. ((cGekkonidae T_47) /\ (cAnomalepidae T_47)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_2) != (xsd_string_7)) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### And 1073
% 37.27/37.51  1075. (-. (-. ((cGekkonidae T_47) /\ (cAnomalepidae T_47)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_7)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### NotNot 1074
% 37.27/37.51  1076. (-. (All X, (-. ((cGekkonidae X) /\ (cAnomalepidae X))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_2) != (xsd_string_7)) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### NotAllEx 1075
% 37.27/37.51  1077. (cBipedidae T_48) (-. (cBipedidae T_48))   ### Axiom
% 37.27/37.51  1078. (-. (cReptile T_48)) (cReptile T_48)   ### Axiom
% 37.27/37.51  1079. ((cBipedidae T_48) => (cReptile T_48)) (-. (cReptile T_48)) (cBipedidae T_48)   ### Imply 1077 1078
% 37.27/37.51  1080. (All X, ((cBipedidae X) => (cReptile X))) (cBipedidae T_48) (-. (cReptile T_48))   ### All 1079
% 37.27/37.51  1081. (cBipedidae T_48) (-. (cBipedidae T_48))   ### Axiom
% 37.27/37.51  1082. (-. (rfamily_name T_48 (xsd_string_3))) (rfamily_name T_48 (xsd_string_3))   ### Axiom
% 37.27/37.51  1083. ((cBipedidae T_48) => (rfamily_name T_48 (xsd_string_3))) (-. (rfamily_name T_48 (xsd_string_3))) (cBipedidae T_48)   ### Imply 1081 1082
% 37.27/37.51  1084. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_48) (-. (rfamily_name T_48 (xsd_string_3)))   ### All 1083
% 37.27/37.51  1085. (cCordylidae T_48) (-. (cCordylidae T_48))   ### Axiom
% 37.27/37.51  1086. (-. (rfamily_name T_48 (xsd_string_4))) (rfamily_name T_48 (xsd_string_4))   ### Axiom
% 37.27/37.51  1087. ((cCordylidae T_48) => (rfamily_name T_48 (xsd_string_4))) (-. (rfamily_name T_48 (xsd_string_4))) (cCordylidae T_48)   ### Imply 1085 1086
% 37.27/37.51  1088. (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_48) (-. (rfamily_name T_48 (xsd_string_4)))   ### All 1087
% 37.27/37.51  1089. ((xsd_string_3) != (xsd_string_4)) ((xsd_string_3) = (xsd_string_4))   ### Axiom
% 37.27/37.51  1090. (((rfamily_name T_48 (xsd_string_3)) /\ (rfamily_name T_48 (xsd_string_4))) => ((xsd_string_3) = (xsd_string_4))) ((xsd_string_3) != (xsd_string_4)) (cCordylidae T_48) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cBipedidae T_48) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### DisjTree 1084 1088 1089
% 37.27/37.51  1091. (All Y1, (((rfamily_name T_48 (xsd_string_3)) /\ (rfamily_name T_48 Y1)) => ((xsd_string_3) = Y1))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_48) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_48) ((xsd_string_3) != (xsd_string_4))   ### All 1090
% 37.27/37.51  1092. (All Y0, (All Y1, (((rfamily_name T_48 Y0) /\ (rfamily_name T_48 Y1)) => (Y0 = Y1)))) ((xsd_string_3) != (xsd_string_4)) (cCordylidae T_48) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cBipedidae T_48) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3))))   ### All 1091
% 37.27/37.51  1093. ((Ex Y0, (rfamily_name T_48 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_48 Y0) /\ (rfamily_name T_48 Y1)) => (Y0 = Y1))))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_48) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_48) ((xsd_string_3) != (xsd_string_4))   ### And 1092
% 37.27/37.51  1094. ((cReptile T_48) => ((Ex Y0, (rfamily_name T_48 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_48 Y0) /\ (rfamily_name T_48 Y1)) => (Y0 = Y1)))))) ((xsd_string_3) != (xsd_string_4)) (cCordylidae T_48) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_48) (All X, ((cBipedidae X) => (cReptile X)))   ### Imply 1080 1093
% 37.27/37.51  1095. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cBipedidae X) => (cReptile X))) (cBipedidae T_48) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_48) ((xsd_string_3) != (xsd_string_4))   ### All 1094
% 37.27/37.51  1096. ((cBipedidae T_48) /\ (cCordylidae T_48)) ((xsd_string_3) != (xsd_string_4)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cBipedidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1095
% 37.27/37.51  1097. (-. (-. ((cBipedidae T_48) /\ (cCordylidae T_48)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cBipedidae X) => (cReptile X))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_3) != (xsd_string_4))   ### NotNot 1096
% 37.27/37.51  1098. (-. (All X, (-. ((cBipedidae X) /\ (cCordylidae X))))) ((xsd_string_3) != (xsd_string_4)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cBipedidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1097
% 37.27/37.51  1099. (cAmphisbaenidae T_49) (-. (cAmphisbaenidae T_49))   ### Axiom
% 37.27/37.51  1100. (-. (cReptile T_49)) (cReptile T_49)   ### Axiom
% 37.27/37.51  1101. ((cAmphisbaenidae T_49) => (cReptile T_49)) (-. (cReptile T_49)) (cAmphisbaenidae T_49)   ### Imply 1099 1100
% 37.27/37.51  1102. (All X, ((cAmphisbaenidae X) => (cReptile X))) (cAmphisbaenidae T_49) (-. (cReptile T_49))   ### All 1101
% 37.27/37.51  1103. (rfamily_name T_49 T_50) (-. (rfamily_name T_49 T_50))   ### Axiom
% 37.27/37.51  1104. (cAmphisbaenidae T_49) (-. (cAmphisbaenidae T_49))   ### Axiom
% 37.27/37.51  1105. (-. (rfamily_name T_49 (xsd_string_1))) (rfamily_name T_49 (xsd_string_1))   ### Axiom
% 37.27/37.51  1106. ((cAmphisbaenidae T_49) => (rfamily_name T_49 (xsd_string_1))) (-. (rfamily_name T_49 (xsd_string_1))) (cAmphisbaenidae T_49)   ### Imply 1104 1105
% 37.27/37.51  1107. (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_49) (-. (rfamily_name T_49 (xsd_string_1)))   ### All 1106
% 37.27/37.51  1108. (rfamily_name T_49 T_50) (-. (rfamily_name T_49 T_50))   ### Axiom
% 37.27/37.51  1109. (cBipedidae T_49) (-. (cBipedidae T_49))   ### Axiom
% 37.27/37.51  1110. (-. (rfamily_name T_49 (xsd_string_3))) (rfamily_name T_49 (xsd_string_3))   ### Axiom
% 37.27/37.51  1111. ((cBipedidae T_49) => (rfamily_name T_49 (xsd_string_3))) (-. (rfamily_name T_49 (xsd_string_3))) (cBipedidae T_49)   ### Imply 1109 1110
% 37.27/37.51  1112. (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_49) (-. (rfamily_name T_49 (xsd_string_3)))   ### All 1111
% 37.27/37.51  1113. (T_50 = (xsd_string_3)) ((xsd_string_3) != T_50)   ### Sym(=)
% 37.27/37.51  1114. (T_50 = (xsd_string_3)) ((xsd_string_3) != T_50)   ### Sym(=)
% 37.27/37.52  1115. ((xsd_string_1) != (xsd_string_1))   ### NotEqual
% 37.27/37.52  1116. ((xsd_string_1) != (xsd_string_3)) (T_50 = (xsd_string_1)) (T_50 = (xsd_string_3))   ### TransEq-sym 1113 1114 1115
% 37.27/37.52  1117. (((rfamily_name T_49 T_50) /\ (rfamily_name T_49 (xsd_string_3))) => (T_50 = (xsd_string_3))) (T_50 = (xsd_string_1)) ((xsd_string_1) != (xsd_string_3)) (cBipedidae T_49) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (rfamily_name T_49 T_50)   ### DisjTree 1108 1112 1116
% 37.27/37.52  1118. (All Y1, (((rfamily_name T_49 T_50) /\ (rfamily_name T_49 Y1)) => (T_50 = Y1))) (rfamily_name T_49 T_50) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_49) ((xsd_string_1) != (xsd_string_3)) (T_50 = (xsd_string_1))   ### All 1117
% 37.27/37.52  1119. (((rfamily_name T_49 T_50) /\ (rfamily_name T_49 (xsd_string_1))) => (T_50 = (xsd_string_1))) ((xsd_string_1) != (xsd_string_3)) (cBipedidae T_49) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All Y1, (((rfamily_name T_49 T_50) /\ (rfamily_name T_49 Y1)) => (T_50 = Y1))) (cAmphisbaenidae T_49) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (rfamily_name T_49 T_50)   ### DisjTree 1103 1107 1118
% 37.27/37.52  1120. (rfamily_name T_49 T_50) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_49) (All Y1, (((rfamily_name T_49 T_50) /\ (rfamily_name T_49 Y1)) => (T_50 = Y1))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_49) ((xsd_string_1) != (xsd_string_3))   ### All 1119
% 37.27/37.52  1121. (All Y0, (All Y1, (((rfamily_name T_49 Y0) /\ (rfamily_name T_49 Y1)) => (Y0 = Y1)))) ((xsd_string_1) != (xsd_string_3)) (cBipedidae T_49) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cAmphisbaenidae T_49) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (rfamily_name T_49 T_50)   ### All 1120
% 37.27/37.52  1122. (Ex Y0, (rfamily_name T_49 Y0)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_49) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_49) ((xsd_string_1) != (xsd_string_3)) (All Y0, (All Y1, (((rfamily_name T_49 Y0) /\ (rfamily_name T_49 Y1)) => (Y0 = Y1))))   ### Exists 1121
% 37.27/37.52  1123. ((Ex Y0, (rfamily_name T_49 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_49 Y0) /\ (rfamily_name T_49 Y1)) => (Y0 = Y1))))) ((xsd_string_1) != (xsd_string_3)) (cBipedidae T_49) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cAmphisbaenidae T_49) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1))))   ### And 1122
% 37.27/37.52  1124. ((cReptile T_49) => ((Ex Y0, (rfamily_name T_49 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_49 Y0) /\ (rfamily_name T_49 Y1)) => (Y0 = Y1)))))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (cBipedidae T_49) ((xsd_string_1) != (xsd_string_3)) (cAmphisbaenidae T_49) (All X, ((cAmphisbaenidae X) => (cReptile X)))   ### Imply 1102 1123
% 37.27/37.52  1125. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAmphisbaenidae X) => (cReptile X))) (cAmphisbaenidae T_49) ((xsd_string_1) != (xsd_string_3)) (cBipedidae T_49) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1))))   ### All 1124
% 37.27/37.52  1126. ((cBipedidae T_49) /\ (cAmphisbaenidae T_49)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) ((xsd_string_1) != (xsd_string_3)) (All X, ((cAmphisbaenidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1125
% 37.27/37.52  1127. (-. (-. ((cBipedidae T_49) /\ (cAmphisbaenidae T_49)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAmphisbaenidae X) => (cReptile X))) ((xsd_string_1) != (xsd_string_3)) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1))))   ### NotNot 1126
% 37.27/37.52  1128. (-. (All X, (-. ((cBipedidae X) /\ (cAmphisbaenidae X))))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) ((xsd_string_1) != (xsd_string_3)) (All X, ((cAmphisbaenidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1127
% 37.27/37.52  1129. (cXantusiidae T_51) (-. (cXantusiidae T_51))   ### Axiom
% 37.27/37.52  1130. (-. (cReptile T_51)) (cReptile T_51)   ### Axiom
% 37.27/37.52  1131. ((cXantusiidae T_51) => (cReptile T_51)) (-. (cReptile T_51)) (cXantusiidae T_51)   ### Imply 1129 1130
% 37.27/37.52  1132. (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_51) (-. (cReptile T_51))   ### All 1131
% 37.27/37.52  1133. (cXantusiidae T_51) (-. (cXantusiidae T_51))   ### Axiom
% 37.27/37.52  1134. (-. (rfamily_name T_51 (xsd_string_11))) (rfamily_name T_51 (xsd_string_11))   ### Axiom
% 37.27/37.52  1135. ((cXantusiidae T_51) => (rfamily_name T_51 (xsd_string_11))) (-. (rfamily_name T_51 (xsd_string_11))) (cXantusiidae T_51)   ### Imply 1133 1134
% 37.27/37.52  1136. (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_51) (-. (rfamily_name T_51 (xsd_string_11)))   ### All 1135
% 37.27/37.52  1137. (cCordylidae T_51) (-. (cCordylidae T_51))   ### Axiom
% 37.27/37.52  1138. (-. (rfamily_name T_51 (xsd_string_4))) (rfamily_name T_51 (xsd_string_4))   ### Axiom
% 37.27/37.52  1139. ((cCordylidae T_51) => (rfamily_name T_51 (xsd_string_4))) (-. (rfamily_name T_51 (xsd_string_4))) (cCordylidae T_51)   ### Imply 1137 1138
% 37.27/37.52  1140. (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_51) (-. (rfamily_name T_51 (xsd_string_4)))   ### All 1139
% 37.27/37.52  1141. ((xsd_string_4) != (xsd_string_11)) ((xsd_string_11) = (xsd_string_4))   ### Sym(=)
% 37.27/37.52  1142. (((rfamily_name T_51 (xsd_string_11)) /\ (rfamily_name T_51 (xsd_string_4))) => ((xsd_string_11) = (xsd_string_4))) ((xsd_string_4) != (xsd_string_11)) (cCordylidae T_51) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cXantusiidae T_51) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### DisjTree 1136 1140 1141
% 37.27/37.52  1143. (All Y1, (((rfamily_name T_51 (xsd_string_11)) /\ (rfamily_name T_51 Y1)) => ((xsd_string_11) = Y1))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_51) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_51) ((xsd_string_4) != (xsd_string_11))   ### All 1142
% 37.27/37.52  1144. (All Y0, (All Y1, (((rfamily_name T_51 Y0) /\ (rfamily_name T_51 Y1)) => (Y0 = Y1)))) ((xsd_string_4) != (xsd_string_11)) (cCordylidae T_51) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cXantusiidae T_51) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### All 1143
% 37.27/37.52  1145. ((Ex Y0, (rfamily_name T_51 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_51 Y0) /\ (rfamily_name T_51 Y1)) => (Y0 = Y1))))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_51) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_51) ((xsd_string_4) != (xsd_string_11))   ### And 1144
% 37.27/37.52  1146. ((cReptile T_51) => ((Ex Y0, (rfamily_name T_51 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_51 Y0) /\ (rfamily_name T_51 Y1)) => (Y0 = Y1)))))) ((xsd_string_4) != (xsd_string_11)) (cCordylidae T_51) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_51) (All X, ((cXantusiidae X) => (cReptile X)))   ### Imply 1132 1145
% 37.27/37.52  1147. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_51) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_51) ((xsd_string_4) != (xsd_string_11))   ### All 1146
% 37.27/37.52  1148. ((cXantusiidae T_51) /\ (cCordylidae T_51)) ((xsd_string_4) != (xsd_string_11)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1147
% 37.36/37.54  1149. (-. (-. ((cXantusiidae T_51) /\ (cCordylidae T_51)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_4) != (xsd_string_11))   ### NotNot 1148
% 37.36/37.54  1150. (-. (All X, (-. ((cXantusiidae X) /\ (cCordylidae X))))) ((xsd_string_4) != (xsd_string_11)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1149
% 37.36/37.54  1151. (cAnomalepidae T_52) (-. (cAnomalepidae T_52))   ### Axiom
% 37.36/37.54  1152. (-. (cReptile T_52)) (cReptile T_52)   ### Axiom
% 37.36/37.54  1153. ((cAnomalepidae T_52) => (cReptile T_52)) (-. (cReptile T_52)) (cAnomalepidae T_52)   ### Imply 1151 1152
% 37.36/37.54  1154. (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_52) (-. (cReptile T_52))   ### All 1153
% 37.36/37.54  1155. (cAgamidae T_52) (-. (cAgamidae T_52))   ### Axiom
% 37.36/37.54  1156. (-. (rfamily_name T_52 (xsd_string_0))) (rfamily_name T_52 (xsd_string_0))   ### Axiom
% 37.36/37.54  1157. ((cAgamidae T_52) => (rfamily_name T_52 (xsd_string_0))) (-. (rfamily_name T_52 (xsd_string_0))) (cAgamidae T_52)   ### Imply 1155 1156
% 37.36/37.54  1158. (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_52) (-. (rfamily_name T_52 (xsd_string_0)))   ### All 1157
% 37.36/37.54  1159. (cAnomalepidae T_52) (-. (cAnomalepidae T_52))   ### Axiom
% 37.36/37.54  1160. (-. (rfamily_name T_52 (xsd_string_2))) (rfamily_name T_52 (xsd_string_2))   ### Axiom
% 37.36/37.54  1161. ((cAnomalepidae T_52) => (rfamily_name T_52 (xsd_string_2))) (-. (rfamily_name T_52 (xsd_string_2))) (cAnomalepidae T_52)   ### Imply 1159 1160
% 37.36/37.54  1162. (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_52) (-. (rfamily_name T_52 (xsd_string_2)))   ### All 1161
% 37.36/37.54  1163. ((xsd_string_0) != (xsd_string_2)) ((xsd_string_0) = (xsd_string_2))   ### Axiom
% 37.36/37.54  1164. (((rfamily_name T_52 (xsd_string_0)) /\ (rfamily_name T_52 (xsd_string_2))) => ((xsd_string_0) = (xsd_string_2))) ((xsd_string_0) != (xsd_string_2)) (cAnomalepidae T_52) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAgamidae T_52) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0))))   ### DisjTree 1158 1162 1163
% 37.36/37.54  1165. (All Y1, (((rfamily_name T_52 (xsd_string_0)) /\ (rfamily_name T_52 Y1)) => ((xsd_string_0) = Y1))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_52) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_52) ((xsd_string_0) != (xsd_string_2))   ### All 1164
% 37.36/37.54  1166. (All Y0, (All Y1, (((rfamily_name T_52 Y0) /\ (rfamily_name T_52 Y1)) => (Y0 = Y1)))) ((xsd_string_0) != (xsd_string_2)) (cAnomalepidae T_52) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAgamidae T_52) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0))))   ### All 1165
% 37.36/37.54  1167. ((Ex Y0, (rfamily_name T_52 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_52 Y0) /\ (rfamily_name T_52 Y1)) => (Y0 = Y1))))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_52) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_52) ((xsd_string_0) != (xsd_string_2))   ### And 1166
% 37.36/37.54  1168. ((cReptile T_52) => ((Ex Y0, (rfamily_name T_52 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_52 Y0) /\ (rfamily_name T_52 Y1)) => (Y0 = Y1)))))) ((xsd_string_0) != (xsd_string_2)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAgamidae T_52) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAnomalepidae T_52) (All X, ((cAnomalepidae X) => (cReptile X)))   ### Imply 1154 1167
% 37.36/37.54  1169. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) (cAnomalepidae T_52) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_52) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_0) != (xsd_string_2))   ### All 1168
% 37.36/37.54  1170. ((cAnomalepidae T_52) /\ (cAgamidae T_52)) ((xsd_string_0) != (xsd_string_2)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1169
% 37.36/37.54  1171. (-. (-. ((cAnomalepidae T_52) /\ (cAgamidae T_52)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_0) != (xsd_string_2))   ### NotNot 1170
% 37.36/37.54  1172. (-. (All X, (-. ((cAnomalepidae X) /\ (cAgamidae X))))) ((xsd_string_0) != (xsd_string_2)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cAnomalepidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1171
% 37.36/37.54  1173. (cSphenodontidae T_53) (-. (cSphenodontidae T_53))   ### Axiom
% 37.36/37.54  1174. (-. (cReptile T_53)) (cReptile T_53)   ### Axiom
% 37.36/37.54  1175. ((cSphenodontidae T_53) => (cReptile T_53)) (-. (cReptile T_53)) (cSphenodontidae T_53)   ### Imply 1173 1174
% 37.36/37.54  1176. (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_53) (-. (cReptile T_53))   ### All 1175
% 37.36/37.54  1177. (cCrocodylidae T_53) (-. (cCrocodylidae T_53))   ### Axiom
% 37.36/37.54  1178. (-. (rfamily_name T_53 (xsd_string_5))) (rfamily_name T_53 (xsd_string_5))   ### Axiom
% 37.36/37.54  1179. ((cCrocodylidae T_53) => (rfamily_name T_53 (xsd_string_5))) (-. (rfamily_name T_53 (xsd_string_5))) (cCrocodylidae T_53)   ### Imply 1177 1178
% 37.36/37.54  1180. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_53) (-. (rfamily_name T_53 (xsd_string_5)))   ### All 1179
% 37.36/37.54  1181. (rfamily_name T_53 T_54) (-. (rfamily_name T_53 T_54))   ### Axiom
% 37.36/37.54  1182. (cSphenodontidae T_53) (-. (cSphenodontidae T_53))   ### Axiom
% 37.36/37.54  1183. (-. (rfamily_name T_53 (xsd_string_10))) (rfamily_name T_53 (xsd_string_10))   ### Axiom
% 37.36/37.54  1184. ((cSphenodontidae T_53) => (rfamily_name T_53 (xsd_string_10))) (-. (rfamily_name T_53 (xsd_string_10))) (cSphenodontidae T_53)   ### Imply 1182 1183
% 37.36/37.54  1185. (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_53) (-. (rfamily_name T_53 (xsd_string_10)))   ### All 1184
% 37.36/37.54  1186. (rfamily_name T_53 T_54) (-. (rfamily_name T_53 T_54))   ### Axiom
% 37.36/37.54  1187. (T_54 != (xsd_string_10)) ((xsd_string_10) = T_54)   ### Sym(=)
% 37.36/37.54  1188. (((rfamily_name T_53 (xsd_string_10)) /\ (rfamily_name T_53 T_54)) => ((xsd_string_10) = T_54)) (T_54 != (xsd_string_10)) (rfamily_name T_53 T_54) (cSphenodontidae T_53) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### DisjTree 1185 1186 1187
% 37.36/37.54  1189. (All Y1, (((rfamily_name T_53 (xsd_string_10)) /\ (rfamily_name T_53 Y1)) => ((xsd_string_10) = Y1))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_53) (rfamily_name T_53 T_54) (T_54 != (xsd_string_10))   ### All 1188
% 37.36/37.54  1190. ((xsd_string_5) != (xsd_string_10)) ((xsd_string_5) = T_54) (rfamily_name T_53 T_54) (cSphenodontidae T_53) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All Y1, (((rfamily_name T_53 (xsd_string_10)) /\ (rfamily_name T_53 Y1)) => ((xsd_string_10) = Y1)))   ### TransEq 658 658 1189
% 37.36/37.56  1191. (((rfamily_name T_53 (xsd_string_5)) /\ (rfamily_name T_53 T_54)) => ((xsd_string_5) = T_54)) (All Y1, (((rfamily_name T_53 (xsd_string_10)) /\ (rfamily_name T_53 Y1)) => ((xsd_string_10) = Y1))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_53) ((xsd_string_5) != (xsd_string_10)) (rfamily_name T_53 T_54) (cCrocodylidae T_53) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### DisjTree 1180 1181 1190
% 37.36/37.56  1192. (All Y1, (((rfamily_name T_53 (xsd_string_5)) /\ (rfamily_name T_53 Y1)) => ((xsd_string_5) = Y1))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_53) (rfamily_name T_53 T_54) ((xsd_string_5) != (xsd_string_10)) (cSphenodontidae T_53) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All Y1, (((rfamily_name T_53 (xsd_string_10)) /\ (rfamily_name T_53 Y1)) => ((xsd_string_10) = Y1)))   ### All 1191
% 37.36/37.56  1193. (All Y0, (All Y1, (((rfamily_name T_53 Y0) /\ (rfamily_name T_53 Y1)) => (Y0 = Y1)))) (All Y1, (((rfamily_name T_53 (xsd_string_10)) /\ (rfamily_name T_53 Y1)) => ((xsd_string_10) = Y1))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_53) ((xsd_string_5) != (xsd_string_10)) (rfamily_name T_53 T_54) (cCrocodylidae T_53) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### All 1192
% 37.36/37.56  1194. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_53) (rfamily_name T_53 T_54) ((xsd_string_5) != (xsd_string_10)) (cSphenodontidae T_53) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All Y0, (All Y1, (((rfamily_name T_53 Y0) /\ (rfamily_name T_53 Y1)) => (Y0 = Y1))))   ### All 1193
% 37.36/37.56  1195. (Ex Y0, (rfamily_name T_53 Y0)) (All Y0, (All Y1, (((rfamily_name T_53 Y0) /\ (rfamily_name T_53 Y1)) => (Y0 = Y1)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_53) ((xsd_string_5) != (xsd_string_10)) (cCrocodylidae T_53) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### Exists 1194
% 37.36/37.56  1196. ((Ex Y0, (rfamily_name T_53 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_53 Y0) /\ (rfamily_name T_53 Y1)) => (Y0 = Y1))))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_53) ((xsd_string_5) != (xsd_string_10)) (cSphenodontidae T_53) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### And 1195
% 37.36/37.56  1197. ((cReptile T_53) => ((Ex Y0, (rfamily_name T_53 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_53 Y0) /\ (rfamily_name T_53 Y1)) => (Y0 = Y1)))))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) ((xsd_string_5) != (xsd_string_10)) (cCrocodylidae T_53) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cSphenodontidae T_53) (All X, ((cSphenodontidae X) => (cReptile X)))   ### Imply 1176 1196
% 37.36/37.56  1198. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_53) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_53) ((xsd_string_5) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### All 1197
% 37.36/37.56  1199. ((cSphenodontidae T_53) /\ (cCrocodylidae T_53)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) ((xsd_string_5) != (xsd_string_10)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1198
% 37.36/37.56  1200. (-. (-. ((cSphenodontidae T_53) /\ (cCrocodylidae T_53)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) ((xsd_string_5) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### NotNot 1199
% 37.36/37.56  1201. (-. (All X, (-. ((cSphenodontidae X) /\ (cCrocodylidae X))))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) ((xsd_string_5) != (xsd_string_10)) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1200
% 37.36/37.56  1202. (cXantusiidae T_55) (-. (cXantusiidae T_55))   ### Axiom
% 37.36/37.56  1203. (-. (cReptile T_55)) (cReptile T_55)   ### Axiom
% 37.36/37.56  1204. ((cXantusiidae T_55) => (cReptile T_55)) (-. (cReptile T_55)) (cXantusiidae T_55)   ### Imply 1202 1203
% 37.36/37.56  1205. (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_55) (-. (cReptile T_55))   ### All 1204
% 37.36/37.56  1206. (cXantusiidae T_55) (-. (cXantusiidae T_55))   ### Axiom
% 37.36/37.56  1207. (-. (rfamily_name T_55 (xsd_string_11))) (rfamily_name T_55 (xsd_string_11))   ### Axiom
% 37.36/37.56  1208. ((cXantusiidae T_55) => (rfamily_name T_55 (xsd_string_11))) (-. (rfamily_name T_55 (xsd_string_11))) (cXantusiidae T_55)   ### Imply 1206 1207
% 37.36/37.56  1209. (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_55) (-. (rfamily_name T_55 (xsd_string_11)))   ### All 1208
% 37.36/37.56  1210. (cAmphisbaenidae T_55) (-. (cAmphisbaenidae T_55))   ### Axiom
% 37.36/37.56  1211. (-. (rfamily_name T_55 (xsd_string_1))) (rfamily_name T_55 (xsd_string_1))   ### Axiom
% 37.36/37.56  1212. ((cAmphisbaenidae T_55) => (rfamily_name T_55 (xsd_string_1))) (-. (rfamily_name T_55 (xsd_string_1))) (cAmphisbaenidae T_55)   ### Imply 1210 1211
% 37.36/37.56  1213. (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_55) (-. (rfamily_name T_55 (xsd_string_1)))   ### All 1212
% 37.36/37.56  1214. ((xsd_string_1) != (xsd_string_11)) ((xsd_string_11) = (xsd_string_1))   ### Sym(=)
% 37.36/37.56  1215. (((rfamily_name T_55 (xsd_string_11)) /\ (rfamily_name T_55 (xsd_string_1))) => ((xsd_string_11) = (xsd_string_1))) ((xsd_string_1) != (xsd_string_11)) (cAmphisbaenidae T_55) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cXantusiidae T_55) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### DisjTree 1209 1213 1214
% 37.36/37.56  1216. (All Y1, (((rfamily_name T_55 (xsd_string_11)) /\ (rfamily_name T_55 Y1)) => ((xsd_string_11) = Y1))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_55) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_55) ((xsd_string_1) != (xsd_string_11))   ### All 1215
% 37.36/37.56  1217. (All Y0, (All Y1, (((rfamily_name T_55 Y0) /\ (rfamily_name T_55 Y1)) => (Y0 = Y1)))) ((xsd_string_1) != (xsd_string_11)) (cAmphisbaenidae T_55) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cXantusiidae T_55) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### All 1216
% 37.36/37.56  1218. ((Ex Y0, (rfamily_name T_55 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_55 Y0) /\ (rfamily_name T_55 Y1)) => (Y0 = Y1))))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_55) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_55) ((xsd_string_1) != (xsd_string_11))   ### And 1217
% 37.36/37.56  1219. ((cReptile T_55) => ((Ex Y0, (rfamily_name T_55 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_55 Y0) /\ (rfamily_name T_55 Y1)) => (Y0 = Y1)))))) ((xsd_string_1) != (xsd_string_11)) (cAmphisbaenidae T_55) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_55) (All X, ((cXantusiidae X) => (cReptile X)))   ### Imply 1205 1218
% 37.36/37.56  1220. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_55) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_55) ((xsd_string_1) != (xsd_string_11))   ### All 1219
% 37.36/37.56  1221. ((cXantusiidae T_55) /\ (cAmphisbaenidae T_55)) ((xsd_string_1) != (xsd_string_11)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1220
% 37.36/37.57  1222. (-. (-. ((cXantusiidae T_55) /\ (cAmphisbaenidae T_55)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) ((xsd_string_1) != (xsd_string_11))   ### NotNot 1221
% 37.36/37.57  1223. (-. (All X, (-. ((cXantusiidae X) /\ (cAmphisbaenidae X))))) ((xsd_string_1) != (xsd_string_11)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1222
% 37.36/37.57  1224. (cGekkonidae T_56) (-. (cGekkonidae T_56))   ### Axiom
% 37.36/37.57  1225. (-. (rfamily_name T_56 (xsd_string_7))) (rfamily_name T_56 (xsd_string_7))   ### Axiom
% 37.36/37.57  1226. ((cGekkonidae T_56) => (rfamily_name T_56 (xsd_string_7))) (-. (rfamily_name T_56 (xsd_string_7))) (cGekkonidae T_56)   ### Imply 1224 1225
% 37.36/37.57  1227. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_56) (-. (rfamily_name T_56 (xsd_string_7)))   ### All 1226
% 37.36/37.57  1228. (cEmydidae T_56) (-. (cEmydidae T_56))   ### Axiom
% 37.36/37.57  1229. (-. (cReptile T_56)) (cReptile T_56)   ### Axiom
% 37.36/37.57  1230. ((cEmydidae T_56) => (cReptile T_56)) (-. (cReptile T_56)) (cEmydidae T_56)   ### Imply 1228 1229
% 37.36/37.57  1231. (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_56) (-. (cReptile T_56))   ### All 1230
% 37.36/37.57  1232. (cEmydidae T_56) (-. (cEmydidae T_56))   ### Axiom
% 37.36/37.57  1233. (-. (rfamily_name T_56 (xsd_string_6))) (rfamily_name T_56 (xsd_string_6))   ### Axiom
% 37.36/37.57  1234. ((cEmydidae T_56) => (rfamily_name T_56 (xsd_string_6))) (-. (rfamily_name T_56 (xsd_string_6))) (cEmydidae T_56)   ### Imply 1232 1233
% 37.36/37.57  1235. (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_56) (-. (rfamily_name T_56 (xsd_string_6)))   ### All 1234
% 37.36/37.57  1236. (rfamily_name T_56 (xsd_string_6)) (-. (rfamily_name T_56 (xsd_string_6)))   ### Axiom
% 37.36/37.57  1237. (rfamily_name T_56 (xsd_string_7)) (-. (rfamily_name T_56 (xsd_string_7)))   ### Axiom
% 37.36/37.57  1238. ((xsd_string_6) != (xsd_string_7)) ((xsd_string_6) = (xsd_string_7))   ### Axiom
% 37.36/37.57  1239. (((rfamily_name T_56 (xsd_string_6)) /\ (rfamily_name T_56 (xsd_string_7))) => ((xsd_string_6) = (xsd_string_7))) ((xsd_string_6) != (xsd_string_7)) (rfamily_name T_56 (xsd_string_7)) (rfamily_name T_56 (xsd_string_6))   ### DisjTree 1236 1237 1238
% 37.36/37.57  1240. (All Y1, (((rfamily_name T_56 (xsd_string_6)) /\ (rfamily_name T_56 Y1)) => ((xsd_string_6) = Y1))) (rfamily_name T_56 (xsd_string_6)) (rfamily_name T_56 (xsd_string_7)) ((xsd_string_6) != (xsd_string_7))   ### All 1239
% 37.36/37.57  1241. (All Y0, (All Y1, (((rfamily_name T_56 Y0) /\ (rfamily_name T_56 Y1)) => (Y0 = Y1)))) ((xsd_string_6) != (xsd_string_7)) (rfamily_name T_56 (xsd_string_7)) (rfamily_name T_56 (xsd_string_6))   ### All 1240
% 37.36/37.57  1242. ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name T_56 (xsd_string_6))) => (rfamily_name T_56 (xsd_string_6))) (rfamily_name T_56 (xsd_string_7)) ((xsd_string_6) != (xsd_string_7)) (All Y0, (All Y1, (((rfamily_name T_56 Y0) /\ (rfamily_name T_56 Y1)) => (Y0 = Y1)))) (cEmydidae T_56) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### DisjTree 301 1235 1241
% 37.36/37.57  1243. (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_56) (All Y0, (All Y1, (((rfamily_name T_56 Y0) /\ (rfamily_name T_56 Y1)) => (Y0 = Y1)))) ((xsd_string_6) != (xsd_string_7)) (rfamily_name T_56 (xsd_string_7))   ### All 1242
% 37.36/37.57  1244. ((Ex Y0, (rfamily_name T_56 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_56 Y0) /\ (rfamily_name T_56 Y1)) => (Y0 = Y1))))) (rfamily_name T_56 (xsd_string_7)) ((xsd_string_6) != (xsd_string_7)) (cEmydidae T_56) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6))))   ### And 1243
% 37.36/37.57  1245. ((cReptile T_56) => ((Ex Y0, (rfamily_name T_56 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_56 Y0) /\ (rfamily_name T_56 Y1)) => (Y0 = Y1)))))) (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) ((xsd_string_6) != (xsd_string_7)) (rfamily_name T_56 (xsd_string_7)) (cEmydidae T_56) (All X, ((cEmydidae X) => (cReptile X)))   ### Imply 1231 1244
% 37.36/37.57  1246. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_56) (rfamily_name T_56 (xsd_string_7)) ((xsd_string_6) != (xsd_string_7)) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6))))   ### All 1245
% 37.36/37.57  1247. ((((xsd_string_7) = (xsd_string_7)) /\ (rfamily_name T_56 (xsd_string_7))) => (rfamily_name T_56 (xsd_string_7))) (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) ((xsd_string_6) != (xsd_string_7)) (cEmydidae T_56) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cGekkonidae T_56) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### DisjTree 1049 1227 1246
% 37.36/37.57  1248. (All C, ((((xsd_string_7) = (xsd_string_7)) /\ (rfamily_name C (xsd_string_7))) => (rfamily_name C (xsd_string_7)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_56) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_56) ((xsd_string_6) != (xsd_string_7)) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6))))   ### All 1247
% 37.36/37.57  1249. (All B, (All C, ((((xsd_string_6) = B) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C B)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) ((xsd_string_6) != (xsd_string_7)) (cEmydidae T_56) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cGekkonidae T_56) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All C, ((((xsd_string_7) = (xsd_string_7)) /\ (rfamily_name C (xsd_string_7))) => (rfamily_name C (xsd_string_7))))   ### All 1248
% 37.36/37.57  1250. (All B, (All C, ((((xsd_string_7) = B) /\ (rfamily_name C (xsd_string_7))) => (rfamily_name C B)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_56) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_56) ((xsd_string_6) != (xsd_string_7)) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All B, (All C, ((((xsd_string_6) = B) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C B))))   ### All 1249
% 37.36/37.57  1251. (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) ((xsd_string_6) != (xsd_string_7)) (cEmydidae T_56) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cGekkonidae T_56) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All B, (All C, ((((xsd_string_7) = B) /\ (rfamily_name C (xsd_string_7))) => (rfamily_name C B))))   ### All 1250
% 37.36/37.58  1252. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_56) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) (cEmydidae T_56) ((xsd_string_6) != (xsd_string_7)) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### All 1251
% 37.36/37.58  1253. ((cGekkonidae T_56) /\ (cEmydidae T_56)) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) ((xsd_string_6) != (xsd_string_7)) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### And 1252
% 37.36/37.58  1254. (-. (-. ((cGekkonidae T_56) /\ (cEmydidae T_56)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (cReptile X))) ((xsd_string_6) != (xsd_string_7)) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### NotNot 1253
% 37.36/37.58  1255. (-. (All X, (-. ((cGekkonidae X) /\ (cEmydidae X))))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) ((xsd_string_6) != (xsd_string_7)) (All X, ((cEmydidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### NotAllEx 1254
% 37.36/37.58  1256. (cLoxocemidae T_57) (-. (cLoxocemidae T_57))   ### Axiom
% 37.36/37.58  1257. (-. (cReptile T_57)) (cReptile T_57)   ### Axiom
% 37.36/37.58  1258. ((cLoxocemidae T_57) => (cReptile T_57)) (-. (cReptile T_57)) (cLoxocemidae T_57)   ### Imply 1256 1257
% 37.36/37.58  1259. (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_57) (-. (cReptile T_57))   ### All 1258
% 37.36/37.58  1260. (cSphenodontidae T_57) (-. (cSphenodontidae T_57))   ### Axiom
% 37.36/37.58  1261. (-. (rfamily_name T_57 (xsd_string_10))) (rfamily_name T_57 (xsd_string_10))   ### Axiom
% 37.36/37.58  1262. ((cSphenodontidae T_57) => (rfamily_name T_57 (xsd_string_10))) (-. (rfamily_name T_57 (xsd_string_10))) (cSphenodontidae T_57)   ### Imply 1260 1261
% 37.36/37.58  1263. (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_57) (-. (rfamily_name T_57 (xsd_string_10)))   ### All 1262
% 37.36/37.58  1264. (cLoxocemidae T_57) (-. (cLoxocemidae T_57))   ### Axiom
% 37.36/37.58  1265. (-. (rfamily_name T_57 (xsd_string_9))) (rfamily_name T_57 (xsd_string_9))   ### Axiom
% 37.36/37.58  1266. ((cLoxocemidae T_57) => (rfamily_name T_57 (xsd_string_9))) (-. (rfamily_name T_57 (xsd_string_9))) (cLoxocemidae T_57)   ### Imply 1264 1265
% 37.36/37.58  1267. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_57) (-. (rfamily_name T_57 (xsd_string_9)))   ### All 1266
% 37.36/37.58  1268. ((xsd_string_9) != (xsd_string_10)) ((xsd_string_10) = (xsd_string_9))   ### Sym(=)
% 37.36/37.58  1269. (((rfamily_name T_57 (xsd_string_10)) /\ (rfamily_name T_57 (xsd_string_9))) => ((xsd_string_10) = (xsd_string_9))) ((xsd_string_9) != (xsd_string_10)) (cLoxocemidae T_57) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cSphenodontidae T_57) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### DisjTree 1263 1267 1268
% 37.36/37.58  1270. (All Y1, (((rfamily_name T_57 (xsd_string_10)) /\ (rfamily_name T_57 Y1)) => ((xsd_string_10) = Y1))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_57) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_57) ((xsd_string_9) != (xsd_string_10))   ### All 1269
% 37.36/37.58  1271. (All Y0, (All Y1, (((rfamily_name T_57 Y0) /\ (rfamily_name T_57 Y1)) => (Y0 = Y1)))) ((xsd_string_9) != (xsd_string_10)) (cLoxocemidae T_57) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cSphenodontidae T_57) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### All 1270
% 37.36/37.58  1272. ((Ex Y0, (rfamily_name T_57 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_57 Y0) /\ (rfamily_name T_57 Y1)) => (Y0 = Y1))))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_57) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_57) ((xsd_string_9) != (xsd_string_10))   ### And 1271
% 37.36/37.58  1273. ((cReptile T_57) => ((Ex Y0, (rfamily_name T_57 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_57 Y0) /\ (rfamily_name T_57 Y1)) => (Y0 = Y1)))))) ((xsd_string_9) != (xsd_string_10)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cSphenodontidae T_57) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cLoxocemidae T_57) (All X, ((cLoxocemidae X) => (cReptile X)))   ### Imply 1259 1272
% 37.36/37.58  1274. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_57) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_57) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) ((xsd_string_9) != (xsd_string_10))   ### All 1273
% 37.36/37.58  1275. ((cSphenodontidae T_57) /\ (cLoxocemidae T_57)) ((xsd_string_9) != (xsd_string_10)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1274
% 37.36/37.58  1276. (-. (-. ((cSphenodontidae T_57) /\ (cLoxocemidae T_57)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) ((xsd_string_9) != (xsd_string_10))   ### NotNot 1275
% 37.36/37.58  1277. (-. (All X, (-. ((cSphenodontidae X) /\ (cLoxocemidae X))))) ((xsd_string_9) != (xsd_string_10)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1276
% 37.36/37.58  1278. (cEmydidae T_58) (-. (cEmydidae T_58))   ### Axiom
% 37.36/37.58  1279. (-. (rfamily_name T_58 (xsd_string_6))) (rfamily_name T_58 (xsd_string_6))   ### Axiom
% 37.36/37.58  1280. ((cEmydidae T_58) => (rfamily_name T_58 (xsd_string_6))) (-. (rfamily_name T_58 (xsd_string_6))) (cEmydidae T_58)   ### Imply 1278 1279
% 37.36/37.58  1281. (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_58) (-. (rfamily_name T_58 (xsd_string_6)))   ### All 1280
% 37.36/37.58  1282. (cLeptotyphlopidae T_58) (-. (cLeptotyphlopidae T_58))   ### Axiom
% 37.36/37.58  1283. (-. (cReptile T_58)) (cReptile T_58)   ### Axiom
% 37.36/37.58  1284. ((cLeptotyphlopidae T_58) => (cReptile T_58)) (-. (cReptile T_58)) (cLeptotyphlopidae T_58)   ### Imply 1282 1283
% 37.36/37.58  1285. (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_58) (-. (cReptile T_58))   ### All 1284
% 37.36/37.58  1286. (cLeptotyphlopidae T_58) (-. (cLeptotyphlopidae T_58))   ### Axiom
% 37.36/37.58  1287. (-. (rfamily_name T_58 (xsd_string_8))) (rfamily_name T_58 (xsd_string_8))   ### Axiom
% 37.36/37.58  1288. ((cLeptotyphlopidae T_58) => (rfamily_name T_58 (xsd_string_8))) (-. (rfamily_name T_58 (xsd_string_8))) (cLeptotyphlopidae T_58)   ### Imply 1286 1287
% 37.36/37.58  1289. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_58) (-. (rfamily_name T_58 (xsd_string_8)))   ### All 1288
% 37.36/37.58  1290. (rfamily_name T_58 T_59) (-. (rfamily_name T_58 T_59))   ### Axiom
% 37.36/37.58  1291. (rfamily_name T_58 (xsd_string_6)) (-. (rfamily_name T_58 (xsd_string_6)))   ### Axiom
% 37.36/37.58  1292. (rfamily_name T_58 T_59) (-. (rfamily_name T_58 T_59))   ### Axiom
% 37.36/37.58  1293. (T_59 != (xsd_string_6)) ((xsd_string_6) = T_59)   ### Sym(=)
% 37.36/37.58  1294. (((rfamily_name T_58 (xsd_string_6)) /\ (rfamily_name T_58 T_59)) => ((xsd_string_6) = T_59)) (T_59 != (xsd_string_6)) (rfamily_name T_58 T_59) (rfamily_name T_58 (xsd_string_6))   ### DisjTree 1291 1292 1293
% 37.36/37.58  1295. (All Y1, (((rfamily_name T_58 (xsd_string_6)) /\ (rfamily_name T_58 Y1)) => ((xsd_string_6) = Y1))) (rfamily_name T_58 (xsd_string_6)) (rfamily_name T_58 T_59) (T_59 != (xsd_string_6))   ### All 1294
% 37.36/37.58  1296. ((xsd_string_6) != (xsd_string_8)) ((xsd_string_8) = T_59) (rfamily_name T_58 T_59) (rfamily_name T_58 (xsd_string_6)) (All Y1, (((rfamily_name T_58 (xsd_string_6)) /\ (rfamily_name T_58 Y1)) => ((xsd_string_6) = Y1)))   ### TransEq-sym 365 365 1295
% 37.36/37.58  1297. (((rfamily_name T_58 (xsd_string_8)) /\ (rfamily_name T_58 T_59)) => ((xsd_string_8) = T_59)) (All Y1, (((rfamily_name T_58 (xsd_string_6)) /\ (rfamily_name T_58 Y1)) => ((xsd_string_6) = Y1))) (rfamily_name T_58 (xsd_string_6)) ((xsd_string_6) != (xsd_string_8)) (rfamily_name T_58 T_59) (cLeptotyphlopidae T_58) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### DisjTree 1289 1290 1296
% 37.36/37.58  1298. (All Y1, (((rfamily_name T_58 (xsd_string_8)) /\ (rfamily_name T_58 Y1)) => ((xsd_string_8) = Y1))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_58) (rfamily_name T_58 T_59) ((xsd_string_6) != (xsd_string_8)) (rfamily_name T_58 (xsd_string_6)) (All Y1, (((rfamily_name T_58 (xsd_string_6)) /\ (rfamily_name T_58 Y1)) => ((xsd_string_6) = Y1)))   ### All 1297
% 37.36/37.58  1299. (All Y0, (All Y1, (((rfamily_name T_58 Y0) /\ (rfamily_name T_58 Y1)) => (Y0 = Y1)))) (rfamily_name T_58 (xsd_string_6)) ((xsd_string_6) != (xsd_string_8)) (rfamily_name T_58 T_59) (cLeptotyphlopidae T_58) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All Y1, (((rfamily_name T_58 (xsd_string_8)) /\ (rfamily_name T_58 Y1)) => ((xsd_string_8) = Y1)))   ### All 1298
% 37.36/37.58  1300. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_58) (rfamily_name T_58 T_59) ((xsd_string_6) != (xsd_string_8)) (rfamily_name T_58 (xsd_string_6)) (All Y0, (All Y1, (((rfamily_name T_58 Y0) /\ (rfamily_name T_58 Y1)) => (Y0 = Y1))))   ### All 1299
% 37.36/37.58  1301. (Ex Y0, (rfamily_name T_58 Y0)) (All Y0, (All Y1, (((rfamily_name T_58 Y0) /\ (rfamily_name T_58 Y1)) => (Y0 = Y1)))) (rfamily_name T_58 (xsd_string_6)) ((xsd_string_6) != (xsd_string_8)) (cLeptotyphlopidae T_58) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### Exists 1300
% 37.36/37.58  1302. ((Ex Y0, (rfamily_name T_58 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_58 Y0) /\ (rfamily_name T_58 Y1)) => (Y0 = Y1))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_58) ((xsd_string_6) != (xsd_string_8)) (rfamily_name T_58 (xsd_string_6))   ### And 1301
% 37.36/37.58  1303. ((cReptile T_58) => ((Ex Y0, (rfamily_name T_58 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_58 Y0) /\ (rfamily_name T_58 Y1)) => (Y0 = Y1)))))) (rfamily_name T_58 (xsd_string_6)) ((xsd_string_6) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_58) (All X, ((cLeptotyphlopidae X) => (cReptile X)))   ### Imply 1285 1302
% 37.36/37.58  1304. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_58) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) ((xsd_string_6) != (xsd_string_8)) (rfamily_name T_58 (xsd_string_6))   ### All 1303
% 37.36/37.58  1305. ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name T_58 (xsd_string_6))) => (rfamily_name T_58 (xsd_string_6))) ((xsd_string_6) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_58) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_58) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### DisjTree 301 1281 1304
% 37.36/37.58  1306. (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_58) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_58) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) ((xsd_string_6) != (xsd_string_8))   ### All 1305
% 37.36/37.58  1307. (All B, (All C, ((((xsd_string_6) = B) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C B)))) ((xsd_string_6) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_58) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_58) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### All 1306
% 37.36/37.58  1308. (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_58) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_58) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) ((xsd_string_6) != (xsd_string_8))   ### All 1307
% 37.36/37.58  1309. ((cLeptotyphlopidae T_58) /\ (cEmydidae T_58)) ((xsd_string_6) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### And 1308
% 37.36/37.58  1310. (-. (-. ((cLeptotyphlopidae T_58) /\ (cEmydidae T_58)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) ((xsd_string_6) != (xsd_string_8))   ### NotNot 1309
% 37.36/37.58  1311. (-. (All X, (-. ((cLeptotyphlopidae X) /\ (cEmydidae X))))) ((xsd_string_6) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### NotAllEx 1310
% 37.36/37.58  1312. (cAmphisbaenidae T_60) (-. (cAmphisbaenidae T_60))   ### Axiom
% 37.36/37.58  1313. (-. (cReptile T_60)) (cReptile T_60)   ### Axiom
% 37.36/37.58  1314. ((cAmphisbaenidae T_60) => (cReptile T_60)) (-. (cReptile T_60)) (cAmphisbaenidae T_60)   ### Imply 1312 1313
% 37.36/37.58  1315. (All X, ((cAmphisbaenidae X) => (cReptile X))) (cAmphisbaenidae T_60) (-. (cReptile T_60))   ### All 1314
% 37.36/37.58  1316. (rfamily_name T_60 T_61) (-. (rfamily_name T_60 T_61))   ### Axiom
% 37.45/37.62  1317. (cAmphisbaenidae T_60) (-. (cAmphisbaenidae T_60))   ### Axiom
% 37.45/37.62  1318. (-. (rfamily_name T_60 (xsd_string_1))) (rfamily_name T_60 (xsd_string_1))   ### Axiom
% 37.45/37.62  1319. ((cAmphisbaenidae T_60) => (rfamily_name T_60 (xsd_string_1))) (-. (rfamily_name T_60 (xsd_string_1))) (cAmphisbaenidae T_60)   ### Imply 1317 1318
% 37.45/37.62  1320. (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_60) (-. (rfamily_name T_60 (xsd_string_1)))   ### All 1319
% 37.45/37.62  1321. (rfamily_name T_60 T_61) (-. (rfamily_name T_60 T_61))   ### Axiom
% 37.45/37.62  1322. (cAnomalepidae T_60) (-. (cAnomalepidae T_60))   ### Axiom
% 37.45/37.62  1323. (-. (rfamily_name T_60 (xsd_string_2))) (rfamily_name T_60 (xsd_string_2))   ### Axiom
% 37.45/37.62  1324. ((cAnomalepidae T_60) => (rfamily_name T_60 (xsd_string_2))) (-. (rfamily_name T_60 (xsd_string_2))) (cAnomalepidae T_60)   ### Imply 1322 1323
% 37.45/37.62  1325. (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_60) (-. (rfamily_name T_60 (xsd_string_2)))   ### All 1324
% 37.45/37.62  1326. (T_61 = (xsd_string_2)) ((xsd_string_2) != T_61)   ### Sym(=)
% 37.45/37.62  1327. (T_61 = (xsd_string_2)) ((xsd_string_2) != T_61)   ### Sym(=)
% 37.45/37.62  1328. ((xsd_string_1) != (xsd_string_2)) (T_61 = (xsd_string_1)) (T_61 = (xsd_string_2))   ### TransEq-sym 1326 1327 1115
% 37.45/37.62  1329. (((rfamily_name T_60 T_61) /\ (rfamily_name T_60 (xsd_string_2))) => (T_61 = (xsd_string_2))) (T_61 = (xsd_string_1)) ((xsd_string_1) != (xsd_string_2)) (cAnomalepidae T_60) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (rfamily_name T_60 T_61)   ### DisjTree 1321 1325 1328
% 37.45/37.62  1330. (All Y1, (((rfamily_name T_60 T_61) /\ (rfamily_name T_60 Y1)) => (T_61 = Y1))) (rfamily_name T_60 T_61) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_60) ((xsd_string_1) != (xsd_string_2)) (T_61 = (xsd_string_1))   ### All 1329
% 37.45/37.62  1331. (((rfamily_name T_60 T_61) /\ (rfamily_name T_60 (xsd_string_1))) => (T_61 = (xsd_string_1))) ((xsd_string_1) != (xsd_string_2)) (cAnomalepidae T_60) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All Y1, (((rfamily_name T_60 T_61) /\ (rfamily_name T_60 Y1)) => (T_61 = Y1))) (cAmphisbaenidae T_60) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (rfamily_name T_60 T_61)   ### DisjTree 1316 1320 1330
% 37.45/37.62  1332. (rfamily_name T_60 T_61) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_60) (All Y1, (((rfamily_name T_60 T_61) /\ (rfamily_name T_60 Y1)) => (T_61 = Y1))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_60) ((xsd_string_1) != (xsd_string_2))   ### All 1331
% 37.45/37.62  1333. (All Y0, (All Y1, (((rfamily_name T_60 Y0) /\ (rfamily_name T_60 Y1)) => (Y0 = Y1)))) ((xsd_string_1) != (xsd_string_2)) (cAnomalepidae T_60) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAmphisbaenidae T_60) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (rfamily_name T_60 T_61)   ### All 1332
% 37.45/37.62  1334. (Ex Y0, (rfamily_name T_60 Y0)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_60) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_60) ((xsd_string_1) != (xsd_string_2)) (All Y0, (All Y1, (((rfamily_name T_60 Y0) /\ (rfamily_name T_60 Y1)) => (Y0 = Y1))))   ### Exists 1333
% 37.45/37.62  1335. ((Ex Y0, (rfamily_name T_60 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_60 Y0) /\ (rfamily_name T_60 Y1)) => (Y0 = Y1))))) ((xsd_string_1) != (xsd_string_2)) (cAnomalepidae T_60) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAmphisbaenidae T_60) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1))))   ### And 1334
% 37.45/37.62  1336. ((cReptile T_60) => ((Ex Y0, (rfamily_name T_60 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_60 Y0) /\ (rfamily_name T_60 Y1)) => (Y0 = Y1)))))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_60) ((xsd_string_1) != (xsd_string_2)) (cAmphisbaenidae T_60) (All X, ((cAmphisbaenidae X) => (cReptile X)))   ### Imply 1315 1335
% 37.45/37.62  1337. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAmphisbaenidae X) => (cReptile X))) (cAmphisbaenidae T_60) ((xsd_string_1) != (xsd_string_2)) (cAnomalepidae T_60) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1))))   ### All 1336
% 37.45/37.62  1338. ((cAmphisbaenidae T_60) /\ (cAnomalepidae T_60)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_1) != (xsd_string_2)) (All X, ((cAmphisbaenidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1337
% 37.45/37.62  1339. (-. (-. ((cAmphisbaenidae T_60) /\ (cAnomalepidae T_60)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAmphisbaenidae X) => (cReptile X))) ((xsd_string_1) != (xsd_string_2)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1))))   ### NotNot 1338
% 37.45/37.62  1340. (-. (All X, (-. ((cAmphisbaenidae X) /\ (cAnomalepidae X))))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_1) != (xsd_string_2)) (All X, ((cAmphisbaenidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1339
% 37.45/37.62  1341. (T_62 != T_62)   ### Refl(=)
% 37.45/37.62  1342. (cGekkonidae T_62) (-. (cGekkonidae T_62))   ### Axiom
% 37.45/37.62  1343. (-. (rfamily_name T_62 (xsd_string_7))) (rfamily_name T_62 (xsd_string_7))   ### Axiom
% 37.45/37.62  1344. ((cGekkonidae T_62) => (rfamily_name T_62 (xsd_string_7))) (-. (rfamily_name T_62 (xsd_string_7))) (cGekkonidae T_62)   ### Imply 1342 1343
% 37.45/37.62  1345. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_62) (-. (rfamily_name T_62 (xsd_string_7)))   ### All 1344
% 37.45/37.62  1346. (T_62 != T_62)   ### Refl(=)
% 37.45/37.62  1347. (cLoxocemidae T_62) (-. (cLoxocemidae T_62))   ### Axiom
% 37.45/37.62  1348. (-. (rfamily_name T_62 (xsd_string_9))) (rfamily_name T_62 (xsd_string_9))   ### Axiom
% 37.45/37.62  1349. ((cLoxocemidae T_62) => (rfamily_name T_62 (xsd_string_9))) (-. (rfamily_name T_62 (xsd_string_9))) (cLoxocemidae T_62)   ### Imply 1347 1348
% 37.45/37.62  1350. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_62) (-. (rfamily_name T_62 (xsd_string_9)))   ### All 1349
% 37.45/37.62  1351. (cLoxocemidae T_62) (-. (cLoxocemidae T_62))   ### Axiom
% 37.45/37.62  1352. (-. (cReptile T_62)) (cReptile T_62)   ### Axiom
% 37.45/37.62  1353. ((cLoxocemidae T_62) => (cReptile T_62)) (-. (cReptile T_62)) (cLoxocemidae T_62)   ### Imply 1351 1352
% 37.45/37.62  1354. (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_62) (-. (cReptile T_62))   ### All 1353
% 37.45/37.62  1355. (rfamily_name T_62 (xsd_string_9)) (-. (rfamily_name T_62 (xsd_string_9)))   ### Axiom
% 37.45/37.62  1356. (rfamily_name T_62 (xsd_string_7)) (-. (rfamily_name T_62 (xsd_string_7)))   ### Axiom
% 37.45/37.62  1357. ((xsd_string_7) != (xsd_string_9)) ((xsd_string_9) = (xsd_string_7))   ### Sym(=)
% 37.45/37.62  1358. (((rfamily_name T_62 (xsd_string_9)) /\ (rfamily_name T_62 (xsd_string_7))) => ((xsd_string_9) = (xsd_string_7))) ((xsd_string_7) != (xsd_string_9)) (rfamily_name T_62 (xsd_string_7)) (rfamily_name T_62 (xsd_string_9))   ### DisjTree 1355 1356 1357
% 37.45/37.62  1359. (All Y1, (((rfamily_name T_62 (xsd_string_9)) /\ (rfamily_name T_62 Y1)) => ((xsd_string_9) = Y1))) (rfamily_name T_62 (xsd_string_9)) (rfamily_name T_62 (xsd_string_7)) ((xsd_string_7) != (xsd_string_9))   ### All 1358
% 37.45/37.62  1360. (All Y0, (All Y1, (((rfamily_name T_62 Y0) /\ (rfamily_name T_62 Y1)) => (Y0 = Y1)))) ((xsd_string_7) != (xsd_string_9)) (rfamily_name T_62 (xsd_string_7)) (rfamily_name T_62 (xsd_string_9))   ### All 1359
% 37.45/37.62  1361. ((Ex Y0, (rfamily_name T_62 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_62 Y0) /\ (rfamily_name T_62 Y1)) => (Y0 = Y1))))) (rfamily_name T_62 (xsd_string_9)) (rfamily_name T_62 (xsd_string_7)) ((xsd_string_7) != (xsd_string_9))   ### And 1360
% 37.45/37.63  1362. ((cReptile T_62) => ((Ex Y0, (rfamily_name T_62 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_62 Y0) /\ (rfamily_name T_62 Y1)) => (Y0 = Y1)))))) ((xsd_string_7) != (xsd_string_9)) (rfamily_name T_62 (xsd_string_7)) (rfamily_name T_62 (xsd_string_9)) (cLoxocemidae T_62) (All X, ((cLoxocemidae X) => (cReptile X)))   ### Imply 1354 1361
% 37.45/37.63  1363. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_62) (rfamily_name T_62 (xsd_string_9)) (rfamily_name T_62 (xsd_string_7)) ((xsd_string_7) != (xsd_string_9))   ### All 1362
% 37.45/37.63  1364. (((T_62 = T_62) /\ (rfamily_name T_62 (xsd_string_9))) => (rfamily_name T_62 (xsd_string_9))) ((xsd_string_7) != (xsd_string_9)) (rfamily_name T_62 (xsd_string_7)) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLoxocemidae T_62) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### DisjTree 1346 1350 1363
% 37.45/37.63  1365. (All C, (((T_62 = T_62) /\ (rfamily_name T_62 C)) => (rfamily_name T_62 C))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_62) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (rfamily_name T_62 (xsd_string_7)) ((xsd_string_7) != (xsd_string_9))   ### All 1364
% 37.45/37.63  1366. (((T_62 = T_62) /\ (rfamily_name T_62 (xsd_string_7))) => (rfamily_name T_62 (xsd_string_7))) ((xsd_string_7) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLoxocemidae T_62) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All C, (((T_62 = T_62) /\ (rfamily_name T_62 C)) => (rfamily_name T_62 C))) (cGekkonidae T_62) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### DisjTree 1341 1345 1365
% 37.45/37.63  1367. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_62) (All C, (((T_62 = T_62) /\ (rfamily_name T_62 C)) => (rfamily_name T_62 C))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_62) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) ((xsd_string_7) != (xsd_string_9))   ### All 1366
% 37.45/37.63  1368. (All B, (All C, (((T_62 = B) /\ (rfamily_name T_62 C)) => (rfamily_name B C)))) ((xsd_string_7) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLoxocemidae T_62) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cGekkonidae T_62) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### All 1367
% 37.45/37.63  1369. (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_62) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_62) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) ((xsd_string_7) != (xsd_string_9))   ### All 1368
% 37.45/37.63  1370. ((cGekkonidae T_62) /\ (cLoxocemidae T_62)) ((xsd_string_7) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### And 1369
% 37.45/37.63  1371. (-. (-. ((cGekkonidae T_62) /\ (cLoxocemidae T_62)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) ((xsd_string_7) != (xsd_string_9))   ### NotNot 1370
% 37.45/37.63  1372. (-. (All X, (-. ((cGekkonidae X) /\ (cLoxocemidae X))))) ((xsd_string_7) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C)))))   ### NotAllEx 1371
% 37.45/37.63  1373. (cLoxocemidae T_63) (-. (cLoxocemidae T_63))   ### Axiom
% 37.45/37.63  1374. (cAnomalepidae T_63) (-. (cAnomalepidae T_63))   ### Axiom
% 37.45/37.63  1375. (cLoxocemidae T_63) (-. (cLoxocemidae T_63))   ### Axiom
% 37.45/37.63  1376. (-. (cReptile T_63)) (cReptile T_63)   ### Axiom
% 37.45/37.63  1377. ((cLoxocemidae T_63) => (cReptile T_63)) (-. (cReptile T_63)) (cLoxocemidae T_63)   ### Imply 1375 1376
% 37.45/37.63  1378. (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_63) (-. (cReptile T_63))   ### All 1377
% 37.45/37.63  1379. (rfamily_name T_63 (xsd_string_9)) (-. (rfamily_name T_63 (xsd_string_9)))   ### Axiom
% 37.45/37.63  1380. (rfamily_name T_63 (xsd_string_2)) (-. (rfamily_name T_63 (xsd_string_2)))   ### Axiom
% 37.45/37.63  1381. ((xsd_string_2) != (xsd_string_9)) ((xsd_string_9) = (xsd_string_2))   ### Sym(=)
% 37.45/37.63  1382. (((rfamily_name T_63 (xsd_string_9)) /\ (rfamily_name T_63 (xsd_string_2))) => ((xsd_string_9) = (xsd_string_2))) ((xsd_string_2) != (xsd_string_9)) (rfamily_name T_63 (xsd_string_2)) (rfamily_name T_63 (xsd_string_9))   ### DisjTree 1379 1380 1381
% 37.45/37.63  1383. (All Y1, (((rfamily_name T_63 (xsd_string_9)) /\ (rfamily_name T_63 Y1)) => ((xsd_string_9) = Y1))) (rfamily_name T_63 (xsd_string_9)) (rfamily_name T_63 (xsd_string_2)) ((xsd_string_2) != (xsd_string_9))   ### All 1382
% 37.45/37.63  1384. (All Y0, (All Y1, (((rfamily_name T_63 Y0) /\ (rfamily_name T_63 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_9)) (rfamily_name T_63 (xsd_string_2)) (rfamily_name T_63 (xsd_string_9))   ### All 1383
% 37.45/37.63  1385. ((Ex Y0, (rfamily_name T_63 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_63 Y0) /\ (rfamily_name T_63 Y1)) => (Y0 = Y1))))) (rfamily_name T_63 (xsd_string_9)) (rfamily_name T_63 (xsd_string_2)) ((xsd_string_2) != (xsd_string_9))   ### And 1384
% 37.45/37.63  1386. ((cReptile T_63) => ((Ex Y0, (rfamily_name T_63 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_63 Y0) /\ (rfamily_name T_63 Y1)) => (Y0 = Y1)))))) ((xsd_string_2) != (xsd_string_9)) (rfamily_name T_63 (xsd_string_2)) (rfamily_name T_63 (xsd_string_9)) (cLoxocemidae T_63) (All X, ((cLoxocemidae X) => (cReptile X)))   ### Imply 1378 1385
% 37.45/37.63  1387. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_63) (rfamily_name T_63 (xsd_string_9)) (rfamily_name T_63 (xsd_string_2)) ((xsd_string_2) != (xsd_string_9))   ### All 1386
% 37.45/37.63  1388. ((cAnomalepidae T_63) => (rfamily_name T_63 (xsd_string_2))) ((xsd_string_2) != (xsd_string_9)) (rfamily_name T_63 (xsd_string_9)) (cLoxocemidae T_63) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cAnomalepidae T_63)   ### Imply 1374 1387
% 37.45/37.63  1389. (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_63) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_63) (rfamily_name T_63 (xsd_string_9)) ((xsd_string_2) != (xsd_string_9))   ### All 1388
% 37.45/37.63  1390. ((cLoxocemidae T_63) => (rfamily_name T_63 (xsd_string_9))) ((xsd_string_2) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cAnomalepidae T_63) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cLoxocemidae T_63)   ### Imply 1373 1389
% 37.45/37.63  1391. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_63) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_63) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_9))   ### All 1390
% 37.45/37.63  1392. ((cAnomalepidae T_63) /\ (cLoxocemidae T_63)) ((xsd_string_2) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### And 1391
% 37.45/37.63  1393. (-. (-. ((cAnomalepidae T_63) /\ (cLoxocemidae T_63)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_9))   ### NotNot 1392
% 37.45/37.63  1394. (-. (All X, (-. ((cAnomalepidae X) /\ (cLoxocemidae X))))) ((xsd_string_2) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### NotAllEx 1393
% 37.45/37.63  1395. (cAnomalepidae T_64) (-. (cAnomalepidae T_64))   ### Axiom
% 37.45/37.63  1396. (cLeptotyphlopidae T_64) (-. (cLeptotyphlopidae T_64))   ### Axiom
% 37.45/37.63  1397. (-. (rfamily_name T_64 (xsd_string_8))) (rfamily_name T_64 (xsd_string_8))   ### Axiom
% 37.45/37.63  1398. ((cLeptotyphlopidae T_64) => (rfamily_name T_64 (xsd_string_8))) (-. (rfamily_name T_64 (xsd_string_8))) (cLeptotyphlopidae T_64)   ### Imply 1396 1397
% 37.45/37.63  1399. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_64) (-. (rfamily_name T_64 (xsd_string_8)))   ### All 1398
% 37.45/37.63  1400. (cLeptotyphlopidae T_64) (-. (cLeptotyphlopidae T_64))   ### Axiom
% 37.45/37.63  1401. (-. (cReptile T_64)) (cReptile T_64)   ### Axiom
% 37.45/37.63  1402. ((cLeptotyphlopidae T_64) => (cReptile T_64)) (-. (cReptile T_64)) (cLeptotyphlopidae T_64)   ### Imply 1400 1401
% 37.45/37.63  1403. (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_64) (-. (cReptile T_64))   ### All 1402
% 37.45/37.63  1404. (rfamily_name T_64 (xsd_string_2)) (-. (rfamily_name T_64 (xsd_string_2)))   ### Axiom
% 37.45/37.63  1405. (rfamily_name T_64 (xsd_string_8)) (-. (rfamily_name T_64 (xsd_string_8)))   ### Axiom
% 37.45/37.63  1406. ((xsd_string_2) != (xsd_string_8)) ((xsd_string_2) = (xsd_string_8))   ### Axiom
% 37.45/37.63  1407. (((rfamily_name T_64 (xsd_string_2)) /\ (rfamily_name T_64 (xsd_string_8))) => ((xsd_string_2) = (xsd_string_8))) ((xsd_string_2) != (xsd_string_8)) (rfamily_name T_64 (xsd_string_8)) (rfamily_name T_64 (xsd_string_2))   ### DisjTree 1404 1405 1406
% 37.45/37.63  1408. (All Y1, (((rfamily_name T_64 (xsd_string_2)) /\ (rfamily_name T_64 Y1)) => ((xsd_string_2) = Y1))) (rfamily_name T_64 (xsd_string_2)) (rfamily_name T_64 (xsd_string_8)) ((xsd_string_2) != (xsd_string_8))   ### All 1407
% 37.45/37.63  1409. (All Y0, (All Y1, (((rfamily_name T_64 Y0) /\ (rfamily_name T_64 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_8)) (rfamily_name T_64 (xsd_string_8)) (rfamily_name T_64 (xsd_string_2))   ### All 1408
% 37.45/37.64  1410. ((Ex Y0, (rfamily_name T_64 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_64 Y0) /\ (rfamily_name T_64 Y1)) => (Y0 = Y1))))) (rfamily_name T_64 (xsd_string_2)) (rfamily_name T_64 (xsd_string_8)) ((xsd_string_2) != (xsd_string_8))   ### And 1409
% 37.45/37.64  1411. ((cReptile T_64) => ((Ex Y0, (rfamily_name T_64 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_64 Y0) /\ (rfamily_name T_64 Y1)) => (Y0 = Y1)))))) ((xsd_string_2) != (xsd_string_8)) (rfamily_name T_64 (xsd_string_8)) (rfamily_name T_64 (xsd_string_2)) (cLeptotyphlopidae T_64) (All X, ((cLeptotyphlopidae X) => (cReptile X)))   ### Imply 1403 1410
% 37.45/37.64  1412. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_64) (rfamily_name T_64 (xsd_string_2)) (rfamily_name T_64 (xsd_string_8)) ((xsd_string_2) != (xsd_string_8))   ### All 1411
% 37.45/37.64  1413. ((((xsd_string_8) = (xsd_string_8)) /\ (rfamily_name T_64 (xsd_string_8))) => (rfamily_name T_64 (xsd_string_8))) ((xsd_string_2) != (xsd_string_8)) (rfamily_name T_64 (xsd_string_2)) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLeptotyphlopidae T_64) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### DisjTree 365 1399 1412
% 37.45/37.64  1414. (All C, ((((xsd_string_8) = (xsd_string_8)) /\ (rfamily_name C (xsd_string_8))) => (rfamily_name C (xsd_string_8)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_64) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (rfamily_name T_64 (xsd_string_2)) ((xsd_string_2) != (xsd_string_8))   ### All 1413
% 37.45/37.64  1415. ((cAnomalepidae T_64) => (rfamily_name T_64 (xsd_string_2))) ((xsd_string_2) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLeptotyphlopidae T_64) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All C, ((((xsd_string_8) = (xsd_string_8)) /\ (rfamily_name C (xsd_string_8))) => (rfamily_name C (xsd_string_8)))) (cAnomalepidae T_64)   ### Imply 1395 1414
% 37.45/37.64  1416. (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_64) (All C, ((((xsd_string_8) = (xsd_string_8)) /\ (rfamily_name C (xsd_string_8))) => (rfamily_name C (xsd_string_8)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_64) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_8))   ### All 1415
% 37.45/37.64  1417. (All B, (All C, ((((xsd_string_8) = B) /\ (rfamily_name C (xsd_string_8))) => (rfamily_name C B)))) ((xsd_string_2) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLeptotyphlopidae T_64) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cAnomalepidae T_64) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2))))   ### All 1416
% 37.45/37.64  1418. (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_64) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_64) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_8))   ### All 1417
% 37.45/37.64  1419. ((cLeptotyphlopidae T_64) /\ (cAnomalepidae T_64)) ((xsd_string_2) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### And 1418
% 37.45/37.64  1420. (-. (-. ((cLeptotyphlopidae T_64) /\ (cAnomalepidae T_64)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_8))   ### NotNot 1419
% 37.45/37.64  1421. (-. (All X, (-. ((cLeptotyphlopidae X) /\ (cAnomalepidae X))))) ((xsd_string_2) != (xsd_string_8)) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### NotAllEx 1420
% 37.45/37.64  1422. (cCrocodylidae T_65) (-. (cCrocodylidae T_65))   ### Axiom
% 37.45/37.64  1423. (-. (cReptile T_65)) (cReptile T_65)   ### Axiom
% 37.45/37.64  1424. ((cCrocodylidae T_65) => (cReptile T_65)) (-. (cReptile T_65)) (cCrocodylidae T_65)   ### Imply 1422 1423
% 37.45/37.64  1425. (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_65) (-. (cReptile T_65))   ### All 1424
% 37.45/37.64  1426. (cCrocodylidae T_65) (-. (cCrocodylidae T_65))   ### Axiom
% 37.45/37.64  1427. (-. (rfamily_name T_65 (xsd_string_5))) (rfamily_name T_65 (xsd_string_5))   ### Axiom
% 37.45/37.64  1428. ((cCrocodylidae T_65) => (rfamily_name T_65 (xsd_string_5))) (-. (rfamily_name T_65 (xsd_string_5))) (cCrocodylidae T_65)   ### Imply 1426 1427
% 37.45/37.64  1429. (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_65) (-. (rfamily_name T_65 (xsd_string_5)))   ### All 1428
% 37.45/37.64  1430. (cCordylidae T_65) (-. (cCordylidae T_65))   ### Axiom
% 37.45/37.64  1431. (-. (rfamily_name T_65 (xsd_string_4))) (rfamily_name T_65 (xsd_string_4))   ### Axiom
% 37.45/37.64  1432. ((cCordylidae T_65) => (rfamily_name T_65 (xsd_string_4))) (-. (rfamily_name T_65 (xsd_string_4))) (cCordylidae T_65)   ### Imply 1430 1431
% 37.45/37.64  1433. (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_65) (-. (rfamily_name T_65 (xsd_string_4)))   ### All 1432
% 37.45/37.64  1434. ((xsd_string_4) != (xsd_string_5)) ((xsd_string_5) = (xsd_string_4))   ### Sym(=)
% 37.45/37.64  1435. (((rfamily_name T_65 (xsd_string_5)) /\ (rfamily_name T_65 (xsd_string_4))) => ((xsd_string_5) = (xsd_string_4))) ((xsd_string_4) != (xsd_string_5)) (cCordylidae T_65) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCrocodylidae T_65) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### DisjTree 1429 1433 1434
% 37.45/37.64  1436. (All Y1, (((rfamily_name T_65 (xsd_string_5)) /\ (rfamily_name T_65 Y1)) => ((xsd_string_5) = Y1))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_65) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_65) ((xsd_string_4) != (xsd_string_5))   ### All 1435
% 37.45/37.64  1437. (All Y0, (All Y1, (((rfamily_name T_65 Y0) /\ (rfamily_name T_65 Y1)) => (Y0 = Y1)))) ((xsd_string_4) != (xsd_string_5)) (cCordylidae T_65) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCrocodylidae T_65) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5))))   ### All 1436
% 37.45/37.64  1438. ((Ex Y0, (rfamily_name T_65 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_65 Y0) /\ (rfamily_name T_65 Y1)) => (Y0 = Y1))))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_65) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_65) ((xsd_string_4) != (xsd_string_5))   ### And 1437
% 37.45/37.64  1439. ((cReptile T_65) => ((Ex Y0, (rfamily_name T_65 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_65 Y0) /\ (rfamily_name T_65 Y1)) => (Y0 = Y1)))))) ((xsd_string_4) != (xsd_string_5)) (cCordylidae T_65) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (cCrocodylidae T_65) (All X, ((cCrocodylidae X) => (cReptile X)))   ### Imply 1425 1438
% 37.45/37.64  1440. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (cCrocodylidae T_65) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_65) ((xsd_string_4) != (xsd_string_5))   ### All 1439
% 37.45/37.64  1441. ((cCordylidae T_65) /\ (cCrocodylidae T_65)) ((xsd_string_4) != (xsd_string_5)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1440
% 37.45/37.64  1442. (-. (-. ((cCordylidae T_65) /\ (cCrocodylidae T_65)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_4) != (xsd_string_5))   ### NotNot 1441
% 37.45/37.64  1443. (-. (All X, (-. ((cCordylidae X) /\ (cCrocodylidae X))))) ((xsd_string_4) != (xsd_string_5)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1442
% 37.45/37.64  1444. (cXantusiidae T_66) (-. (cXantusiidae T_66))   ### Axiom
% 37.45/37.64  1445. (-. (cReptile T_66)) (cReptile T_66)   ### Axiom
% 37.45/37.64  1446. ((cXantusiidae T_66) => (cReptile T_66)) (-. (cReptile T_66)) (cXantusiidae T_66)   ### Imply 1444 1445
% 37.45/37.64  1447. (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_66) (-. (cReptile T_66))   ### All 1446
% 37.45/37.64  1448. (cXantusiidae T_66) (-. (cXantusiidae T_66))   ### Axiom
% 37.45/37.64  1449. (-. (rfamily_name T_66 (xsd_string_11))) (rfamily_name T_66 (xsd_string_11))   ### Axiom
% 37.45/37.64  1450. ((cXantusiidae T_66) => (rfamily_name T_66 (xsd_string_11))) (-. (rfamily_name T_66 (xsd_string_11))) (cXantusiidae T_66)   ### Imply 1448 1449
% 37.45/37.64  1451. (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_66) (-. (rfamily_name T_66 (xsd_string_11)))   ### All 1450
% 37.45/37.64  1452. (cAnomalepidae T_66) (-. (cAnomalepidae T_66))   ### Axiom
% 37.45/37.64  1453. (-. (rfamily_name T_66 (xsd_string_2))) (rfamily_name T_66 (xsd_string_2))   ### Axiom
% 37.45/37.64  1454. ((cAnomalepidae T_66) => (rfamily_name T_66 (xsd_string_2))) (-. (rfamily_name T_66 (xsd_string_2))) (cAnomalepidae T_66)   ### Imply 1452 1453
% 37.45/37.64  1455. (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_66) (-. (rfamily_name T_66 (xsd_string_2)))   ### All 1454
% 37.45/37.64  1456. ((xsd_string_2) != (xsd_string_11)) ((xsd_string_11) = (xsd_string_2))   ### Sym(=)
% 37.45/37.64  1457. (((rfamily_name T_66 (xsd_string_11)) /\ (rfamily_name T_66 (xsd_string_2))) => ((xsd_string_11) = (xsd_string_2))) ((xsd_string_2) != (xsd_string_11)) (cAnomalepidae T_66) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cXantusiidae T_66) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### DisjTree 1451 1455 1456
% 37.45/37.64  1458. (All Y1, (((rfamily_name T_66 (xsd_string_11)) /\ (rfamily_name T_66 Y1)) => ((xsd_string_11) = Y1))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_66) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_66) ((xsd_string_2) != (xsd_string_11))   ### All 1457
% 37.45/37.64  1459. (All Y0, (All Y1, (((rfamily_name T_66 Y0) /\ (rfamily_name T_66 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_11)) (cAnomalepidae T_66) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cXantusiidae T_66) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### All 1458
% 37.45/37.64  1460. ((Ex Y0, (rfamily_name T_66 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_66 Y0) /\ (rfamily_name T_66 Y1)) => (Y0 = Y1))))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_66) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_66) ((xsd_string_2) != (xsd_string_11))   ### And 1459
% 37.45/37.64  1461. ((cReptile T_66) => ((Ex Y0, (rfamily_name T_66 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_66 Y0) /\ (rfamily_name T_66 Y1)) => (Y0 = Y1)))))) ((xsd_string_2) != (xsd_string_11)) (cAnomalepidae T_66) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_66) (All X, ((cXantusiidae X) => (cReptile X)))   ### Imply 1447 1460
% 37.45/37.64  1462. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_66) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_66) ((xsd_string_2) != (xsd_string_11))   ### All 1461
% 37.45/37.64  1463. ((cXantusiidae T_66) /\ (cAnomalepidae T_66)) ((xsd_string_2) != (xsd_string_11)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1462
% 37.45/37.64  1464. (-. (-. ((cXantusiidae T_66) /\ (cAnomalepidae T_66)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) ((xsd_string_2) != (xsd_string_11))   ### NotNot 1463
% 37.45/37.64  1465. (-. (All X, (-. ((cXantusiidae X) /\ (cAnomalepidae X))))) ((xsd_string_2) != (xsd_string_11)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1464
% 37.45/37.64  1466. (cSphenodontidae T_67) (-. (cSphenodontidae T_67))   ### Axiom
% 37.45/37.64  1467. (cAnomalepidae T_67) (-. (cAnomalepidae T_67))   ### Axiom
% 37.45/37.64  1468. (cSphenodontidae T_67) (-. (cSphenodontidae T_67))   ### Axiom
% 37.45/37.64  1469. (-. (cReptile T_67)) (cReptile T_67)   ### Axiom
% 37.45/37.64  1470. ((cSphenodontidae T_67) => (cReptile T_67)) (-. (cReptile T_67)) (cSphenodontidae T_67)   ### Imply 1468 1469
% 37.45/37.64  1471. (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_67) (-. (cReptile T_67))   ### All 1470
% 37.45/37.64  1472. (rfamily_name T_67 (xsd_string_10)) (-. (rfamily_name T_67 (xsd_string_10)))   ### Axiom
% 37.45/37.64  1473. (rfamily_name T_67 (xsd_string_2)) (-. (rfamily_name T_67 (xsd_string_2)))   ### Axiom
% 37.45/37.64  1474. ((xsd_string_2) != (xsd_string_10)) ((xsd_string_10) = (xsd_string_2))   ### Sym(=)
% 37.45/37.64  1475. (((rfamily_name T_67 (xsd_string_10)) /\ (rfamily_name T_67 (xsd_string_2))) => ((xsd_string_10) = (xsd_string_2))) ((xsd_string_2) != (xsd_string_10)) (rfamily_name T_67 (xsd_string_2)) (rfamily_name T_67 (xsd_string_10))   ### DisjTree 1472 1473 1474
% 37.45/37.64  1476. (All Y1, (((rfamily_name T_67 (xsd_string_10)) /\ (rfamily_name T_67 Y1)) => ((xsd_string_10) = Y1))) (rfamily_name T_67 (xsd_string_10)) (rfamily_name T_67 (xsd_string_2)) ((xsd_string_2) != (xsd_string_10))   ### All 1475
% 37.45/37.64  1477. (All Y0, (All Y1, (((rfamily_name T_67 Y0) /\ (rfamily_name T_67 Y1)) => (Y0 = Y1)))) ((xsd_string_2) != (xsd_string_10)) (rfamily_name T_67 (xsd_string_2)) (rfamily_name T_67 (xsd_string_10))   ### All 1476
% 37.45/37.64  1478. ((Ex Y0, (rfamily_name T_67 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_67 Y0) /\ (rfamily_name T_67 Y1)) => (Y0 = Y1))))) (rfamily_name T_67 (xsd_string_10)) (rfamily_name T_67 (xsd_string_2)) ((xsd_string_2) != (xsd_string_10))   ### And 1477
% 37.45/37.64  1479. ((cReptile T_67) => ((Ex Y0, (rfamily_name T_67 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_67 Y0) /\ (rfamily_name T_67 Y1)) => (Y0 = Y1)))))) ((xsd_string_2) != (xsd_string_10)) (rfamily_name T_67 (xsd_string_2)) (rfamily_name T_67 (xsd_string_10)) (cSphenodontidae T_67) (All X, ((cSphenodontidae X) => (cReptile X)))   ### Imply 1471 1478
% 37.45/37.64  1480. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_67) (rfamily_name T_67 (xsd_string_10)) (rfamily_name T_67 (xsd_string_2)) ((xsd_string_2) != (xsd_string_10))   ### All 1479
% 37.45/37.64  1481. ((cAnomalepidae T_67) => (rfamily_name T_67 (xsd_string_2))) ((xsd_string_2) != (xsd_string_10)) (rfamily_name T_67 (xsd_string_10)) (cSphenodontidae T_67) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cAnomalepidae T_67)   ### Imply 1467 1480
% 37.45/37.64  1482. (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_67) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) (cSphenodontidae T_67) (rfamily_name T_67 (xsd_string_10)) ((xsd_string_2) != (xsd_string_10))   ### All 1481
% 37.45/37.64  1483. ((cSphenodontidae T_67) => (rfamily_name T_67 (xsd_string_10))) ((xsd_string_2) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cAnomalepidae T_67) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cSphenodontidae T_67)   ### Imply 1466 1482
% 37.45/37.64  1484. (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_67) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (cAnomalepidae T_67) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_10))   ### All 1483
% 37.45/37.64  1485. ((cAnomalepidae T_67) /\ (cSphenodontidae T_67)) ((xsd_string_2) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### And 1484
% 37.45/37.64  1486. (-. (-. ((cAnomalepidae T_67) /\ (cSphenodontidae T_67)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cSphenodontidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_10))   ### NotNot 1485
% 37.45/37.64  1487. (-. (All X, (-. ((cAnomalepidae X) /\ (cSphenodontidae X))))) ((xsd_string_2) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10))))   ### NotAllEx 1486
% 37.52/37.68  1488. (cXantusiidae T_68) (-. (cXantusiidae T_68))   ### Axiom
% 37.52/37.68  1489. (-. (cReptile T_68)) (cReptile T_68)   ### Axiom
% 37.52/37.68  1490. ((cXantusiidae T_68) => (cReptile T_68)) (-. (cReptile T_68)) (cXantusiidae T_68)   ### Imply 1488 1489
% 37.52/37.68  1491. (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_68) (-. (cReptile T_68))   ### All 1490
% 37.52/37.68  1492. (cXantusiidae T_68) (-. (cXantusiidae T_68))   ### Axiom
% 37.52/37.68  1493. (-. (rfamily_name T_68 (xsd_string_11))) (rfamily_name T_68 (xsd_string_11))   ### Axiom
% 37.52/37.68  1494. ((cXantusiidae T_68) => (rfamily_name T_68 (xsd_string_11))) (-. (rfamily_name T_68 (xsd_string_11))) (cXantusiidae T_68)   ### Imply 1492 1493
% 37.52/37.68  1495. (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_68) (-. (rfamily_name T_68 (xsd_string_11)))   ### All 1494
% 37.52/37.68  1496. (cLeptotyphlopidae T_68) (-. (cLeptotyphlopidae T_68))   ### Axiom
% 37.52/37.68  1497. (-. (rfamily_name T_68 (xsd_string_8))) (rfamily_name T_68 (xsd_string_8))   ### Axiom
% 37.52/37.68  1498. ((cLeptotyphlopidae T_68) => (rfamily_name T_68 (xsd_string_8))) (-. (rfamily_name T_68 (xsd_string_8))) (cLeptotyphlopidae T_68)   ### Imply 1496 1497
% 37.52/37.68  1499. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_68) (-. (rfamily_name T_68 (xsd_string_8)))   ### All 1498
% 37.52/37.68  1500. ((xsd_string_8) != (xsd_string_11)) ((xsd_string_11) = (xsd_string_8))   ### Sym(=)
% 37.52/37.68  1501. (((rfamily_name T_68 (xsd_string_11)) /\ (rfamily_name T_68 (xsd_string_8))) => ((xsd_string_11) = (xsd_string_8))) ((xsd_string_8) != (xsd_string_11)) (cLeptotyphlopidae T_68) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cXantusiidae T_68) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### DisjTree 1495 1499 1500
% 37.52/37.68  1502. (All Y1, (((rfamily_name T_68 (xsd_string_11)) /\ (rfamily_name T_68 Y1)) => ((xsd_string_11) = Y1))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_68) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_68) ((xsd_string_8) != (xsd_string_11))   ### All 1501
% 37.52/37.68  1503. (All Y0, (All Y1, (((rfamily_name T_68 Y0) /\ (rfamily_name T_68 Y1)) => (Y0 = Y1)))) ((xsd_string_8) != (xsd_string_11)) (cLeptotyphlopidae T_68) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cXantusiidae T_68) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11))))   ### All 1502
% 37.52/37.68  1504. ((Ex Y0, (rfamily_name T_68 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_68 Y0) /\ (rfamily_name T_68 Y1)) => (Y0 = Y1))))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_68) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_68) ((xsd_string_8) != (xsd_string_11))   ### And 1503
% 37.52/37.68  1505. ((cReptile T_68) => ((Ex Y0, (rfamily_name T_68 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_68 Y0) /\ (rfamily_name T_68 Y1)) => (Y0 = Y1)))))) ((xsd_string_8) != (xsd_string_11)) (cLeptotyphlopidae T_68) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (cXantusiidae T_68) (All X, ((cXantusiidae X) => (cReptile X)))   ### Imply 1491 1504
% 37.52/37.68  1506. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (cXantusiidae T_68) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_68) ((xsd_string_8) != (xsd_string_11))   ### All 1505
% 37.52/37.68  1507. ((cLeptotyphlopidae T_68) /\ (cXantusiidae T_68)) ((xsd_string_8) != (xsd_string_11)) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1506
% 37.52/37.68  1508. (-. (-. ((cLeptotyphlopidae T_68) /\ (cXantusiidae T_68)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) ((xsd_string_8) != (xsd_string_11))   ### NotNot 1507
% 37.52/37.68  1509. (-. (All X, (-. ((cLeptotyphlopidae X) /\ (cXantusiidae X))))) ((xsd_string_8) != (xsd_string_11)) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1508
% 37.52/37.68  1510. (cGekkonidae T_69) (-. (cGekkonidae T_69))   ### Axiom
% 37.52/37.68  1511. (-. (cReptile T_69)) (cReptile T_69)   ### Axiom
% 37.52/37.68  1512. ((cGekkonidae T_69) => (cReptile T_69)) (-. (cReptile T_69)) (cGekkonidae T_69)   ### Imply 1510 1511
% 37.52/37.68  1513. (All X, ((cGekkonidae X) => (cReptile X))) (cGekkonidae T_69) (-. (cReptile T_69))   ### All 1512
% 37.52/37.68  1514. (cGekkonidae T_69) (-. (cGekkonidae T_69))   ### Axiom
% 37.52/37.68  1515. (-. (rfamily_name T_69 (xsd_string_7))) (rfamily_name T_69 (xsd_string_7))   ### Axiom
% 37.52/37.68  1516. ((cGekkonidae T_69) => (rfamily_name T_69 (xsd_string_7))) (-. (rfamily_name T_69 (xsd_string_7))) (cGekkonidae T_69)   ### Imply 1514 1515
% 37.52/37.68  1517. (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_69) (-. (rfamily_name T_69 (xsd_string_7)))   ### All 1516
% 37.52/37.68  1518. (cAgamidae T_69) (-. (cAgamidae T_69))   ### Axiom
% 37.52/37.68  1519. (-. (rfamily_name T_69 (xsd_string_0))) (rfamily_name T_69 (xsd_string_0))   ### Axiom
% 37.52/37.68  1520. ((cAgamidae T_69) => (rfamily_name T_69 (xsd_string_0))) (-. (rfamily_name T_69 (xsd_string_0))) (cAgamidae T_69)   ### Imply 1518 1519
% 37.52/37.68  1521. (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_69) (-. (rfamily_name T_69 (xsd_string_0)))   ### All 1520
% 37.52/37.68  1522. ((xsd_string_0) != (xsd_string_7)) ((xsd_string_7) = (xsd_string_0))   ### Sym(=)
% 37.52/37.68  1523. (((rfamily_name T_69 (xsd_string_7)) /\ (rfamily_name T_69 (xsd_string_0))) => ((xsd_string_7) = (xsd_string_0))) ((xsd_string_0) != (xsd_string_7)) (cAgamidae T_69) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cGekkonidae T_69) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### DisjTree 1517 1521 1522
% 37.52/37.68  1524. (All Y1, (((rfamily_name T_69 (xsd_string_7)) /\ (rfamily_name T_69 Y1)) => ((xsd_string_7) = Y1))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_69) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_69) ((xsd_string_0) != (xsd_string_7))   ### All 1523
% 37.52/37.68  1525. (All Y0, (All Y1, (((rfamily_name T_69 Y0) /\ (rfamily_name T_69 Y1)) => (Y0 = Y1)))) ((xsd_string_0) != (xsd_string_7)) (cAgamidae T_69) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cGekkonidae T_69) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7))))   ### All 1524
% 37.52/37.68  1526. ((Ex Y0, (rfamily_name T_69 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_69 Y0) /\ (rfamily_name T_69 Y1)) => (Y0 = Y1))))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_69) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_69) ((xsd_string_0) != (xsd_string_7))   ### And 1525
% 37.52/37.68  1527. ((cReptile T_69) => ((Ex Y0, (rfamily_name T_69 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_69 Y0) /\ (rfamily_name T_69 Y1)) => (Y0 = Y1)))))) ((xsd_string_0) != (xsd_string_7)) (cAgamidae T_69) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (cGekkonidae T_69) (All X, ((cGekkonidae X) => (cReptile X)))   ### Imply 1513 1526
% 37.52/37.68  1528. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) (cGekkonidae T_69) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_69) ((xsd_string_0) != (xsd_string_7))   ### All 1527
% 37.52/37.69  1529. ((cGekkonidae T_69) /\ (cAgamidae T_69)) ((xsd_string_0) != (xsd_string_7)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1528
% 37.52/37.69  1530. (-. (-. ((cGekkonidae T_69) /\ (cAgamidae T_69)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) ((xsd_string_0) != (xsd_string_7))   ### NotNot 1529
% 37.52/37.69  1531. (-. (All X, (-. ((cGekkonidae X) /\ (cAgamidae X))))) ((xsd_string_0) != (xsd_string_7)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cGekkonidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1530
% 37.52/37.69  1532. (cAgamidae T_70) (-. (cAgamidae T_70))   ### Axiom
% 37.52/37.69  1533. (-. (cReptile T_70)) (cReptile T_70)   ### Axiom
% 37.52/37.69  1534. ((cAgamidae T_70) => (cReptile T_70)) (-. (cReptile T_70)) (cAgamidae T_70)   ### Imply 1532 1533
% 37.52/37.69  1535. (All X, ((cAgamidae X) => (cReptile X))) (cAgamidae T_70) (-. (cReptile T_70))   ### All 1534
% 37.52/37.69  1536. (rfamily_name T_70 T_71) (-. (rfamily_name T_70 T_71))   ### Axiom
% 37.52/37.69  1537. (cCordylidae T_70) (-. (cCordylidae T_70))   ### Axiom
% 37.52/37.69  1538. (-. (rfamily_name T_70 (xsd_string_4))) (rfamily_name T_70 (xsd_string_4))   ### Axiom
% 37.52/37.69  1539. ((cCordylidae T_70) => (rfamily_name T_70 (xsd_string_4))) (-. (rfamily_name T_70 (xsd_string_4))) (cCordylidae T_70)   ### Imply 1537 1538
% 37.52/37.69  1540. (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_70) (-. (rfamily_name T_70 (xsd_string_4)))   ### All 1539
% 37.52/37.69  1541. (cAgamidae T_70) (-. (cAgamidae T_70))   ### Axiom
% 37.52/37.69  1542. (-. (rfamily_name T_70 (xsd_string_0))) (rfamily_name T_70 (xsd_string_0))   ### Axiom
% 37.52/37.69  1543. ((cAgamidae T_70) => (rfamily_name T_70 (xsd_string_0))) (-. (rfamily_name T_70 (xsd_string_0))) (cAgamidae T_70)   ### Imply 1541 1542
% 37.52/37.69  1544. (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_70) (-. (rfamily_name T_70 (xsd_string_0)))   ### All 1543
% 37.52/37.69  1545. (rfamily_name T_70 T_71) (-. (rfamily_name T_70 T_71))   ### Axiom
% 37.52/37.69  1546. ((xsd_string_0) != T_71) ((xsd_string_0) = T_71)   ### Axiom
% 37.52/37.69  1547. (((rfamily_name T_70 (xsd_string_0)) /\ (rfamily_name T_70 T_71)) => ((xsd_string_0) = T_71)) ((xsd_string_0) != T_71) (rfamily_name T_70 T_71) (cAgamidae T_70) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0))))   ### DisjTree 1544 1545 1546
% 37.52/37.69  1548. (All Y1, (((rfamily_name T_70 (xsd_string_0)) /\ (rfamily_name T_70 Y1)) => ((xsd_string_0) = Y1))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_70) (rfamily_name T_70 T_71) ((xsd_string_0) != T_71)   ### All 1547
% 37.52/37.69  1549. ((xsd_string_4) != (xsd_string_4))   ### NotEqual
% 37.52/37.69  1550. ((xsd_string_0) != (xsd_string_4)) (T_71 = (xsd_string_4)) (rfamily_name T_70 T_71) (cAgamidae T_70) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All Y1, (((rfamily_name T_70 (xsd_string_0)) /\ (rfamily_name T_70 Y1)) => ((xsd_string_0) = Y1)))   ### TransEq 1548 1549 1549
% 37.52/37.69  1551. (((rfamily_name T_70 T_71) /\ (rfamily_name T_70 (xsd_string_4))) => (T_71 = (xsd_string_4))) (All Y1, (((rfamily_name T_70 (xsd_string_0)) /\ (rfamily_name T_70 Y1)) => ((xsd_string_0) = Y1))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_70) ((xsd_string_0) != (xsd_string_4)) (cCordylidae T_70) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (rfamily_name T_70 T_71)   ### DisjTree 1536 1540 1550
% 37.52/37.69  1552. (All Y1, (((rfamily_name T_70 T_71) /\ (rfamily_name T_70 Y1)) => (T_71 = Y1))) (rfamily_name T_70 T_71) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_70) ((xsd_string_0) != (xsd_string_4)) (cAgamidae T_70) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All Y1, (((rfamily_name T_70 (xsd_string_0)) /\ (rfamily_name T_70 Y1)) => ((xsd_string_0) = Y1)))   ### All 1551
% 37.52/37.69  1553. (All Y0, (All Y1, (((rfamily_name T_70 Y0) /\ (rfamily_name T_70 Y1)) => (Y0 = Y1)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_70) ((xsd_string_0) != (xsd_string_4)) (cCordylidae T_70) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (rfamily_name T_70 T_71) (All Y1, (((rfamily_name T_70 T_71) /\ (rfamily_name T_70 Y1)) => (T_71 = Y1)))   ### All 1552
% 37.52/37.69  1554. (rfamily_name T_70 T_71) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_70) ((xsd_string_0) != (xsd_string_4)) (cAgamidae T_70) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All Y0, (All Y1, (((rfamily_name T_70 Y0) /\ (rfamily_name T_70 Y1)) => (Y0 = Y1))))   ### All 1553
% 37.52/37.69  1555. (Ex Y0, (rfamily_name T_70 Y0)) (All Y0, (All Y1, (((rfamily_name T_70 Y0) /\ (rfamily_name T_70 Y1)) => (Y0 = Y1)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_70) ((xsd_string_0) != (xsd_string_4)) (cCordylidae T_70) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4))))   ### Exists 1554
% 37.52/37.69  1556. ((Ex Y0, (rfamily_name T_70 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_70 Y0) /\ (rfamily_name T_70 Y1)) => (Y0 = Y1))))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_70) ((xsd_string_0) != (xsd_string_4)) (cAgamidae T_70) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0))))   ### And 1555
% 37.52/37.69  1557. ((cReptile T_70) => ((Ex Y0, (rfamily_name T_70 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_70 Y0) /\ (rfamily_name T_70 Y1)) => (Y0 = Y1)))))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) ((xsd_string_0) != (xsd_string_4)) (cCordylidae T_70) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cAgamidae T_70) (All X, ((cAgamidae X) => (cReptile X)))   ### Imply 1535 1556
% 37.52/37.69  1558. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAgamidae X) => (cReptile X))) (cAgamidae T_70) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (cCordylidae T_70) ((xsd_string_0) != (xsd_string_4)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0))))   ### All 1557
% 37.52/37.69  1559. ((cAgamidae T_70) /\ (cCordylidae T_70)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) ((xsd_string_0) != (xsd_string_4)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cAgamidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1558
% 37.52/37.69  1560. (-. (-. ((cAgamidae T_70) /\ (cCordylidae T_70)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAgamidae X) => (cReptile X))) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_0) != (xsd_string_4)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0))))   ### NotNot 1559
% 37.52/37.69  1561. (-. (All X, (-. ((cAgamidae X) /\ (cCordylidae X))))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) ((xsd_string_0) != (xsd_string_4)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) (All X, ((cAgamidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1560
% 37.52/37.69  1562. (cLoxocemidae T_72) (-. (cLoxocemidae T_72))   ### Axiom
% 37.52/37.69  1563. (-. (cReptile T_72)) (cReptile T_72)   ### Axiom
% 37.52/37.69  1564. ((cLoxocemidae T_72) => (cReptile T_72)) (-. (cReptile T_72)) (cLoxocemidae T_72)   ### Imply 1562 1563
% 37.52/37.69  1565. (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_72) (-. (cReptile T_72))   ### All 1564
% 37.52/37.70  1566. (cLoxocemidae T_72) (-. (cLoxocemidae T_72))   ### Axiom
% 37.52/37.70  1567. (-. (rfamily_name T_72 (xsd_string_9))) (rfamily_name T_72 (xsd_string_9))   ### Axiom
% 37.52/37.70  1568. ((cLoxocemidae T_72) => (rfamily_name T_72 (xsd_string_9))) (-. (rfamily_name T_72 (xsd_string_9))) (cLoxocemidae T_72)   ### Imply 1566 1567
% 37.52/37.70  1569. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_72) (-. (rfamily_name T_72 (xsd_string_9)))   ### All 1568
% 37.52/37.70  1570. (cLeptotyphlopidae T_72) (-. (cLeptotyphlopidae T_72))   ### Axiom
% 37.52/37.70  1571. (-. (rfamily_name T_72 (xsd_string_8))) (rfamily_name T_72 (xsd_string_8))   ### Axiom
% 37.52/37.70  1572. ((cLeptotyphlopidae T_72) => (rfamily_name T_72 (xsd_string_8))) (-. (rfamily_name T_72 (xsd_string_8))) (cLeptotyphlopidae T_72)   ### Imply 1570 1571
% 37.52/37.70  1573. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_72) (-. (rfamily_name T_72 (xsd_string_8)))   ### All 1572
% 37.52/37.70  1574. ((xsd_string_8) != (xsd_string_9)) ((xsd_string_9) = (xsd_string_8))   ### Sym(=)
% 37.52/37.70  1575. (((rfamily_name T_72 (xsd_string_9)) /\ (rfamily_name T_72 (xsd_string_8))) => ((xsd_string_9) = (xsd_string_8))) ((xsd_string_8) != (xsd_string_9)) (cLeptotyphlopidae T_72) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLoxocemidae T_72) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### DisjTree 1569 1573 1574
% 37.52/37.70  1576. (All Y1, (((rfamily_name T_72 (xsd_string_9)) /\ (rfamily_name T_72 Y1)) => ((xsd_string_9) = Y1))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_72) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_72) ((xsd_string_8) != (xsd_string_9))   ### All 1575
% 37.52/37.70  1577. (All Y0, (All Y1, (((rfamily_name T_72 Y0) /\ (rfamily_name T_72 Y1)) => (Y0 = Y1)))) ((xsd_string_8) != (xsd_string_9)) (cLeptotyphlopidae T_72) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLoxocemidae T_72) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9))))   ### All 1576
% 37.52/37.70  1578. ((Ex Y0, (rfamily_name T_72 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_72 Y0) /\ (rfamily_name T_72 Y1)) => (Y0 = Y1))))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_72) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_72) ((xsd_string_8) != (xsd_string_9))   ### And 1577
% 37.52/37.70  1579. ((cReptile T_72) => ((Ex Y0, (rfamily_name T_72 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_72 Y0) /\ (rfamily_name T_72 Y1)) => (Y0 = Y1)))))) ((xsd_string_8) != (xsd_string_9)) (cLeptotyphlopidae T_72) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_72) (All X, ((cLoxocemidae X) => (cReptile X)))   ### Imply 1565 1578
% 37.52/37.70  1580. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_72) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_72) ((xsd_string_8) != (xsd_string_9))   ### All 1579
% 37.52/37.70  1581. ((cLeptotyphlopidae T_72) /\ (cLoxocemidae T_72)) ((xsd_string_8) != (xsd_string_9)) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1580
% 37.52/37.70  1582. (-. (-. ((cLeptotyphlopidae T_72) /\ (cLoxocemidae T_72)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) ((xsd_string_8) != (xsd_string_9))   ### NotNot 1581
% 37.52/37.70  1583. (-. (All X, (-. ((cLeptotyphlopidae X) /\ (cLoxocemidae X))))) ((xsd_string_8) != (xsd_string_9)) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1582
% 37.52/37.70  1584. (cEmydidae T_73) (-. (cEmydidae T_73))   ### Axiom
% 37.52/37.70  1585. (-. (rfamily_name T_73 (xsd_string_6))) (rfamily_name T_73 (xsd_string_6))   ### Axiom
% 37.52/37.70  1586. ((cEmydidae T_73) => (rfamily_name T_73 (xsd_string_6))) (-. (rfamily_name T_73 (xsd_string_6))) (cEmydidae T_73)   ### Imply 1584 1585
% 37.52/37.70  1587. (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_73) (-. (rfamily_name T_73 (xsd_string_6)))   ### All 1586
% 37.52/37.70  1588. (cLoxocemidae T_73) (-. (cLoxocemidae T_73))   ### Axiom
% 37.52/37.70  1589. (-. (cReptile T_73)) (cReptile T_73)   ### Axiom
% 37.52/37.70  1590. ((cLoxocemidae T_73) => (cReptile T_73)) (-. (cReptile T_73)) (cLoxocemidae T_73)   ### Imply 1588 1589
% 37.52/37.70  1591. (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_73) (-. (cReptile T_73))   ### All 1590
% 37.52/37.70  1592. (rfamily_name T_73 (xsd_string_6)) (-. (rfamily_name T_73 (xsd_string_6)))   ### Axiom
% 37.52/37.70  1593. (cLoxocemidae T_73) (-. (cLoxocemidae T_73))   ### Axiom
% 37.52/37.70  1594. (-. (rfamily_name T_73 (xsd_string_9))) (rfamily_name T_73 (xsd_string_9))   ### Axiom
% 37.52/37.70  1595. ((cLoxocemidae T_73) => (rfamily_name T_73 (xsd_string_9))) (-. (rfamily_name T_73 (xsd_string_9))) (cLoxocemidae T_73)   ### Imply 1593 1594
% 37.52/37.70  1596. (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_73) (-. (rfamily_name T_73 (xsd_string_9)))   ### All 1595
% 37.52/37.70  1597. ((xsd_string_6) != (xsd_string_9)) ((xsd_string_6) = (xsd_string_9))   ### Axiom
% 37.52/37.70  1598. (((rfamily_name T_73 (xsd_string_6)) /\ (rfamily_name T_73 (xsd_string_9))) => ((xsd_string_6) = (xsd_string_9))) ((xsd_string_6) != (xsd_string_9)) (cLoxocemidae T_73) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (rfamily_name T_73 (xsd_string_6))   ### DisjTree 1592 1596 1597
% 37.52/37.70  1599. (All Y1, (((rfamily_name T_73 (xsd_string_6)) /\ (rfamily_name T_73 Y1)) => ((xsd_string_6) = Y1))) (rfamily_name T_73 (xsd_string_6)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_73) ((xsd_string_6) != (xsd_string_9))   ### All 1598
% 37.52/37.70  1600. (All Y0, (All Y1, (((rfamily_name T_73 Y0) /\ (rfamily_name T_73 Y1)) => (Y0 = Y1)))) ((xsd_string_6) != (xsd_string_9)) (cLoxocemidae T_73) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (rfamily_name T_73 (xsd_string_6))   ### All 1599
% 37.52/37.70  1601. ((Ex Y0, (rfamily_name T_73 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_73 Y0) /\ (rfamily_name T_73 Y1)) => (Y0 = Y1))))) (rfamily_name T_73 (xsd_string_6)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_73) ((xsd_string_6) != (xsd_string_9))   ### And 1600
% 37.52/37.70  1602. ((cReptile T_73) => ((Ex Y0, (rfamily_name T_73 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_73 Y0) /\ (rfamily_name T_73 Y1)) => (Y0 = Y1)))))) ((xsd_string_6) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (rfamily_name T_73 (xsd_string_6)) (cLoxocemidae T_73) (All X, ((cLoxocemidae X) => (cReptile X)))   ### Imply 1591 1601
% 37.52/37.70  1603. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_73) (rfamily_name T_73 (xsd_string_6)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) ((xsd_string_6) != (xsd_string_9))   ### All 1602
% 37.52/37.70  1604. ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name T_73 (xsd_string_6))) => (rfamily_name T_73 (xsd_string_6))) ((xsd_string_6) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_73) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_73) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### DisjTree 301 1587 1603
% 37.52/37.70  1605. (All C, ((((xsd_string_6) = (xsd_string_6)) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C (xsd_string_6)))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_73) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_73) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) ((xsd_string_6) != (xsd_string_9))   ### All 1604
% 37.52/37.70  1606. (All B, (All C, ((((xsd_string_6) = B) /\ (rfamily_name C (xsd_string_6))) => (rfamily_name C B)))) ((xsd_string_6) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (cLoxocemidae T_73) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cEmydidae T_73) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6))))   ### All 1605
% 37.52/37.70  1607. (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (cEmydidae T_73) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (cLoxocemidae T_73) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) ((xsd_string_6) != (xsd_string_9))   ### All 1606
% 37.52/37.70  1608. ((cEmydidae T_73) /\ (cLoxocemidae T_73)) ((xsd_string_6) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### And 1607
% 37.52/37.70  1609. (-. (-. ((cEmydidae T_73) /\ (cLoxocemidae T_73)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) ((xsd_string_6) != (xsd_string_9))   ### NotNot 1608
% 37.52/37.70  1610. (-. (All X, (-. ((cEmydidae X) /\ (cLoxocemidae X))))) ((xsd_string_6) != (xsd_string_9)) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### NotAllEx 1609
% 37.52/37.70  1611. (cLeptotyphlopidae T_74) (-. (cLeptotyphlopidae T_74))   ### Axiom
% 37.52/37.70  1612. (-. (rfamily_name T_74 (xsd_string_8))) (rfamily_name T_74 (xsd_string_8))   ### Axiom
% 37.52/37.70  1613. ((cLeptotyphlopidae T_74) => (rfamily_name T_74 (xsd_string_8))) (-. (rfamily_name T_74 (xsd_string_8))) (cLeptotyphlopidae T_74)   ### Imply 1611 1612
% 37.52/37.70  1614. (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_74) (-. (rfamily_name T_74 (xsd_string_8)))   ### All 1613
% 37.52/37.70  1615. (cLeptotyphlopidae T_74) (-. (cLeptotyphlopidae T_74))   ### Axiom
% 37.52/37.70  1616. (-. (cReptile T_74)) (cReptile T_74)   ### Axiom
% 37.52/37.70  1617. ((cLeptotyphlopidae T_74) => (cReptile T_74)) (-. (cReptile T_74)) (cLeptotyphlopidae T_74)   ### Imply 1615 1616
% 37.52/37.70  1618. (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_74) (-. (cReptile T_74))   ### All 1617
% 37.52/37.70  1619. (rfamily_name T_74 (xsd_string_8)) (-. (rfamily_name T_74 (xsd_string_8)))   ### Axiom
% 37.52/37.70  1620. (cSphenodontidae T_74) (-. (cSphenodontidae T_74))   ### Axiom
% 37.52/37.70  1621. (-. (rfamily_name T_74 (xsd_string_10))) (rfamily_name T_74 (xsd_string_10))   ### Axiom
% 37.52/37.70  1622. ((cSphenodontidae T_74) => (rfamily_name T_74 (xsd_string_10))) (-. (rfamily_name T_74 (xsd_string_10))) (cSphenodontidae T_74)   ### Imply 1620 1621
% 37.52/37.70  1623. (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_74) (-. (rfamily_name T_74 (xsd_string_10)))   ### All 1622
% 37.52/37.70  1624. ((xsd_string_8) != (xsd_string_10)) ((xsd_string_8) = (xsd_string_10))   ### Axiom
% 37.52/37.70  1625. (((rfamily_name T_74 (xsd_string_8)) /\ (rfamily_name T_74 (xsd_string_10))) => ((xsd_string_8) = (xsd_string_10))) ((xsd_string_8) != (xsd_string_10)) (cSphenodontidae T_74) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (rfamily_name T_74 (xsd_string_8))   ### DisjTree 1619 1623 1624
% 37.52/37.70  1626. (All Y1, (((rfamily_name T_74 (xsd_string_8)) /\ (rfamily_name T_74 Y1)) => ((xsd_string_8) = Y1))) (rfamily_name T_74 (xsd_string_8)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_74) ((xsd_string_8) != (xsd_string_10))   ### All 1625
% 37.52/37.70  1627. (All Y0, (All Y1, (((rfamily_name T_74 Y0) /\ (rfamily_name T_74 Y1)) => (Y0 = Y1)))) ((xsd_string_8) != (xsd_string_10)) (cSphenodontidae T_74) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (rfamily_name T_74 (xsd_string_8))   ### All 1626
% 37.52/37.70  1628. ((Ex Y0, (rfamily_name T_74 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_74 Y0) /\ (rfamily_name T_74 Y1)) => (Y0 = Y1))))) (rfamily_name T_74 (xsd_string_8)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_74) ((xsd_string_8) != (xsd_string_10))   ### And 1627
% 37.52/37.70  1629. ((cReptile T_74) => ((Ex Y0, (rfamily_name T_74 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_74 Y0) /\ (rfamily_name T_74 Y1)) => (Y0 = Y1)))))) ((xsd_string_8) != (xsd_string_10)) (cSphenodontidae T_74) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (rfamily_name T_74 (xsd_string_8)) (cLeptotyphlopidae T_74) (All X, ((cLeptotyphlopidae X) => (cReptile X)))   ### Imply 1618 1628
% 37.52/37.70  1630. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (cLeptotyphlopidae T_74) (rfamily_name T_74 (xsd_string_8)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_74) ((xsd_string_8) != (xsd_string_10))   ### All 1629
% 37.52/37.70  1631. ((((xsd_string_8) = (xsd_string_8)) /\ (rfamily_name T_74 (xsd_string_8))) => (rfamily_name T_74 (xsd_string_8))) ((xsd_string_8) != (xsd_string_10)) (cSphenodontidae T_74) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLeptotyphlopidae T_74) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### DisjTree 365 1614 1630
% 37.52/37.70  1632. (All C, ((((xsd_string_8) = (xsd_string_8)) /\ (rfamily_name C (xsd_string_8))) => (rfamily_name C (xsd_string_8)))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_74) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_74) ((xsd_string_8) != (xsd_string_10))   ### All 1631
% 37.52/37.70  1633. (All B, (All C, ((((xsd_string_8) = B) /\ (rfamily_name C (xsd_string_8))) => (rfamily_name C B)))) ((xsd_string_8) != (xsd_string_10)) (cSphenodontidae T_74) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (cLeptotyphlopidae T_74) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8))))   ### All 1632
% 37.52/37.72  1634. (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (cLeptotyphlopidae T_74) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (cSphenodontidae T_74) ((xsd_string_8) != (xsd_string_10))   ### All 1633
% 37.52/37.72  1635. ((cLeptotyphlopidae T_74) /\ (cSphenodontidae T_74)) ((xsd_string_8) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### And 1634
% 37.52/37.72  1636. (-. (-. ((cLeptotyphlopidae T_74) /\ (cSphenodontidae T_74)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) ((xsd_string_8) != (xsd_string_10))   ### NotNot 1635
% 37.52/37.72  1637. (-. (All X, (-. ((cLeptotyphlopidae X) /\ (cSphenodontidae X))))) ((xsd_string_8) != (xsd_string_10)) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B)))))   ### NotAllEx 1636
% 37.52/37.72  1638. (cAmphisbaenidae T_75) (-. (cAmphisbaenidae T_75))   ### Axiom
% 37.52/37.72  1639. (-. (cReptile T_75)) (cReptile T_75)   ### Axiom
% 37.52/37.72  1640. ((cAmphisbaenidae T_75) => (cReptile T_75)) (-. (cReptile T_75)) (cAmphisbaenidae T_75)   ### Imply 1638 1639
% 37.52/37.72  1641. (All X, ((cAmphisbaenidae X) => (cReptile X))) (cAmphisbaenidae T_75) (-. (cReptile T_75))   ### All 1640
% 37.52/37.72  1642. (cAgamidae T_75) (-. (cAgamidae T_75))   ### Axiom
% 37.52/37.72  1643. (-. (rfamily_name T_75 (xsd_string_0))) (rfamily_name T_75 (xsd_string_0))   ### Axiom
% 37.52/37.72  1644. ((cAgamidae T_75) => (rfamily_name T_75 (xsd_string_0))) (-. (rfamily_name T_75 (xsd_string_0))) (cAgamidae T_75)   ### Imply 1642 1643
% 37.52/37.72  1645. (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_75) (-. (rfamily_name T_75 (xsd_string_0)))   ### All 1644
% 37.52/37.72  1646. (cAmphisbaenidae T_75) (-. (cAmphisbaenidae T_75))   ### Axiom
% 37.52/37.72  1647. (-. (rfamily_name T_75 (xsd_string_1))) (rfamily_name T_75 (xsd_string_1))   ### Axiom
% 37.52/37.72  1648. ((cAmphisbaenidae T_75) => (rfamily_name T_75 (xsd_string_1))) (-. (rfamily_name T_75 (xsd_string_1))) (cAmphisbaenidae T_75)   ### Imply 1646 1647
% 37.52/37.72  1649. (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_75) (-. (rfamily_name T_75 (xsd_string_1)))   ### All 1648
% 37.52/37.72  1650. ((xsd_string_0) != (xsd_string_1)) ((xsd_string_0) = (xsd_string_1))   ### Axiom
% 37.52/37.72  1651. (((rfamily_name T_75 (xsd_string_0)) /\ (rfamily_name T_75 (xsd_string_1))) => ((xsd_string_0) = (xsd_string_1))) ((xsd_string_0) != (xsd_string_1)) (cAmphisbaenidae T_75) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAgamidae T_75) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0))))   ### DisjTree 1645 1649 1650
% 37.52/37.72  1652. (All Y1, (((rfamily_name T_75 (xsd_string_0)) /\ (rfamily_name T_75 Y1)) => ((xsd_string_0) = Y1))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_75) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_75) ((xsd_string_0) != (xsd_string_1))   ### All 1651
% 37.52/37.72  1653. (All Y0, (All Y1, (((rfamily_name T_75 Y0) /\ (rfamily_name T_75 Y1)) => (Y0 = Y1)))) ((xsd_string_0) != (xsd_string_1)) (cAmphisbaenidae T_75) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAgamidae T_75) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0))))   ### All 1652
% 37.52/37.72  1654. ((Ex Y0, (rfamily_name T_75 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_75 Y0) /\ (rfamily_name T_75 Y1)) => (Y0 = Y1))))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_75) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAmphisbaenidae T_75) ((xsd_string_0) != (xsd_string_1))   ### And 1653
% 37.52/37.72  1655. ((cReptile T_75) => ((Ex Y0, (rfamily_name T_75 Y0)) /\ (All Y0, (All Y1, (((rfamily_name T_75 Y0) /\ (rfamily_name T_75 Y1)) => (Y0 = Y1)))))) ((xsd_string_0) != (xsd_string_1)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (cAgamidae T_75) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAmphisbaenidae T_75) (All X, ((cAmphisbaenidae X) => (cReptile X)))   ### Imply 1641 1654
% 37.52/37.72  1656. (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAmphisbaenidae X) => (cReptile X))) (cAmphisbaenidae T_75) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (cAgamidae T_75) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) ((xsd_string_0) != (xsd_string_1))   ### All 1655
% 37.52/37.72  1657. ((cAmphisbaenidae T_75) /\ (cAgamidae T_75)) ((xsd_string_0) != (xsd_string_1)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cAmphisbaenidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### And 1656
% 37.52/37.72  1658. (-. (-. ((cAmphisbaenidae T_75) /\ (cAgamidae T_75)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cAmphisbaenidae X) => (cReptile X))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) ((xsd_string_0) != (xsd_string_1))   ### NotNot 1657
% 37.52/37.72  1659. (-. (All X, (-. ((cAmphisbaenidae X) /\ (cAgamidae X))))) ((xsd_string_0) != (xsd_string_1)) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) (All X, ((cAmphisbaenidae X) => (cReptile X))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1)))))))   ### NotAllEx 1658
% 37.52/37.72  1660. (-. ((All X, ((cowlThing X) /\ (-. (cowlNothing X)))) /\ ((All X, ((xsd_string X) <=> (-. (xsd_integer X)))) /\ ((All X, (-. ((cLeptotyphlopidae X) /\ (cBipedidae X)))) /\ ((All X, (-. ((cBipedidae X) /\ (cAnomalepidae X)))) /\ ((All X, (-. ((cLeptotyphlopidae X) /\ (cGekkonidae X)))) /\ ((All X, (-. ((cAmphisbaenidae X) /\ (cSphenodontidae X)))) /\ ((All X, (-. ((cBipedidae X) /\ (cCrocodylidae X)))) /\ ((All X, (-. ((cBipedidae X) /\ (cGekkonidae X)))) /\ ((All X, (-. ((cBipedidae X) /\ (cSphenodontidae X)))) /\ ((All X, (-. ((cGekkonidae X) /\ (cCrocodylidae X)))) /\ ((All X, (-. ((cGekkonidae X) /\ (cSphenodontidae X)))) /\ ((All X, (-. ((cAgamidae X) /\ (cSphenodontidae X)))) /\ ((All X, (-. ((cAnomalepidae X) /\ (cCrocodylidae X)))) /\ ((All X, (-. ((cCrocodylidae X) /\ (cEmydidae X)))) /\ ((All X, (-. ((cAmphisbaenidae X) /\ (cLoxocemidae X)))) /\ ((All X, (-. ((cLeptotyphlopidae X) /\ (cAgamidae X)))) /\ ((All X, (-. ((cAmphisbaenidae X) /\ (cCrocodylidae X)))) /\ ((All X, (-. ((cCrocodylidae X) /\ (cLoxocemidae X)))) /\ ((All X, (-. ((cXantusiidae X) /\ (cCrocodylidae X)))) /\ ((All X, (-. ((cBipedidae X) /\ (cEmydidae X)))) /\ ((All X, (-. ((cAmphisbaenidae X) /\ (cEmydidae X)))) /\ ((All X, (-. ((cAgamidae X) /\ (cCrocodylidae X)))) /\ ((All X, (-. ((cXantusiidae X) /\ (cLoxocemidae X)))) /\ ((All X, (-. ((cXantusiidae X) /\ (cEmydidae X)))) /\ ((All X, (-. ((cBipedidae X) /\ (cLoxocemidae X)))) /\ ((All X, (-. ((cBipedidae X) /\ (cAgamidae X)))) /\ ((All X, (-. ((cGekkonidae X) /\ (cAmphisbaenidae X)))) /\ ((All X, (-. ((cLeptotyphlopidae X) /\ (cCrocodylidae X)))) /\ ((All X, (-. ((cSphenodontidae X) /\ (cCordylidae X)))) /\ ((All X, (-. ((cAmphisbaenidae X) /\ (cCordylidae X)))) /\ ((All X, (-. ((cCordylidae X) /\ (cLoxocemidae X)))) /\ ((All X, (-. ((cGekkonidae X) /\ (cCordylidae X)))) /\ ((All X, (-. ((cXantusiidae X) /\ (cAgamidae X)))) /\ ((All X, (-. ((cAnomalepidae X) /\ (cCordylidae X)))) /\ ((All X, (-. ((cAgamidae X) /\ (cEmydidae X)))) /\ ((All X, (-. ((cCordylidae X) /\ (cEmydidae X)))) /\ ((All X, (-. ((cAgamidae X) /\ (cLoxocemidae X)))) /\ ((All X, (-. ((cXantusiidae X) /\ (cGekkonidae X)))) /\ ((All X, (-. ((cXantusiidae X) /\ (cBipedidae X)))) /\ ((All X, (-. ((cAnomalepidae X) /\ (cEmydidae X)))) /\ ((All X, (-. ((cXantusiidae X) /\ (cSphenodontidae X)))) /\ ((All X, (-. ((cLeptotyphlopidae X) /\ (cAmphisbaenidae X)))) /\ ((All X, (-. ((cSphenodontidae X) /\ (cEmydidae X)))) /\ ((All X, (-. ((cLeptotyphlopidae X) /\ (cCordylidae X)))) /\ ((All X, (-. ((cGekkonidae X) /\ (cAnomalepidae X)))) /\ ((All X, (-. ((cBipedidae X) /\ (cCordylidae X)))) /\ ((All X, (-. ((cBipedidae X) /\ (cAmphisbaenidae X)))) /\ ((All X, (-. ((cXantusiidae X) /\ (cCordylidae X)))) /\ ((All X, (-. ((cAnomalepidae X) /\ (cAgamidae X)))) /\ ((All X, (-. ((cSphenodontidae X) /\ (cCrocodylidae X)))) /\ ((All X, (-. ((cXantusiidae X) /\ (cAmphisbaenidae X)))) /\ ((All X, (-. ((cGekkonidae X) /\ (cEmydidae X)))) /\ ((All X, (-. ((cSphenodontidae X) /\ (cLoxocemidae X)))) /\ ((All X, (-. ((cLeptotyphlopidae X) /\ (cEmydidae X)))) /\ ((All X, (-. ((cAmphisbaenidae X) /\ (cAnomalepidae X)))) /\ ((All X, (-. ((cGekkonidae X) /\ (cLoxocemidae X)))) /\ ((All X, (-. ((cAnomalepidae X) /\ (cLoxocemidae X)))) /\ ((All X, (-. ((cLeptotyphlopidae X) /\ (cAnomalepidae X)))) /\ ((All X, (-. ((cCordylidae X) /\ (cCrocodylidae X)))) /\ ((All X, (-. ((cXantusiidae X) /\ (cAnomalepidae X)))) /\ ((All X, (-. ((cAnomalepidae X) /\ (cSphenodontidae X)))) /\ ((All X, (-. ((cLeptotyphlopidae X) /\ (cXantusiidae X)))) /\ ((All X, (-. ((cGekkonidae X) /\ (cAgamidae X)))) /\ ((All X, (-. ((cAgamidae X) /\ (cCordylidae X)))) /\ ((All X, (-. ((cLeptotyphlopidae X) /\ (cLoxocemidae X)))) /\ ((All X, (-. ((cEmydidae X) /\ (cLoxocemidae X)))) /\ ((All X, (-. ((cLeptotyphlopidae X) /\ (cSphenodontidae X)))) /\ (All X, (-. ((cAmphisbaenidae X) /\ (cAgamidae X)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) ((xsd_string_0) != (xsd_string_1)) ((xsd_string_8) != (xsd_string_10)) ((xsd_string_6) != (xsd_string_9)) ((xsd_string_8) != (xsd_string_9)) ((xsd_string_0) != (xsd_string_4)) ((xsd_string_0) != (xsd_string_7)) ((xsd_string_8) != (xsd_string_11)) ((xsd_string_2) != (xsd_string_10)) ((xsd_string_2) != (xsd_string_11)) ((xsd_string_4) != (xsd_string_5)) ((xsd_string_2) != (xsd_string_8)) ((xsd_string_2) != (xsd_string_9)) ((xsd_string_7) != (xsd_string_9)) ((xsd_string_1) != (xsd_string_2)) ((xsd_string_6) != (xsd_string_8)) ((xsd_string_9) != (xsd_string_10)) ((xsd_string_6) != (xsd_string_7)) ((xsd_string_1) != (xsd_string_11)) ((xsd_string_5) != (xsd_string_10)) ((xsd_string_0) != (xsd_string_2)) ((xsd_string_4) != (xsd_string_11)) ((xsd_string_1) != (xsd_string_3)) ((xsd_string_3) != (xsd_string_4)) ((xsd_string_2) != (xsd_string_7)) ((xsd_string_4) != (xsd_string_8)) ((xsd_string_6) != (xsd_string_10)) ((xsd_string_1) != (xsd_string_8)) ((xsd_string_10) != (xsd_string_11)) ((xsd_string_2) != (xsd_string_6)) ((xsd_string_3) != (xsd_string_11)) ((xsd_string_7) != (xsd_string_11)) ((xsd_string_0) != (xsd_string_9)) ((xsd_string_4) != (xsd_string_6)) ((xsd_string_0) != (xsd_string_6)) ((xsd_string_2) != (xsd_string_4)) ((xsd_string_0) != (xsd_string_11)) ((xsd_string_4) != (xsd_string_7)) ((xsd_string_4) != (xsd_string_9)) (All X, ((cAmphisbaenidae X) => (cReptile X))) ((xsd_string_1) != (xsd_string_4)) (All X, ((cCordylidae X) => (rfamily_name X (xsd_string_4)))) ((xsd_string_4) != (xsd_string_10)) ((xsd_string_5) != (xsd_string_8)) ((xsd_string_1) != (xsd_string_7)) (All X, ((cAgamidae X) => (cReptile X))) ((xsd_string_0) != (xsd_string_3)) (All X, ((cBipedidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_9)) ((xsd_string_6) != (xsd_string_11)) ((xsd_string_9) != (xsd_string_11)) ((xsd_string_0) != (xsd_string_5)) ((xsd_string_1) != (xsd_string_6)) (All X, ((cEmydidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_6)) (All X, ((cXantusiidae X) => (cReptile X))) (All X, ((cXantusiidae X) => (rfamily_name X (xsd_string_11)))) ((xsd_string_5) != (xsd_string_11)) ((xsd_string_5) != (xsd_string_9)) ((xsd_string_1) != (xsd_string_5)) ((xsd_string_0) != (xsd_string_8)) (All X, ((cLoxocemidae X) => (cReptile X))) (All X, ((cLoxocemidae X) => (rfamily_name X (xsd_string_9)))) ((xsd_string_1) != (xsd_string_9)) (All A, (All B, (All C, (((A = B) /\ (rfamily_name C A)) => (rfamily_name C B))))) (All X, ((cEmydidae X) => (rfamily_name X (xsd_string_6)))) ((xsd_string_5) != (xsd_string_6)) ((xsd_string_2) != (xsd_string_5)) (All X, ((cAgamidae X) => (rfamily_name X (xsd_string_0)))) ((xsd_string_0) != (xsd_string_10)) ((xsd_string_7) != (xsd_string_10)) ((xsd_string_5) != (xsd_string_7)) ((xsd_string_3) != (xsd_string_10)) ((xsd_string_3) != (xsd_string_7)) (All X, ((cCrocodylidae X) => (cReptile X))) (All X, ((cCrocodylidae X) => (rfamily_name X (xsd_string_5)))) ((xsd_string_3) != (xsd_string_5)) (All X, ((cSphenodontidae X) => (cReptile X))) (All X, ((cSphenodontidae X) => (rfamily_name X (xsd_string_10)))) (All X, ((cAmphisbaenidae X) => (rfamily_name X (xsd_string_1)))) ((xsd_string_1) != (xsd_string_10)) (All X, ((cGekkonidae X) => (rfamily_name X (xsd_string_7)))) (All X, ((cGekkonidae X) => (cReptile X))) ((xsd_string_7) != (xsd_string_8)) (All X, ((cAnomalepidae X) => (rfamily_name X (xsd_string_2)))) (All X, ((cAnomalepidae X) => (cReptile X))) ((xsd_string_2) != (xsd_string_3)) (All A, (All B, (All C, (((A = B) /\ (rfamily_name A C)) => (rfamily_name B C))))) (All X, ((cLeptotyphlopidae X) => (rfamily_name X (xsd_string_8)))) (All X, ((cBipedidae X) => (rfamily_name X (xsd_string_3)))) (All X, ((cReptile X) => ((Ex Y0, (rfamily_name X Y0)) /\ (All Y0, (All Y1, (((rfamily_name X Y0) /\ (rfamily_name X Y1)) => (Y0 = Y1))))))) (All X, ((cLeptotyphlopidae X) => (cReptile X))) ((xsd_string_3) != (xsd_string_8)) (All X, ((cowlThing X) /\ (-. (cowlNothing X))))   ### DisjTree 1 8 40 62 94 116 138 170 202 224 256 278 300 328 350 380 402 435 457 484 506 528 550 572 604 626 648 678 700 722 744 766 788 818 840 862 884 906 928 955 977 999 1026 1048 1076 1098 1128 1150 1172 1201 1223 1255 1277 1311 1340 1372 1394 1421 1443 1465 1487 1509 1531 1561 1583 1610 1637 1659
% 37.52/37.72  % SZS output end Proof
% 37.52/37.72  (* END-PROOF *)
%------------------------------------------------------------------------------