TSTP Solution File: KRS108+1 by SuperZenon---0.0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SuperZenon---0.0.1
% Problem  : KRS108+1 : TPTP v8.1.0. Released v3.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_super_zenon -p0 -itptp -om -max-time %d %s

% Computer : n032.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 03:31:55 EDT 2022

% Result   : Unsatisfiable 2.34s 2.56s
% Output   : Proof 2.34s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.02/0.08  % Problem  : KRS108+1 : TPTP v8.1.0. Released v3.1.0.
% 0.02/0.08  % Command  : run_super_zenon -p0 -itptp -om -max-time %d %s
% 0.07/0.26  % Computer : n032.cluster.edu
% 0.07/0.26  % Model    : x86_64 x86_64
% 0.07/0.26  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.07/0.26  % Memory   : 8042.1875MB
% 0.07/0.26  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.07/0.26  % CPULimit : 300
% 0.07/0.26  % WCLimit  : 600
% 0.07/0.26  % DateTime : Tue Jun  7 12:16:35 EDT 2022
% 0.07/0.26  % CPUTime  : 
% 2.34/2.56  % SZS status Theorem
% 2.34/2.56  (* PROOF-FOUND *)
% 2.34/2.56  (* BEGIN-PROOF *)
% 2.34/2.56  % SZS output start Proof
% 2.34/2.56  1. (rr T_0 (i2003_11_14_17_21_04740)) (-. (rr T_0 (i2003_11_14_17_21_04740)))   ### Axiom
% 2.34/2.56  2. (rr T_0 T_1) (-. (rr T_0 T_1))   ### Axiom
% 2.34/2.56  3. (cp1 T_1) (-. (cp1 T_1))   ### Axiom
% 2.34/2.56  4. (-. (ca_Cx1 T_1)) (ca_Cx1 T_1)   ### Axiom
% 2.34/2.56  5. ((cp1 T_1) => (ca_Cx1 T_1)) (-. (ca_Cx1 T_1)) (cp1 T_1)   ### Imply 3 4
% 2.34/2.56  6. (All X, ((cp1 X) => (ca_Cx1 X))) (cp1 T_1) (-. (ca_Cx1 T_1))   ### All 5
% 2.34/2.56  7. ((i2003_11_14_17_21_04740) = T_1) (T_1 != (i2003_11_14_17_21_04740))   ### Sym(=)
% 2.34/2.56  8. (ca_Cx1 T_1) (-. (ca_Cx1 T_1))   ### Axiom
% 2.34/2.56  9. (-. (ca_Cx1 (i2003_11_14_17_21_04740))) (ca_Cx1 (i2003_11_14_17_21_04740))   ### Axiom
% 2.34/2.56  10. (((T_1 = (i2003_11_14_17_21_04740)) /\ (ca_Cx1 T_1)) => (ca_Cx1 (i2003_11_14_17_21_04740))) (-. (ca_Cx1 (i2003_11_14_17_21_04740))) (ca_Cx1 T_1) ((i2003_11_14_17_21_04740) = T_1)   ### DisjTree 7 8 9
% 2.34/2.56  11. (All B, (((T_1 = B) /\ (ca_Cx1 T_1)) => (ca_Cx1 B))) ((i2003_11_14_17_21_04740) = T_1) (ca_Cx1 T_1) (-. (ca_Cx1 (i2003_11_14_17_21_04740)))   ### All 10
% 2.34/2.56  12. (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (-. (ca_Cx1 (i2003_11_14_17_21_04740))) (ca_Cx1 T_1) ((i2003_11_14_17_21_04740) = T_1)   ### All 11
% 2.34/2.56  13. (Ex Y0, (ra_Px5 (i2003_11_14_17_21_04740) Y0)) (-. (Ex Y0, (ra_Px5 (i2003_11_14_17_21_04740) Y0)))   ### Axiom
% 2.34/2.56  14. (cp2xcomp (i2003_11_14_17_21_04740)) (Ex Y0, (ra_Px5 (i2003_11_14_17_21_04740) Y0))   ### Definition-Pseudo(cp2xcomp) 13
% 2.34/2.56  15. ((cp2xcomp (i2003_11_14_17_21_04740)) /\ ((cp5xcomp (i2003_11_14_17_21_04740)) /\ ((cp3xcomp (i2003_11_14_17_21_04740)) /\ (cp4xcomp (i2003_11_14_17_21_04740))))) (Ex Y0, (ra_Px5 (i2003_11_14_17_21_04740) Y0))   ### ConjTree 14
% 2.34/2.56  16. ((ca_Cx1 (i2003_11_14_17_21_04740)) <=> ((cp2xcomp (i2003_11_14_17_21_04740)) /\ ((cp5xcomp (i2003_11_14_17_21_04740)) /\ ((cp3xcomp (i2003_11_14_17_21_04740)) /\ (cp4xcomp (i2003_11_14_17_21_04740)))))) (Ex Y0, (ra_Px5 (i2003_11_14_17_21_04740) Y0)) ((i2003_11_14_17_21_04740) = T_1) (ca_Cx1 T_1) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B))))   ### Equiv 12 15
% 2.34/2.56  17. (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (ca_Cx1 T_1) ((i2003_11_14_17_21_04740) = T_1) (Ex Y0, (ra_Px5 (i2003_11_14_17_21_04740) Y0))   ### All 16
% 2.34/2.56  18. ((ca_Cx1 T_1) <=> ((cp2xcomp T_1) /\ ((cp5xcomp T_1) /\ ((cp3xcomp T_1) /\ (cp4xcomp T_1))))) (Ex Y0, (ra_Px5 (i2003_11_14_17_21_04740) Y0)) ((i2003_11_14_17_21_04740) = T_1) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (cp1 T_1) (All X, ((cp1 X) => (ca_Cx1 X)))   ### Equiv 6 17
% 2.34/2.56  19. (All X, ((cp1 X) => (ca_Cx1 X))) (cp1 T_1) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) ((i2003_11_14_17_21_04740) = T_1) (Ex Y0, (ra_Px5 (i2003_11_14_17_21_04740) Y0))   ### All 18
% 2.34/2.56  20. (((rr T_0 (i2003_11_14_17_21_04740)) /\ (rr T_0 T_1)) => ((i2003_11_14_17_21_04740) = T_1)) (Ex Y0, (ra_Px5 (i2003_11_14_17_21_04740) Y0)) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (cp1 T_1) (All X, ((cp1 X) => (ca_Cx1 X))) (rr T_0 T_1) (rr T_0 (i2003_11_14_17_21_04740))   ### DisjTree 1 2 19
% 2.34/2.56  21. (All Y1, (((rr T_0 (i2003_11_14_17_21_04740)) /\ (rr T_0 Y1)) => ((i2003_11_14_17_21_04740) = Y1))) (rr T_0 (i2003_11_14_17_21_04740)) (rr T_0 T_1) (All X, ((cp1 X) => (ca_Cx1 X))) (cp1 T_1) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (Ex Y0, (ra_Px5 (i2003_11_14_17_21_04740) Y0))   ### All 20
% 2.34/2.56  22. (All Y0, (All Y1, (((rr T_0 Y0) /\ (rr T_0 Y1)) => (Y0 = Y1)))) (Ex Y0, (ra_Px5 (i2003_11_14_17_21_04740) Y0)) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (cp1 T_1) (All X, ((cp1 X) => (ca_Cx1 X))) (rr T_0 T_1) (rr T_0 (i2003_11_14_17_21_04740))   ### All 21
% 2.34/2.56  23. (cp2 (i2003_11_14_17_21_04740)) (rr T_0 (i2003_11_14_17_21_04740)) (rr T_0 T_1) (All X, ((cp1 X) => (ca_Cx1 X))) (cp1 T_1) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (All Y0, (All Y1, (((rr T_0 Y0) /\ (rr T_0 Y1)) => (Y0 = Y1))))   ### Definition-Pseudo(cp2) 22
% 2.34/2.56  24. ((rr T_0 T_1) /\ (cp1 T_1)) (All Y0, (All Y1, (((rr T_0 Y0) /\ (rr T_0 Y1)) => (Y0 = Y1)))) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All X, ((cp1 X) => (ca_Cx1 X))) (rr T_0 (i2003_11_14_17_21_04740)) (cp2 (i2003_11_14_17_21_04740))   ### And 23
% 2.34/2.56  25. (Ex Y, ((rr T_0 Y) /\ (cp1 Y))) (cp2 (i2003_11_14_17_21_04740)) (rr T_0 (i2003_11_14_17_21_04740)) (All X, ((cp1 X) => (ca_Cx1 X))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (All Y0, (All Y1, (((rr T_0 Y0) /\ (rr T_0 Y1)) => (Y0 = Y1))))   ### Exists 24
% 2.34/2.56  26. ((Ex Y, ((rr T_0 Y) /\ (cp1 Y))) /\ (All Y0, (All Y1, (((rr T_0 Y0) /\ (rr T_0 Y1)) => (Y0 = Y1))))) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All X, ((cp1 X) => (ca_Cx1 X))) (rr T_0 (i2003_11_14_17_21_04740)) (cp2 (i2003_11_14_17_21_04740))   ### And 25
% 2.34/2.56  27. (ca_Ax14 T_0) (cp2 (i2003_11_14_17_21_04740)) (rr T_0 (i2003_11_14_17_21_04740)) (All X, ((cp1 X) => (ca_Cx1 X))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B))))   ### Definition-Pseudo(ca_Ax14) 26
% 2.34/2.56  28. (rinvR (i2003_11_14_17_21_04740) T_0) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All X, ((cp1 X) => (ca_Cx1 X))) (cp2 (i2003_11_14_17_21_04740)) (ca_Ax14 T_0)   ### Definition-Pseudo(rinvR) 27
% 2.34/2.56  29. ((rinvR (i2003_11_14_17_21_04740) T_0) /\ (ca_Ax14 T_0)) (cp2 (i2003_11_14_17_21_04740)) (All X, ((cp1 X) => (ca_Cx1 X))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B))))   ### And 28
% 2.34/2.56  30. (Ex Y, ((rinvR (i2003_11_14_17_21_04740) Y) /\ (ca_Ax14 Y))) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All X, ((cp1 X) => (ca_Cx1 X))) (cp2 (i2003_11_14_17_21_04740))   ### Exists 29
% 2.34/2.56  31. ((Ex Y, ((rinvR (i2003_11_14_17_21_04740) Y) /\ (ca_Ax14 Y))) /\ (cp2 (i2003_11_14_17_21_04740))) (All X, ((cp1 X) => (ca_Cx1 X))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B))))   ### And 30
% 2.34/2.56  32. (cUnsatisfiable (i2003_11_14_17_21_04740)) (All A, (All B, (((A = B) /\ (ca_Cx1 A)) => (ca_Cx1 B)))) (All X, ((ca_Cx1 X) <=> ((cp2xcomp X) /\ ((cp5xcomp X) /\ ((cp3xcomp X) /\ (cp4xcomp X)))))) (All X, ((cp1 X) => (ca_Cx1 X)))   ### Definition-Pseudo(cUnsatisfiable) 31
% 2.34/2.56  % SZS output end Proof
% 2.34/2.56  (* END-PROOF *)
%------------------------------------------------------------------------------