TSTP Solution File: KLE151+1 by Etableau---0.67

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Etableau---0.67
% Problem  : KLE151+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : etableau --auto --tsmdo --quicksat=10000 --tableau=1 --tableau-saturation=1 -s -p --tableau-cores=8 --cpu-limit=%d %s

% Computer : n015.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 01:57:20 EDT 2022

% Result   : Theorem 0.19s 0.40s
% Output   : CNFRefutation 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : KLE151+1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.12  % Command  : etableau --auto --tsmdo --quicksat=10000 --tableau=1 --tableau-saturation=1 -s -p --tableau-cores=8 --cpu-limit=%d %s
% 0.13/0.33  % Computer : n015.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Thu Jun 16 07:25:26 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.13/0.37  # No SInE strategy applied
% 0.13/0.37  # Auto-Mode selected heuristic G_E___208_C12_11_nc_F1_SE_CS_SP_PS_S5PRR_RG_S04AN
% 0.13/0.37  # and selection function SelectComplexExceptUniqMaxHorn.
% 0.13/0.37  #
% 0.13/0.37  # Presaturation interreduction done
% 0.13/0.37  # Number of axioms: 20 Number of unprocessed: 20
% 0.13/0.37  # Tableaux proof search.
% 0.13/0.37  # APR header successfully linked.
% 0.13/0.37  # Hello from C++
% 0.19/0.39  # The folding up rule is enabled...
% 0.19/0.39  # Local unification is enabled...
% 0.19/0.39  # Any saturation attempts will use folding labels...
% 0.19/0.39  # 20 beginning clauses after preprocessing and clausification
% 0.19/0.39  # Creating start rules for all 1 conjectures.
% 0.19/0.39  # There are 1 start rule candidates:
% 0.19/0.39  # Found 15 unit axioms.
% 0.19/0.39  # 1 start rule tableaux created.
% 0.19/0.39  # 5 extension rule candidate clauses
% 0.19/0.39  # 15 unit axiom clauses
% 0.19/0.39  
% 0.19/0.39  # Requested 8, 32 cores available to the main process.
% 0.19/0.39  # There are not enough tableaux to fork, creating more from the initial 1
% 0.19/0.40  # There were 1 total branch saturation attempts.
% 0.19/0.40  # There were 0 of these attempts blocked.
% 0.19/0.40  # There were 0 deferred branch saturation attempts.
% 0.19/0.40  # There were 0 free duplicated saturations.
% 0.19/0.40  # There were 1 total successful branch saturations.
% 0.19/0.40  # There were 0 successful branch saturations in interreduction.
% 0.19/0.40  # There were 0 successful branch saturations on the branch.
% 0.19/0.40  # There were 1 successful branch saturations after the branch.
% 0.19/0.40  # SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.19/0.40  # SZS output start for /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.19/0.40  # Begin clausification derivation
% 0.19/0.40  
% 0.19/0.40  # End clausification derivation
% 0.19/0.40  # Begin listing active clauses obtained from FOF to CNF conversion
% 0.19/0.40  cnf(i_0_10, plain, (multiplication(zero,X1)=zero)).
% 0.19/0.40  cnf(i_0_6, plain, (multiplication(X1,one)=X1)).
% 0.19/0.40  cnf(i_0_7, plain, (multiplication(one,X1)=X1)).
% 0.19/0.40  cnf(i_0_3, plain, (addition(X1,zero)=X1)).
% 0.19/0.40  cnf(i_0_4, plain, (addition(X1,X1)=X1)).
% 0.19/0.40  cnf(i_0_2, plain, (addition(addition(X1,X2),X3)=addition(X1,addition(X2,X3)))).
% 0.19/0.40  cnf(i_0_5, plain, (multiplication(multiplication(X1,X2),X3)=multiplication(X1,multiplication(X2,X3)))).
% 0.19/0.40  cnf(i_0_15, plain, (addition(one,multiplication(X1,strong_iteration(X1)))=strong_iteration(X1))).
% 0.19/0.40  cnf(i_0_17, plain, (addition(star(X1),multiplication(strong_iteration(X1),zero))=strong_iteration(X1))).
% 0.19/0.40  cnf(i_0_11, plain, (addition(one,multiplication(X1,star(X1)))=star(X1))).
% 0.19/0.40  cnf(i_0_12, plain, (addition(one,multiplication(star(X1),X1))=star(X1))).
% 0.19/0.40  cnf(i_0_8, plain, (addition(multiplication(X1,X2),multiplication(X1,X3))=multiplication(X1,addition(X2,X3)))).
% 0.19/0.40  cnf(i_0_9, plain, (addition(multiplication(X1,X2),multiplication(X3,X2))=multiplication(addition(X1,X3),X2))).
% 0.19/0.40  cnf(i_0_1, plain, (addition(X1,X2)=addition(X2,X1))).
% 0.19/0.40  cnf(i_0_20, negated_conjecture, (~leq(multiplication(esk1_0,strong_iteration(multiplication(esk2_0,esk1_0))),multiplication(strong_iteration(multiplication(esk1_0,esk2_0)),esk1_0)))).
% 0.19/0.40  cnf(i_0_19, plain, (addition(X1,X2)=X2|~leq(X1,X2))).
% 0.19/0.40  cnf(i_0_18, plain, (leq(X1,X2)|addition(X1,X2)!=X2)).
% 0.19/0.40  cnf(i_0_16, plain, (leq(X1,multiplication(strong_iteration(X2),X3))|~leq(X1,addition(multiplication(X2,X1),X3)))).
% 0.19/0.40  cnf(i_0_14, plain, (leq(multiplication(X1,star(X2)),X3)|~leq(addition(multiplication(X3,X2),X1),X3))).
% 0.19/0.40  cnf(i_0_13, plain, (leq(multiplication(star(X1),X2),X3)|~leq(addition(multiplication(X1,X3),X2),X3))).
% 0.19/0.40  # End listing active clauses.  There is an equivalent clause to each of these in the clausification!
% 0.19/0.40  # Begin printing tableau
% 0.19/0.40  # Found 4 steps
% 0.19/0.40  cnf(i_0_20, negated_conjecture, (~leq(multiplication(esk1_0,strong_iteration(multiplication(esk2_0,esk1_0))),multiplication(strong_iteration(multiplication(esk1_0,esk2_0)),esk1_0))), inference(start_rule)).
% 0.19/0.40  cnf(i_0_21, plain, (~leq(multiplication(esk1_0,strong_iteration(multiplication(esk2_0,esk1_0))),multiplication(strong_iteration(multiplication(esk1_0,esk2_0)),esk1_0))), inference(extension_rule, [i_0_16])).
% 0.19/0.40  cnf(i_0_27, plain, (~leq(multiplication(esk1_0,strong_iteration(multiplication(esk2_0,esk1_0))),addition(multiplication(multiplication(esk1_0,esk2_0),multiplication(esk1_0,strong_iteration(multiplication(esk2_0,esk1_0)))),esk1_0))), inference(extension_rule, [i_0_18])).
% 0.19/0.40  cnf(i_0_35, plain, (addition(multiplication(esk1_0,strong_iteration(multiplication(esk2_0,esk1_0))),addition(multiplication(multiplication(esk1_0,esk2_0),multiplication(esk1_0,strong_iteration(multiplication(esk2_0,esk1_0)))),esk1_0))!=addition(multiplication(multiplication(esk1_0,esk2_0),multiplication(esk1_0,strong_iteration(multiplication(esk2_0,esk1_0)))),esk1_0)), inference(etableau_closure_rule, [i_0_35, ...])).
% 0.19/0.40  # End printing tableau
% 0.19/0.40  # SZS output end
% 0.19/0.40  # Branches closed with saturation will be marked with an "s"
% 0.19/0.40  # Returning from population with 2 new_tableaux and 0 remaining starting tableaux.
% 0.19/0.40  # We now have 2 tableaux to operate on
% 0.19/0.40  # Found closed tableau during pool population.
% 0.19/0.40  # Proof search is over...
% 0.19/0.40  # Freeing feature tree
%------------------------------------------------------------------------------