TSTP Solution File: KLE145-10 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE145-10 : TPTP v8.1.0. Released v7.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:50 EDT 2022

% Result   : Unsatisfiable 1.73s 1.97s
% Output   : Refutation 1.73s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   10
%            Number of leaves      :   21
% Syntax   : Number of clauses     :   53 (  53 unt;   0 nHn;   2 RR)
%            Number of literals    :   53 (  52 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   12 (  12 usr;   4 con; 0-4 aty)
%            Number of variables   :   83 (   4 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    star(strong_iteration(sK1_goals_X0)) != strong_iteration(sK1_goals_X0),
    file('KLE145-10.p',unknown),
    [] ).

cnf(4,axiom,
    ife_q3(A,A,B,C) = B,
    file('KLE145-10.p',unknown),
    [] ).

cnf(6,axiom,
    ife_q2(A,A,B,C) = B,
    file('KLE145-10.p',unknown),
    [] ).

cnf(8,axiom,
    ife_q(A,A,B,C) = B,
    file('KLE145-10.p',unknown),
    [] ).

cnf(9,axiom,
    addition(A,B) = addition(B,A),
    file('KLE145-10.p',unknown),
    [] ).

cnf(10,axiom,
    addition(A,addition(B,C)) = addition(addition(A,B),C),
    file('KLE145-10.p',unknown),
    [] ).

cnf(11,plain,
    addition(addition(A,B),C) = addition(A,addition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10])]),
    [iquote('copy,10,flip.1')] ).

cnf(13,axiom,
    addition(A,zero) = A,
    file('KLE145-10.p',unknown),
    [] ).

cnf(15,axiom,
    addition(A,A) = A,
    file('KLE145-10.p',unknown),
    [] ).

cnf(17,axiom,
    multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C),
    file('KLE145-10.p',unknown),
    [] ).

cnf(19,plain,
    multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[17])]),
    [iquote('copy,17,flip.1')] ).

cnf(21,axiom,
    multiplication(A,one) = A,
    file('KLE145-10.p',unknown),
    [] ).

cnf(23,axiom,
    multiplication(one,A) = A,
    file('KLE145-10.p',unknown),
    [] ).

cnf(24,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE145-10.p',unknown),
    [] ).

cnf(26,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE145-10.p',unknown),
    [] ).

cnf(29,axiom,
    multiplication(zero,A) = zero,
    file('KLE145-10.p',unknown),
    [] ).

cnf(31,axiom,
    addition(one,multiplication(A,star(A))) = star(A),
    file('KLE145-10.p',unknown),
    [] ).

cnf(33,axiom,
    addition(one,multiplication(star(A),A)) = star(A),
    file('KLE145-10.p',unknown),
    [] ).

cnf(34,axiom,
    ife_q(le_q(addition(multiplication(A,B),C),B),true,le_q(multiplication(star(A),C),B),true) = true,
    file('KLE145-10.p',unknown),
    [] ).

cnf(38,axiom,
    strong_iteration(A) = addition(multiplication(A,strong_iteration(A)),one),
    file('KLE145-10.p',unknown),
    [] ).

cnf(40,plain,
    addition(multiplication(A,strong_iteration(A)),one) = strong_iteration(A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[38])]),
    [iquote('copy,38,flip.1')] ).

cnf(43,axiom,
    strong_iteration(A) = addition(star(A),multiplication(strong_iteration(A),zero)),
    file('KLE145-10.p',unknown),
    [] ).

cnf(44,plain,
    addition(star(A),multiplication(strong_iteration(A),zero)) = strong_iteration(A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[43])]),
    [iquote('copy,43,flip.1')] ).

cnf(46,axiom,
    ife_q2(le_q(A,B),true,addition(A,B),B) = B,
    file('KLE145-10.p',unknown),
    [] ).

cnf(48,axiom,
    ife_q3(addition(A,B),B,le_q(A,B),true) = true,
    file('KLE145-10.p',unknown),
    [] ).

cnf(50,plain,
    addition(zero,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[9,13])]),
    [iquote('para_into,9.1.1,13.1.1,flip.1')] ).

cnf(52,plain,
    addition(A,addition(A,B)) = addition(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[11,15])]),
    [iquote('para_into,11.1.1.1,15.1.1,flip.1')] ).

cnf(65,plain,
    addition(one,addition(multiplication(A,star(A)),B)) = addition(star(A),B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[31,11])]),
    [iquote('para_from,30.1.1,11.1.1.1,flip.1')] ).

cnf(86,plain,
    addition(one,multiplication(A,strong_iteration(A))) = strong_iteration(A),
    inference(para_into,[status(thm),theory(equality)],[40,9]),
    [iquote('para_into,39.1.1,9.1.1')] ).

cnf(93,plain,
    addition(multiplication(A,zero),multiplication(A,B)) = multiplication(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[24,50])]),
    [iquote('para_into,24.1.1.2,50.1.1,flip.1')] ).

cnf(115,plain,
    addition(multiplication(A,strong_iteration(A)),strong_iteration(A)) = strong_iteration(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[52,40]),40]),
    [iquote('para_into,52.1.1.2,39.1.1,demod,40')] ).

cnf(117,plain,
    addition(one,star(A)) = star(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[52,33]),33]),
    [iquote('para_into,52.1.1.2,32.1.1,demod,33')] ).

cnf(123,plain,
    addition(star(A),one) = star(A),
    inference(para_into,[status(thm),theory(equality)],[117,9]),
    [iquote('para_into,117.1.1,9.1.1')] ).

cnf(148,plain,
    addition(multiplication(star(A),B),B) = multiplication(star(A),B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[123,26]),23])]),
    [iquote('para_from,123.1.1,26.1.1.1,demod,23,flip.1')] ).

cnf(151,plain,
    addition(multiplication(A,star(B)),A) = multiplication(A,star(B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[123,24]),21])]),
    [iquote('para_from,123.1.1,24.1.1.2,demod,21,flip.1')] ).

cnf(179,plain,
    addition(one,strong_iteration(A)) = strong_iteration(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[86,52]),86]),
    [iquote('para_from,85.1.1,52.1.1.2,demod,86')] ).

cnf(213,plain,
    ife_q(le_q(addition(multiplication(A,B),one),B),true,le_q(star(A),B),true) = true,
    inference(para_into,[status(thm),theory(equality)],[34,21]),
    [iquote('para_into,34.1.1.3.1,20.1.1')] ).

cnf(216,plain,
    addition(strong_iteration(A),one) = strong_iteration(A),
    inference(para_into,[status(thm),theory(equality)],[179,9]),
    [iquote('para_into,179.1.1,9.1.1')] ).

cnf(241,plain,
    multiplication(strong_iteration(A),B) = addition(multiplication(star(A),B),multiplication(strong_iteration(A),zero)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[44,26]),19,29]),
    [iquote('para_from,44.1.1,26.1.1.1,demod,19,29')] ).

cnf(246,plain,
    addition(multiplication(star(A),B),multiplication(strong_iteration(A),zero)) = multiplication(strong_iteration(A),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[241])]),
    [iquote('copy,241,flip.1')] ).

cnf(301,plain,
    ife_q(le_q(strong_iteration(A),strong_iteration(A)),true,le_q(multiplication(star(A),strong_iteration(A)),strong_iteration(A)),true) = true,
    inference(para_from,[status(thm),theory(equality)],[115,34]),
    [iquote('para_from,115.1.1,34.1.1.1.1')] ).

cnf(451,plain,
    ife_q2(le_q(A,B),true,addition(B,A),B) = B,
    inference(para_into,[status(thm),theory(equality)],[46,9]),
    [iquote('para_into,46.1.1.3,9.1.1')] ).

cnf(512,plain,
    le_q(A,A) = true,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[48,15]),4]),
    [iquote('para_into,48.1.1.1,15.1.1,demod,4')] ).

cnf(529,plain,
    le_q(multiplication(star(A),strong_iteration(A)),strong_iteration(A)) = true,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[301]),512,8]),
    [iquote('back_demod,301,demod,512,8')] ).

cnf(743,plain,
    multiplication(star(A),strong_iteration(A)) = strong_iteration(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[529,46]),148,6]),
    [iquote('para_from,529.1.1,46.1.1.1,demod,148,6')] ).

cnf(751,plain,
    addition(multiplication(A,zero),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[93,21]),21]),
    [iquote('para_into,93.1.1.2,20.1.1,demod,21')] ).

cnf(760,plain,
    addition(A,multiplication(A,zero)) = A,
    inference(para_into,[status(thm),theory(equality)],[751,9]),
    [iquote('para_into,751.1.1,9.1.1')] ).

cnf(997,plain,
    addition(star(A),A) = star(A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[151,65]),31])]),
    [iquote('para_from,151.1.1,65.1.1.2,demod,31,flip.1')] ).

cnf(1000,plain,
    addition(A,star(A)) = star(A),
    inference(para_into,[status(thm),theory(equality)],[997,9]),
    [iquote('para_into,997.1.1,9.1.1')] ).

cnf(1231,plain,
    multiplication(strong_iteration(A),strong_iteration(A)) = strong_iteration(A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[246,743]),760])]),
    [iquote('para_into,246.1.1.1,743.1.1,demod,760,flip.1')] ).

cnf(1235,plain,
    le_q(star(strong_iteration(A)),strong_iteration(A)) = true,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[1231,213]),216,512,8]),
    [iquote('para_from,1231.1.1,213.1.1.1.1.1,demod,216,512,8')] ).

cnf(1237,plain,
    star(strong_iteration(A)) = strong_iteration(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[1235,451]),1000,6]),
    [iquote('para_from,1235.1.1,451.1.1.1,demod,1000,6')] ).

cnf(1239,plain,
    $false,
    inference(binary,[status(thm)],[1237,1]),
    [iquote('binary,1237.1,1.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.12  % Problem  : KLE145-10 : TPTP v8.1.0. Released v7.3.0.
% 0.12/0.13  % Command  : otter-tptp-script %s
% 0.13/0.34  % Computer : n003.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Wed Jul 27 06:29:26 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 1.57/1.81  ----- Otter 3.3f, August 2004 -----
% 1.57/1.81  The process was started by sandbox2 on n003.cluster.edu,
% 1.57/1.81  Wed Jul 27 06:29:26 2022
% 1.57/1.81  The command was "./otter".  The process ID is 9330.
% 1.57/1.81  
% 1.57/1.81  set(prolog_style_variables).
% 1.57/1.81  set(auto).
% 1.57/1.81     dependent: set(auto1).
% 1.57/1.81     dependent: set(process_input).
% 1.57/1.81     dependent: clear(print_kept).
% 1.57/1.81     dependent: clear(print_new_demod).
% 1.57/1.81     dependent: clear(print_back_demod).
% 1.57/1.81     dependent: clear(print_back_sub).
% 1.57/1.81     dependent: set(control_memory).
% 1.57/1.81     dependent: assign(max_mem, 12000).
% 1.57/1.81     dependent: assign(pick_given_ratio, 4).
% 1.57/1.81     dependent: assign(stats_level, 1).
% 1.57/1.81     dependent: assign(max_seconds, 10800).
% 1.57/1.81  clear(print_given).
% 1.57/1.81  
% 1.57/1.81  list(usable).
% 1.57/1.81  0 [] A=A.
% 1.57/1.81  0 [] ife_q3(A,A,B,C)=B.
% 1.57/1.81  0 [] ife_q2(A,A,B,C)=B.
% 1.57/1.81  0 [] ife_q(A,A,B,C)=B.
% 1.57/1.81  0 [] addition(A,B)=addition(B,A).
% 1.57/1.81  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.57/1.81  0 [] addition(A,zero)=A.
% 1.57/1.81  0 [] addition(A,A)=A.
% 1.57/1.81  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.57/1.81  0 [] multiplication(A,one)=A.
% 1.57/1.81  0 [] multiplication(one,A)=A.
% 1.57/1.81  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.57/1.81  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.57/1.81  0 [] multiplication(zero,A)=zero.
% 1.57/1.81  0 [] addition(one,multiplication(A,star(A)))=star(A).
% 1.57/1.81  0 [] addition(one,multiplication(star(A),A))=star(A).
% 1.57/1.81  0 [] ife_q(le_q(addition(multiplication(A,C),B),C),true,le_q(multiplication(star(A),B),C),true)=true.
% 1.57/1.81  0 [] ife_q(le_q(addition(multiplication(C,A),B),C),true,le_q(multiplication(B,star(A)),C),true)=true.
% 1.57/1.81  0 [] strong_iteration(A)=addition(multiplication(A,strong_iteration(A)),one).
% 1.57/1.81  0 [] ife_q(le_q(C,addition(multiplication(A,C),B)),true,le_q(C,multiplication(strong_iteration(A),B)),true)=true.
% 1.57/1.81  0 [] strong_iteration(A)=addition(star(A),multiplication(strong_iteration(A),zero)).
% 1.57/1.81  0 [] ife_q2(le_q(A,B),true,addition(A,B),B)=B.
% 1.57/1.81  0 [] ife_q3(addition(A,B),B,le_q(A,B),true)=true.
% 1.57/1.81  0 [] star(strong_iteration(sK1_goals_X0))!=strong_iteration(sK1_goals_X0).
% 1.57/1.81  end_of_list.
% 1.57/1.81  
% 1.57/1.81  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.57/1.81  
% 1.57/1.81  All clauses are units, and equality is present; the
% 1.57/1.81  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.57/1.81  
% 1.57/1.81     dependent: set(knuth_bendix).
% 1.57/1.81     dependent: set(anl_eq).
% 1.57/1.81     dependent: set(para_from).
% 1.57/1.81     dependent: set(para_into).
% 1.57/1.81     dependent: clear(para_from_right).
% 1.57/1.81     dependent: clear(para_into_right).
% 1.57/1.81     dependent: set(para_from_vars).
% 1.57/1.81     dependent: set(eq_units_both_ways).
% 1.57/1.81     dependent: set(dynamic_demod_all).
% 1.57/1.81     dependent: set(dynamic_demod).
% 1.57/1.81     dependent: set(order_eq).
% 1.57/1.81     dependent: set(back_demod).
% 1.57/1.81     dependent: set(lrpo).
% 1.57/1.81  
% 1.57/1.81  ------------> process usable:
% 1.57/1.81  ** KEPT (pick-wt=6): 1 [] star(strong_iteration(sK1_goals_X0))!=strong_iteration(sK1_goals_X0).
% 1.57/1.81  
% 1.57/1.81  ------------> process sos:
% 1.57/1.81  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.57/1.81  ** KEPT (pick-wt=7): 3 [] ife_q3(A,A,B,C)=B.
% 1.57/1.81  ---> New Demodulator: 4 [new_demod,3] ife_q3(A,A,B,C)=B.
% 1.57/1.81  ** KEPT (pick-wt=7): 5 [] ife_q2(A,A,B,C)=B.
% 1.57/1.81  ---> New Demodulator: 6 [new_demod,5] ife_q2(A,A,B,C)=B.
% 1.57/1.81  ** KEPT (pick-wt=7): 7 [] ife_q(A,A,B,C)=B.
% 1.57/1.81  ---> New Demodulator: 8 [new_demod,7] ife_q(A,A,B,C)=B.
% 1.57/1.81  ** KEPT (pick-wt=7): 9 [] addition(A,B)=addition(B,A).
% 1.57/1.81  ** KEPT (pick-wt=11): 11 [copy,10,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.57/1.81  ---> New Demodulator: 12 [new_demod,11] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.57/1.81  ** KEPT (pick-wt=5): 13 [] addition(A,zero)=A.
% 1.57/1.81  ---> New Demodulator: 14 [new_demod,13] addition(A,zero)=A.
% 1.57/1.81  ** KEPT (pick-wt=5): 15 [] addition(A,A)=A.
% 1.57/1.81  ---> New Demodulator: 16 [new_demod,15] addition(A,A)=A.
% 1.57/1.81  ** KEPT (pick-wt=11): 18 [copy,17,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.57/1.81  ---> New Demodulator: 19 [new_demod,18] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.57/1.81  ** KEPT (pick-wt=5): 20 [] multiplication(A,one)=A.
% 1.57/1.81  ---> New Demodulator: 21 [new_demod,20] multiplication(A,one)=A.
% 1.57/1.81  ** KEPT (pick-wt=5): 22 [] multiplication(one,A)=A.
% 1.57/1.81  ---> New Demodulator: 23 [new_demod,22] multiplication(one,A)=A.
% 1.57/1.81  ** KEPT (pick-wt=13): 24 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.73/1.97  ---> New Demodulator: 25 [new_demod,24] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.73/1.97  ** KEPT (pick-wt=13): 26 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.73/1.97  ---> New Demodulator: 27 [new_demod,26] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.73/1.97  ** KEPT (pick-wt=5): 28 [] multiplication(zero,A)=zero.
% 1.73/1.97  ---> New Demodulator: 29 [new_demod,28] multiplication(zero,A)=zero.
% 1.73/1.97  ** KEPT (pick-wt=9): 30 [] addition(one,multiplication(A,star(A)))=star(A).
% 1.73/1.97  ---> New Demodulator: 31 [new_demod,30] addition(one,multiplication(A,star(A)))=star(A).
% 1.73/1.97  ** KEPT (pick-wt=9): 32 [] addition(one,multiplication(star(A),A))=star(A).
% 1.73/1.97  ---> New Demodulator: 33 [new_demod,32] addition(one,multiplication(star(A),A))=star(A).
% 1.73/1.97  ** KEPT (pick-wt=18): 34 [] ife_q(le_q(addition(multiplication(A,B),C),B),true,le_q(multiplication(star(A),C),B),true)=true.
% 1.73/1.97  ---> New Demodulator: 35 [new_demod,34] ife_q(le_q(addition(multiplication(A,B),C),B),true,le_q(multiplication(star(A),C),B),true)=true.
% 1.73/1.97  ** KEPT (pick-wt=18): 36 [] ife_q(le_q(addition(multiplication(A,B),C),A),true,le_q(multiplication(C,star(B)),A),true)=true.
% 1.73/1.97  ---> New Demodulator: 37 [new_demod,36] ife_q(le_q(addition(multiplication(A,B),C),A),true,le_q(multiplication(C,star(B)),A),true)=true.
% 1.73/1.97  ** KEPT (pick-wt=9): 39 [copy,38,flip.1] addition(multiplication(A,strong_iteration(A)),one)=strong_iteration(A).
% 1.73/1.97  ---> New Demodulator: 40 [new_demod,39] addition(multiplication(A,strong_iteration(A)),one)=strong_iteration(A).
% 1.73/1.97  ** KEPT (pick-wt=18): 41 [] ife_q(le_q(A,addition(multiplication(B,A),C)),true,le_q(A,multiplication(strong_iteration(B),C)),true)=true.
% 1.73/1.97  ---> New Demodulator: 42 [new_demod,41] ife_q(le_q(A,addition(multiplication(B,A),C)),true,le_q(A,multiplication(strong_iteration(B),C)),true)=true.
% 1.73/1.97  ** KEPT (pick-wt=10): 44 [copy,43,flip.1] addition(star(A),multiplication(strong_iteration(A),zero))=strong_iteration(A).
% 1.73/1.97  ---> New Demodulator: 45 [new_demod,44] addition(star(A),multiplication(strong_iteration(A),zero))=strong_iteration(A).
% 1.73/1.97  ** KEPT (pick-wt=11): 46 [] ife_q2(le_q(A,B),true,addition(A,B),B)=B.
% 1.73/1.97  ---> New Demodulator: 47 [new_demod,46] ife_q2(le_q(A,B),true,addition(A,B),B)=B.
% 1.73/1.97  ** KEPT (pick-wt=11): 48 [] ife_q3(addition(A,B),B,le_q(A,B),true)=true.
% 1.73/1.97  ---> New Demodulator: 49 [new_demod,48] ife_q3(addition(A,B),B,le_q(A,B),true)=true.
% 1.73/1.97    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.73/1.97  >>>> Starting back demodulation with 4.
% 1.73/1.97  >>>> Starting back demodulation with 6.
% 1.73/1.97  >>>> Starting back demodulation with 8.
% 1.73/1.97    Following clause subsumed by 9 during input processing: 0 [copy,9,flip.1] addition(A,B)=addition(B,A).
% 1.73/1.97  >>>> Starting back demodulation with 12.
% 1.73/1.97  >>>> Starting back demodulation with 14.
% 1.73/1.97  >>>> Starting back demodulation with 16.
% 1.73/1.97  >>>> Starting back demodulation with 19.
% 1.73/1.97  >>>> Starting back demodulation with 21.
% 1.73/1.97  >>>> Starting back demodulation with 23.
% 1.73/1.97  >>>> Starting back demodulation with 25.
% 1.73/1.97  >>>> Starting back demodulation with 27.
% 1.73/1.97  >>>> Starting back demodulation with 29.
% 1.73/1.97  >>>> Starting back demodulation with 31.
% 1.73/1.97  >>>> Starting back demodulation with 33.
% 1.73/1.97  >>>> Starting back demodulation with 35.
% 1.73/1.97  >>>> Starting back demodulation with 37.
% 1.73/1.97  >>>> Starting back demodulation with 40.
% 1.73/1.97  >>>> Starting back demodulation with 42.
% 1.73/1.97  >>>> Starting back demodulation with 45.
% 1.73/1.97  >>>> Starting back demodulation with 47.
% 1.73/1.97  >>>> Starting back demodulation with 49.
% 1.73/1.97  
% 1.73/1.97  ======= end of input processing =======
% 1.73/1.97  
% 1.73/1.97  =========== start of search ===========
% 1.73/1.97  
% 1.73/1.97  
% 1.73/1.97  Resetting weight limit to 11.
% 1.73/1.97  
% 1.73/1.97  
% 1.73/1.97  Resetting weight limit to 11.
% 1.73/1.97  
% 1.73/1.97  sos_size=253
% 1.73/1.97  
% 1.73/1.97  
% 1.73/1.97  Resetting weight limit to 10.
% 1.73/1.97  
% 1.73/1.97  
% 1.73/1.97  Resetting weight limit to 10.
% 1.73/1.97  
% 1.73/1.97  sos_size=264
% 1.73/1.97  
% 1.73/1.97  
% 1.73/1.97  Resetting weight limit to 9.
% 1.73/1.97  
% 1.73/1.97  
% 1.73/1.97  Resetting weight limit to 9.
% 1.73/1.97  
% 1.73/1.97  sos_size=273
% 1.73/1.97  
% 1.73/1.97  -------- PROOF -------- 
% 1.73/1.97  
% 1.73/1.97  ----> UNIT CONFLICT at   0.16 sec ----> 1239 [binary,1237.1,1.1] $F.
% 1.73/1.97  
% 1.73/1.97  Length of proof is 31.  Level of proof is 9.
% 1.73/1.97  
% 1.73/1.97  ---------------- PROOF ----------------
% 1.73/1.97  % SZS status Unsatisfiable
% 1.73/1.97  % SZS output start Refutation
% See solution above
% 1.73/1.97  ------------ end of proof -------------
% 1.73/1.97  
% 1.73/1.97  
% 1.73/1.97  Search stopped by max_proofs option.
% 1.73/1.97  
% 1.73/1.97  
% 1.73/1.97  Search stopped by max_proofs option.
% 1.73/1.97  
% 1.73/1.97  ============ end of search ============
% 1.73/1.97  
% 1.73/1.97  -------------- statistics -------------
% 1.73/1.97  clauses given                379
% 1.73/1.97  clauses generated          20563
% 1.73/1.97  clauses kept                 637
% 1.73/1.97  clauses forward subsumed   11837
% 1.73/1.97  clauses back subsumed          0
% 1.73/1.97  Kbytes malloced             6835
% 1.73/1.97  
% 1.73/1.97  ----------- times (seconds) -----------
% 1.73/1.97  user CPU time          0.16          (0 hr, 0 min, 0 sec)
% 1.73/1.97  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.73/1.97  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.73/1.97  
% 1.73/1.97  That finishes the proof of the theorem.
% 1.73/1.97  
% 1.73/1.97  Process 9330 finished Wed Jul 27 06:29:28 2022
% 1.73/1.97  Otter interrupted
% 1.73/1.97  PROOF FOUND
%------------------------------------------------------------------------------