TSTP Solution File: KLE144+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE144+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:50 EDT 2022

% Result   : Theorem 2.52s 2.72s
% Output   : Refutation 2.52s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :   14
% Syntax   : Number of clauses     :   44 (  31 unt;   0 nHn;  12 RR)
%            Number of literals    :   59 (  23 equ;  16 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   3 con; 0-2 aty)
%            Number of variables   :   79 (  22 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(3,axiom,
    ( ~ le_q(A,addition(multiplication(B,A),C))
    | le_q(A,multiplication(strong_iteration(B),C)) ),
    file('KLE144+1.p',unknown),
    [] ).

cnf(4,axiom,
    ( ~ le_q(A,B)
    | addition(A,B) = B ),
    file('KLE144+1.p',unknown),
    [] ).

cnf(5,axiom,
    ( le_q(A,B)
    | addition(A,B) != B ),
    file('KLE144+1.p',unknown),
    [] ).

cnf(6,axiom,
    strong_iteration(star(dollar_c1)) != strong_iteration(one),
    file('KLE144+1.p',unknown),
    [] ).

cnf(8,axiom,
    addition(A,B) = addition(B,A),
    file('KLE144+1.p',unknown),
    [] ).

cnf(9,axiom,
    addition(A,addition(B,C)) = addition(addition(A,B),C),
    file('KLE144+1.p',unknown),
    [] ).

cnf(10,plain,
    addition(addition(A,B),C) = addition(A,addition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9])]),
    [iquote('copy,9,flip.1')] ).

cnf(12,axiom,
    addition(A,zero) = A,
    file('KLE144+1.p',unknown),
    [] ).

cnf(14,axiom,
    addition(A,A) = A,
    file('KLE144+1.p',unknown),
    [] ).

cnf(20,axiom,
    multiplication(A,one) = A,
    file('KLE144+1.p',unknown),
    [] ).

cnf(21,axiom,
    multiplication(one,A) = A,
    file('KLE144+1.p',unknown),
    [] ).

cnf(25,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE144+1.p',unknown),
    [] ).

cnf(27,axiom,
    multiplication(zero,A) = zero,
    file('KLE144+1.p',unknown),
    [] ).

cnf(31,axiom,
    addition(one,multiplication(star(A),A)) = star(A),
    file('KLE144+1.p',unknown),
    [] ).

cnf(33,axiom,
    strong_iteration(A) = addition(multiplication(A,strong_iteration(A)),one),
    file('KLE144+1.p',unknown),
    [] ).

cnf(34,plain,
    addition(multiplication(A,strong_iteration(A)),one) = strong_iteration(A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[33])]),
    [iquote('copy,33,flip.1')] ).

cnf(51,plain,
    addition(zero,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,12])]),
    [iquote('para_into,8.1.1,12.1.1,flip.1')] ).

cnf(52,plain,
    ( addition(A,B) = A
    | ~ le_q(B,A) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,4])]),
    [iquote('para_into,8.1.1,4.2.1,flip.1')] ).

cnf(54,plain,
    ( ~ le_q(A,addition(B,multiplication(C,A)))
    | le_q(A,multiplication(strong_iteration(C),B)) ),
    inference(para_from,[status(thm),theory(equality)],[8,3]),
    [iquote('para_from,8.1.1,3.1.2')] ).

cnf(62,plain,
    ( ~ le_q(A,addition(A,B))
    | le_q(A,multiplication(strong_iteration(one),B)) ),
    inference(para_from,[status(thm),theory(equality)],[21,3]),
    [iquote('para_from,21.1.1,3.1.2.1')] ).

cnf(70,plain,
    addition(A,addition(A,B)) = addition(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[10,14])]),
    [iquote('para_into,10.1.1.1,14.1.1,flip.1')] ).

cnf(136,plain,
    ( ~ le_q(A,multiplication(B,A))
    | le_q(A,multiplication(strong_iteration(B),C))
    | ~ le_q(C,multiplication(B,A)) ),
    inference(para_from,[status(thm),theory(equality)],[52,3]),
    [iquote('para_from,52.1.1,3.1.2')] ).

cnf(148,plain,
    ( addition(multiplication(A,B),multiplication(C,B)) = multiplication(A,B)
    | ~ le_q(C,A) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[25,52])]),
    [iquote('para_into,25.1.1.1,52.1.1,flip.1')] ).

cnf(238,plain,
    strong_iteration(zero) = one,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[34,27]),51])]),
    [iquote('para_into,34.1.1.1,27.1.1,demod,51,flip.1')] ).

cnf(582,plain,
    le_q(A,addition(A,B)),
    inference(hyper,[status(thm)],[70,5]),
    [iquote('hyper,70,5')] ).

cnf(614,plain,
    le_q(A,multiplication(strong_iteration(B),A)),
    inference(hyper,[status(thm)],[582,54]),
    [iquote('hyper,582,54')] ).

cnf(620,plain,
    le_q(one,star(A)),
    inference(para_into,[status(thm),theory(equality)],[582,31]),
    [iquote('para_into,582.1.2,31.1.1')] ).

cnf(622,plain,
    le_q(A,addition(B,A)),
    inference(para_into,[status(thm),theory(equality)],[582,8]),
    [iquote('para_into,582.1.2,8.1.1')] ).

cnf(635,plain,
    le_q(one,strong_iteration(A)),
    inference(para_into,[status(thm),theory(equality)],[622,34]),
    [iquote('para_into,622.1.2,34.1.1')] ).

cnf(638,plain,
    le_q(A,addition(B,addition(C,A))),
    inference(para_into,[status(thm),theory(equality)],[622,10]),
    [iquote('para_into,622.1.2,10.1.1')] ).

cnf(771,plain,
    ( le_q(A,addition(B,C))
    | ~ le_q(A,C) ),
    inference(para_into,[status(thm),theory(equality)],[638,52]),
    [iquote('para_into,638.1.2.2,52.1.1')] ).

cnf(861,plain,
    le_q(A,multiplication(strong_iteration(one),B)),
    inference(hyper,[status(thm)],[62,582]),
    [iquote('hyper,62,582')] ).

cnf(867,plain,
    le_q(A,strong_iteration(one)),
    inference(para_into,[status(thm),theory(equality)],[861,20]),
    [iquote('para_into,861.1.2,19.1.1')] ).

cnf(868,plain,
    addition(strong_iteration(one),A) = strong_iteration(one),
    inference(hyper,[status(thm)],[867,52]),
    [iquote('hyper,867,52')] ).

cnf(997,plain,
    ( ~ le_q(strong_iteration(one),A)
    | strong_iteration(one) = A ),
    inference(para_from,[status(thm),theory(equality)],[868,4]),
    [iquote('para_from,868.1.1,4.2.1')] ).

cnf(1138,plain,
    le_q(A,addition(B,multiplication(strong_iteration(C),A))),
    inference(hyper,[status(thm)],[771,614]),
    [iquote('hyper,771,614')] ).

cnf(1144,plain,
    ( le_q(A,B)
    | ~ le_q(A,C)
    | ~ le_q(C,B) ),
    inference(para_into,[status(thm),theory(equality)],[771,52]),
    [iquote('para_into,771.1.2,52.1.1')] ).

cnf(2809,plain,
    ( le_q(A,multiplication(B,A))
    | ~ le_q(strong_iteration(C),B) ),
    inference(para_from,[status(thm),theory(equality)],[148,1138]),
    [iquote('para_from,148.1.1,1138.1.2')] ).

cnf(2844,plain,
    ( le_q(A,multiplication(B,A))
    | ~ le_q(one,B) ),
    inference(para_into,[status(thm),theory(equality)],[2809,238]),
    [iquote('para_into,2809.2.1,238.1.1')] ).

cnf(2849,plain,
    le_q(A,multiplication(star(B),A)),
    inference(hyper,[status(thm)],[2844,620]),
    [iquote('hyper,2844,620')] ).

cnf(2862,plain,
    le_q(one,multiplication(star(A),strong_iteration(B))),
    inference(hyper,[status(thm)],[2849,1144,635]),
    [iquote('hyper,2849,1144,635')] ).

cnf(3179,plain,
    le_q(strong_iteration(A),strong_iteration(star(B))),
    inference(demod,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[2862,136,2849]),20]),
    [iquote('hyper,2862,136,2849,demod,20')] ).

cnf(3186,plain,
    strong_iteration(star(A)) = strong_iteration(one),
    inference(flip,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[3179,997])]),
    [iquote('hyper,3179,997,flip.1')] ).

cnf(3188,plain,
    $false,
    inference(binary,[status(thm)],[3186,6]),
    [iquote('binary,3186.1,6.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : KLE144+1 : TPTP v8.1.0. Released v4.0.0.
% 0.10/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n011.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 06:29:40 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.82/2.04  ----- Otter 3.3f, August 2004 -----
% 1.82/2.04  The process was started by sandbox2 on n011.cluster.edu,
% 1.82/2.04  Wed Jul 27 06:29:41 2022
% 1.82/2.04  The command was "./otter".  The process ID is 22170.
% 1.82/2.04  
% 1.82/2.04  set(prolog_style_variables).
% 1.82/2.04  set(auto).
% 1.82/2.04     dependent: set(auto1).
% 1.82/2.04     dependent: set(process_input).
% 1.82/2.04     dependent: clear(print_kept).
% 1.82/2.04     dependent: clear(print_new_demod).
% 1.82/2.04     dependent: clear(print_back_demod).
% 1.82/2.04     dependent: clear(print_back_sub).
% 1.82/2.04     dependent: set(control_memory).
% 1.82/2.04     dependent: assign(max_mem, 12000).
% 1.82/2.04     dependent: assign(pick_given_ratio, 4).
% 1.82/2.04     dependent: assign(stats_level, 1).
% 1.82/2.04     dependent: assign(max_seconds, 10800).
% 1.82/2.04  clear(print_given).
% 1.82/2.04  
% 1.82/2.04  formula_list(usable).
% 1.82/2.04  all A (A=A).
% 1.82/2.04  all A B (addition(A,B)=addition(B,A)).
% 1.82/2.04  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.82/2.04  all A (addition(A,zero)=A).
% 1.82/2.04  all A (addition(A,A)=A).
% 1.82/2.04  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.82/2.04  all A (multiplication(A,one)=A).
% 1.82/2.04  all A (multiplication(one,A)=A).
% 1.82/2.04  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.82/2.04  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.82/2.04  all A (multiplication(zero,A)=zero).
% 1.82/2.04  all A (addition(one,multiplication(A,star(A)))=star(A)).
% 1.82/2.04  all A (addition(one,multiplication(star(A),A))=star(A)).
% 1.82/2.04  all A B C (le_q(addition(multiplication(A,C),B),C)->le_q(multiplication(star(A),B),C)).
% 1.82/2.04  all A B C (le_q(addition(multiplication(C,A),B),C)->le_q(multiplication(B,star(A)),C)).
% 1.82/2.04  all A (strong_iteration(A)=addition(multiplication(A,strong_iteration(A)),one)).
% 1.82/2.04  all A B C (le_q(C,addition(multiplication(A,C),B))->le_q(C,multiplication(strong_iteration(A),B))).
% 1.82/2.04  all A (strong_iteration(A)=addition(star(A),multiplication(strong_iteration(A),zero))).
% 1.82/2.04  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.82/2.04  -(all X0 (strong_iteration(star(X0))=strong_iteration(one))).
% 1.82/2.04  end_of_list.
% 1.82/2.04  
% 1.82/2.04  -------> usable clausifies to:
% 1.82/2.04  
% 1.82/2.04  list(usable).
% 1.82/2.04  0 [] A=A.
% 1.82/2.04  0 [] addition(A,B)=addition(B,A).
% 1.82/2.04  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.82/2.04  0 [] addition(A,zero)=A.
% 1.82/2.04  0 [] addition(A,A)=A.
% 1.82/2.04  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.82/2.04  0 [] multiplication(A,one)=A.
% 1.82/2.04  0 [] multiplication(one,A)=A.
% 1.82/2.04  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.82/2.04  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.82/2.04  0 [] multiplication(zero,A)=zero.
% 1.82/2.04  0 [] addition(one,multiplication(A,star(A)))=star(A).
% 1.82/2.04  0 [] addition(one,multiplication(star(A),A))=star(A).
% 1.82/2.04  0 [] -le_q(addition(multiplication(A,C),B),C)|le_q(multiplication(star(A),B),C).
% 1.82/2.04  0 [] -le_q(addition(multiplication(C,A),B),C)|le_q(multiplication(B,star(A)),C).
% 1.82/2.04  0 [] strong_iteration(A)=addition(multiplication(A,strong_iteration(A)),one).
% 1.82/2.04  0 [] -le_q(C,addition(multiplication(A,C),B))|le_q(C,multiplication(strong_iteration(A),B)).
% 1.82/2.04  0 [] strong_iteration(A)=addition(star(A),multiplication(strong_iteration(A),zero)).
% 1.82/2.04  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.82/2.04  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.82/2.04  0 [] strong_iteration(star($c1))!=strong_iteration(one).
% 1.82/2.04  end_of_list.
% 1.82/2.04  
% 1.82/2.04  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 1.82/2.04  
% 1.82/2.04  This is a Horn set with equality.  The strategy will be
% 1.82/2.04  Knuth-Bendix and hyper_res, with positive clauses in
% 1.82/2.04  sos and nonpositive clauses in usable.
% 1.82/2.04  
% 1.82/2.04     dependent: set(knuth_bendix).
% 1.82/2.04     dependent: set(anl_eq).
% 1.82/2.04     dependent: set(para_from).
% 1.82/2.04     dependent: set(para_into).
% 1.82/2.04     dependent: clear(para_from_right).
% 1.82/2.04     dependent: clear(para_into_right).
% 1.82/2.04     dependent: set(para_from_vars).
% 1.82/2.04     dependent: set(eq_units_both_ways).
% 1.82/2.04     dependent: set(dynamic_demod_all).
% 1.82/2.04     dependent: set(dynamic_demod).
% 1.82/2.04     dependent: set(order_eq).
% 1.82/2.04     dependent: set(back_demod).
% 1.82/2.04     dependent: set(lrpo).
% 1.82/2.04     dependent: set(hyper_res).
% 1.82/2.04     dependent: clear(order_hyper).
% 1.82/2.04  
% 1.82/2.04  ------------> process usable:
% 1.82/2.04  ** KEPT (pick-wt=13): 1 [] -le_q(addition(multiplication(A,B),C),B)|le_q(multiplication(star(A),C),B).
% 1.82/2.04  ** KEPT (pick-wt=13): 2 [] -le_q(addition(multiplication(A,B),C),A)|le_q(multiplication(C,star(B)),A).
% 1.82/2.04  ** KEPT (pick-wt=13): 3 [] -le_q(A,addition(multiplication(B,A),C))|le_q(A,multiplication(strong_iteration(B),C)).
% 2.52/2.72  ** KEPT (pick-wt=8): 4 [] -le_q(A,B)|addition(A,B)=B.
% 2.52/2.72  ** KEPT (pick-wt=8): 5 [] le_q(A,B)|addition(A,B)!=B.
% 2.52/2.72  ** KEPT (pick-wt=6): 6 [] strong_iteration(star($c1))!=strong_iteration(one).
% 2.52/2.72  
% 2.52/2.72  ------------> process sos:
% 2.52/2.72  ** KEPT (pick-wt=3): 7 [] A=A.
% 2.52/2.72  ** KEPT (pick-wt=7): 8 [] addition(A,B)=addition(B,A).
% 2.52/2.72  ** KEPT (pick-wt=11): 10 [copy,9,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 2.52/2.72  ---> New Demodulator: 11 [new_demod,10] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 2.52/2.72  ** KEPT (pick-wt=5): 12 [] addition(A,zero)=A.
% 2.52/2.72  ---> New Demodulator: 13 [new_demod,12] addition(A,zero)=A.
% 2.52/2.72  ** KEPT (pick-wt=5): 14 [] addition(A,A)=A.
% 2.52/2.72  ---> New Demodulator: 15 [new_demod,14] addition(A,A)=A.
% 2.52/2.72  ** KEPT (pick-wt=11): 17 [copy,16,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.52/2.72  ---> New Demodulator: 18 [new_demod,17] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.52/2.72  ** KEPT (pick-wt=5): 19 [] multiplication(A,one)=A.
% 2.52/2.72  ---> New Demodulator: 20 [new_demod,19] multiplication(A,one)=A.
% 2.52/2.72  ** KEPT (pick-wt=5): 21 [] multiplication(one,A)=A.
% 2.52/2.72  ---> New Demodulator: 22 [new_demod,21] multiplication(one,A)=A.
% 2.52/2.72  ** KEPT (pick-wt=13): 23 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.52/2.72  ---> New Demodulator: 24 [new_demod,23] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.52/2.72  ** KEPT (pick-wt=13): 25 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.52/2.72  ---> New Demodulator: 26 [new_demod,25] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.52/2.72  ** KEPT (pick-wt=5): 27 [] multiplication(zero,A)=zero.
% 2.52/2.72  ---> New Demodulator: 28 [new_demod,27] multiplication(zero,A)=zero.
% 2.52/2.72  ** KEPT (pick-wt=9): 29 [] addition(one,multiplication(A,star(A)))=star(A).
% 2.52/2.72  ---> New Demodulator: 30 [new_demod,29] addition(one,multiplication(A,star(A)))=star(A).
% 2.52/2.72  ** KEPT (pick-wt=9): 31 [] addition(one,multiplication(star(A),A))=star(A).
% 2.52/2.72  ---> New Demodulator: 32 [new_demod,31] addition(one,multiplication(star(A),A))=star(A).
% 2.52/2.72  ** KEPT (pick-wt=9): 34 [copy,33,flip.1] addition(multiplication(A,strong_iteration(A)),one)=strong_iteration(A).
% 2.52/2.72  ---> New Demodulator: 35 [new_demod,34] addition(multiplication(A,strong_iteration(A)),one)=strong_iteration(A).
% 2.52/2.72  ** KEPT (pick-wt=10): 37 [copy,36,flip.1] addition(star(A),multiplication(strong_iteration(A),zero))=strong_iteration(A).
% 2.52/2.72  ---> New Demodulator: 38 [new_demod,37] addition(star(A),multiplication(strong_iteration(A),zero))=strong_iteration(A).
% 2.52/2.72    Following clause subsumed by 7 during input processing: 0 [copy,7,flip.1] A=A.
% 2.52/2.72    Following clause subsumed by 8 during input processing: 0 [copy,8,flip.1] addition(A,B)=addition(B,A).
% 2.52/2.72  >>>> Starting back demodulation with 11.
% 2.52/2.72  >>>> Starting back demodulation with 13.
% 2.52/2.72  >>>> Starting back demodulation with 15.
% 2.52/2.72  >>>> Starting back demodulation with 18.
% 2.52/2.72  >>>> Starting back demodulation with 20.
% 2.52/2.72  >>>> Starting back demodulation with 22.
% 2.52/2.72  >>>> Starting back demodulation with 24.
% 2.52/2.72  >>>> Starting back demodulation with 26.
% 2.52/2.72  >>>> Starting back demodulation with 28.
% 2.52/2.72  >>>> Starting back demodulation with 30.
% 2.52/2.72  >>>> Starting back demodulation with 32.
% 2.52/2.72  >>>> Starting back demodulation with 35.
% 2.52/2.72  >>>> Starting back demodulation with 38.
% 2.52/2.72  
% 2.52/2.72  ======= end of input processing =======
% 2.52/2.72  
% 2.52/2.72  =========== start of search ===========
% 2.52/2.72  
% 2.52/2.72  
% 2.52/2.72  Resetting weight limit to 9.
% 2.52/2.72  
% 2.52/2.72  
% 2.52/2.72  Resetting weight limit to 9.
% 2.52/2.72  
% 2.52/2.72  sos_size=1758
% 2.52/2.72  
% 2.52/2.72  
% 2.52/2.72  Resetting weight limit to 8.
% 2.52/2.72  
% 2.52/2.72  
% 2.52/2.72  Resetting weight limit to 8.
% 2.52/2.72  
% 2.52/2.72  sos_size=1697
% 2.52/2.72  
% 2.52/2.72  -------- PROOF -------- 
% 2.52/2.72  
% 2.52/2.72  ----> UNIT CONFLICT at   0.68 sec ----> 3188 [binary,3186.1,6.1] $F.
% 2.52/2.72  
% 2.52/2.72  Length of proof is 29.  Level of proof is 13.
% 2.52/2.72  
% 2.52/2.72  ---------------- PROOF ----------------
% 2.52/2.72  % SZS status Theorem
% 2.52/2.72  % SZS output start Refutation
% See solution above
% 2.52/2.72  ------------ end of proof -------------
% 2.52/2.72  
% 2.52/2.72  
% 2.52/2.72  Search stopped by max_proofs option.
% 2.52/2.72  
% 2.52/2.72  
% 2.52/2.72  Search stopped by max_proofs option.
% 2.52/2.72  
% 2.52/2.72  ============ end of search ============
% 2.52/2.72  
% 2.52/2.72  -------------- statistics -------------
% 2.52/2.72  clauses given                507
% 2.52/2.72  clauses generated          58596
% 2.52/2.72  clauses kept                2977
% 2.52/2.72  clauses forward subsumed   21603
% 2.52/2.72  clauses back subsumed        561
% 2.52/2.72  Kbytes malloced             5859
% 2.52/2.72  
% 2.52/2.72  ----------- times (seconds) -----------
% 2.52/2.72  user CPU time          0.68          (0 hr, 0 min, 0 sec)
% 2.52/2.72  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.52/2.72  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.52/2.72  
% 2.52/2.72  That finishes the proof of the theorem.
% 2.52/2.72  
% 2.52/2.72  Process 22170 finished Wed Jul 27 06:29:43 2022
% 2.52/2.72  Otter interrupted
% 2.52/2.72  PROOF FOUND
%------------------------------------------------------------------------------