TSTP Solution File: KLE119+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : KLE119+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 05:35:57 EDT 2023

% Result   : Theorem 0.13s 0.40s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : KLE119+1 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n019.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Tue Aug 29 11:57:42 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.13/0.40  Command-line arguments: --no-flatten-goal
% 0.13/0.40  
% 0.13/0.40  % SZS status Theorem
% 0.13/0.40  
% 0.13/0.40  % SZS output start Proof
% 0.13/0.40  Take the following subset of the input axioms:
% 0.19/0.40    fof(additive_commutativity, axiom, ![A, B]: addition(A, B)=addition(B, A)).
% 0.19/0.40    fof(additive_identity, axiom, ![A2]: addition(A2, zero)=A2).
% 0.19/0.40    fof(backward_diamond, axiom, ![X0, X1]: backward_diamond(X0, X1)=codomain(multiplication(codomain(X1), X0))).
% 0.19/0.40    fof(codomain1, axiom, ![X0_2]: multiplication(X0_2, coantidomain(X0_2))=zero).
% 0.19/0.40    fof(codomain3, axiom, ![X0_2]: addition(coantidomain(coantidomain(X0_2)), coantidomain(X0_2))=one).
% 0.19/0.40    fof(codomain4, axiom, ![X0_2]: codomain(X0_2)=coantidomain(coantidomain(X0_2))).
% 0.19/0.40    fof(goals, conjecture, ![X0_2, X1_2]: addition(backward_diamond(zero, domain(X0_2)), domain(X1_2))=domain(X1_2)).
% 0.19/0.40    fof(multiplicative_left_identity, axiom, ![A2]: multiplication(one, A2)=A2).
% 0.19/0.40    fof(right_annihilation, axiom, ![A2]: multiplication(A2, zero)=zero).
% 0.19/0.40  
% 0.19/0.40  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.19/0.40  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.19/0.40  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.19/0.40    fresh(y, y, x1...xn) = u
% 0.19/0.40    C => fresh(s, t, x1...xn) = v
% 0.19/0.40  where fresh is a fresh function symbol and x1..xn are the free
% 0.19/0.40  variables of u and v.
% 0.19/0.40  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.19/0.40  input problem has no model of domain size 1).
% 0.19/0.40  
% 0.19/0.40  The encoding turns the above axioms into the following unit equations and goals:
% 0.19/0.40  
% 0.19/0.40  Axiom 1 (codomain4): codomain(X) = coantidomain(coantidomain(X)).
% 0.19/0.40  Axiom 2 (additive_commutativity): addition(X, Y) = addition(Y, X).
% 0.19/0.40  Axiom 3 (additive_identity): addition(X, zero) = X.
% 0.19/0.40  Axiom 4 (right_annihilation): multiplication(X, zero) = zero.
% 0.19/0.40  Axiom 5 (multiplicative_left_identity): multiplication(one, X) = X.
% 0.19/0.40  Axiom 6 (codomain1): multiplication(X, coantidomain(X)) = zero.
% 0.19/0.40  Axiom 7 (backward_diamond): backward_diamond(X, Y) = codomain(multiplication(codomain(Y), X)).
% 0.19/0.40  Axiom 8 (codomain3): addition(coantidomain(coantidomain(X)), coantidomain(X)) = one.
% 0.19/0.40  
% 0.19/0.40  Lemma 9: coantidomain(one) = zero.
% 0.19/0.40  Proof:
% 0.19/0.40    coantidomain(one)
% 0.19/0.40  = { by axiom 5 (multiplicative_left_identity) R->L }
% 0.19/0.40    multiplication(one, coantidomain(one))
% 0.19/0.40  = { by axiom 6 (codomain1) }
% 0.19/0.40    zero
% 0.19/0.40  
% 0.19/0.40  Goal 1 (goals): addition(backward_diamond(zero, domain(x0)), domain(x1)) = domain(x1).
% 0.19/0.40  Proof:
% 0.19/0.40    addition(backward_diamond(zero, domain(x0)), domain(x1))
% 0.19/0.40  = { by axiom 2 (additive_commutativity) }
% 0.19/0.40    addition(domain(x1), backward_diamond(zero, domain(x0)))
% 0.19/0.40  = { by axiom 7 (backward_diamond) }
% 0.19/0.40    addition(domain(x1), codomain(multiplication(codomain(domain(x0)), zero)))
% 0.19/0.40  = { by axiom 4 (right_annihilation) }
% 0.19/0.40    addition(domain(x1), codomain(zero))
% 0.19/0.40  = { by axiom 2 (additive_commutativity) }
% 0.19/0.40    addition(codomain(zero), domain(x1))
% 0.19/0.40  = { by axiom 1 (codomain4) }
% 0.19/0.40    addition(coantidomain(coantidomain(zero)), domain(x1))
% 0.19/0.40  = { by lemma 9 R->L }
% 0.19/0.40    addition(coantidomain(coantidomain(coantidomain(one))), domain(x1))
% 0.19/0.41  = { by axiom 1 (codomain4) R->L }
% 0.19/0.41    addition(coantidomain(codomain(one)), domain(x1))
% 0.19/0.41  = { by axiom 3 (additive_identity) R->L }
% 0.19/0.41    addition(coantidomain(addition(codomain(one), zero)), domain(x1))
% 0.19/0.41  = { by lemma 9 R->L }
% 0.19/0.41    addition(coantidomain(addition(codomain(one), coantidomain(one))), domain(x1))
% 0.19/0.41  = { by axiom 1 (codomain4) }
% 0.19/0.41    addition(coantidomain(addition(coantidomain(coantidomain(one)), coantidomain(one))), domain(x1))
% 0.19/0.41  = { by axiom 8 (codomain3) }
% 0.19/0.41    addition(coantidomain(one), domain(x1))
% 0.19/0.41  = { by lemma 9 }
% 0.19/0.41    addition(zero, domain(x1))
% 0.19/0.41  = { by axiom 2 (additive_commutativity) R->L }
% 0.19/0.41    addition(domain(x1), zero)
% 0.19/0.41  = { by axiom 3 (additive_identity) }
% 0.19/0.41    domain(x1)
% 0.19/0.41  % SZS output end Proof
% 0.19/0.41  
% 0.19/0.41  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------