TSTP Solution File: KLE119+1 by SInE---0.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : KLE119+1 : TPTP v5.0.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : art05.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sat Dec 25 12:26:19 EST 2010

% Result   : Theorem 0.25s
% Output   : CNFRefutation 0.25s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   11
%            Number of leaves      :   10
% Syntax   : Number of formulae    :   45 (  45 unt;   0 def)
%            Number of atoms       :   45 (  42 equ)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    8 (   8   ~;   0   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    4 (   2 avg)
%            Maximal term depth    :    9 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   11 (  11 usr;   4 con; 0-2 aty)
%            Number of variables   :   45 (   1 sgn  26   !;   4   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(2,axiom,
    ! [X1] : multiplication(X1,zero) = zero,
    file('/tmp/tmpb139sm/sel_KLE119+1.p_1',right_annihilation) ).

fof(3,axiom,
    ! [X1] : multiplication(one,X1) = X1,
    file('/tmp/tmpb139sm/sel_KLE119+1.p_1',multiplicative_left_identity) ).

fof(4,axiom,
    ! [X1] : addition(X1,zero) = X1,
    file('/tmp/tmpb139sm/sel_KLE119+1.p_1',additive_identity) ).

fof(6,axiom,
    ! [X1,X2] : addition(X1,X2) = addition(X2,X1),
    file('/tmp/tmpb139sm/sel_KLE119+1.p_1',additive_commutativity) ).

fof(9,axiom,
    ! [X4] : addition(coantidomain(coantidomain(X4)),coantidomain(X4)) = one,
    file('/tmp/tmpb139sm/sel_KLE119+1.p_1',codomain3) ).

fof(11,axiom,
    ! [X4] : multiplication(X4,coantidomain(X4)) = zero,
    file('/tmp/tmpb139sm/sel_KLE119+1.p_1',codomain1) ).

fof(13,axiom,
    ! [X4] : codomain(X4) = coantidomain(coantidomain(X4)),
    file('/tmp/tmpb139sm/sel_KLE119+1.p_1',codomain4) ).

fof(14,axiom,
    ! [X4,X5] : backward_diamond(X4,X5) = codomain(multiplication(codomain(X5),X4)),
    file('/tmp/tmpb139sm/sel_KLE119+1.p_1',backward_diamond) ).

fof(20,axiom,
    ! [X4] : domain(X4) = antidomain(antidomain(X4)),
    file('/tmp/tmpb139sm/sel_KLE119+1.p_1',domain4) ).

fof(21,conjecture,
    ! [X4,X5] : addition(backward_diamond(zero,domain(X4)),domain(X5)) = domain(X5),
    file('/tmp/tmpb139sm/sel_KLE119+1.p_1',goals) ).

fof(22,negated_conjecture,
    ~ ! [X4,X5] : addition(backward_diamond(zero,domain(X4)),domain(X5)) = domain(X5),
    inference(assume_negation,[status(cth)],[21]) ).

fof(25,plain,
    ! [X2] : multiplication(X2,zero) = zero,
    inference(variable_rename,[status(thm)],[2]) ).

cnf(26,plain,
    multiplication(X1,zero) = zero,
    inference(split_conjunct,[status(thm)],[25]) ).

fof(27,plain,
    ! [X2] : multiplication(one,X2) = X2,
    inference(variable_rename,[status(thm)],[3]) ).

cnf(28,plain,
    multiplication(one,X1) = X1,
    inference(split_conjunct,[status(thm)],[27]) ).

fof(29,plain,
    ! [X2] : addition(X2,zero) = X2,
    inference(variable_rename,[status(thm)],[4]) ).

cnf(30,plain,
    addition(X1,zero) = X1,
    inference(split_conjunct,[status(thm)],[29]) ).

fof(33,plain,
    ! [X3,X4] : addition(X3,X4) = addition(X4,X3),
    inference(variable_rename,[status(thm)],[6]) ).

cnf(34,plain,
    addition(X1,X2) = addition(X2,X1),
    inference(split_conjunct,[status(thm)],[33]) ).

fof(39,plain,
    ! [X5] : addition(coantidomain(coantidomain(X5)),coantidomain(X5)) = one,
    inference(variable_rename,[status(thm)],[9]) ).

cnf(40,plain,
    addition(coantidomain(coantidomain(X1)),coantidomain(X1)) = one,
    inference(split_conjunct,[status(thm)],[39]) ).

fof(43,plain,
    ! [X5] : multiplication(X5,coantidomain(X5)) = zero,
    inference(variable_rename,[status(thm)],[11]) ).

cnf(44,plain,
    multiplication(X1,coantidomain(X1)) = zero,
    inference(split_conjunct,[status(thm)],[43]) ).

fof(47,plain,
    ! [X5] : codomain(X5) = coantidomain(coantidomain(X5)),
    inference(variable_rename,[status(thm)],[13]) ).

cnf(48,plain,
    codomain(X1) = coantidomain(coantidomain(X1)),
    inference(split_conjunct,[status(thm)],[47]) ).

fof(49,plain,
    ! [X6,X7] : backward_diamond(X6,X7) = codomain(multiplication(codomain(X7),X6)),
    inference(variable_rename,[status(thm)],[14]) ).

cnf(50,plain,
    backward_diamond(X1,X2) = codomain(multiplication(codomain(X2),X1)),
    inference(split_conjunct,[status(thm)],[49]) ).

fof(61,plain,
    ! [X5] : domain(X5) = antidomain(antidomain(X5)),
    inference(variable_rename,[status(thm)],[20]) ).

cnf(62,plain,
    domain(X1) = antidomain(antidomain(X1)),
    inference(split_conjunct,[status(thm)],[61]) ).

fof(63,negated_conjecture,
    ? [X4,X5] : addition(backward_diamond(zero,domain(X4)),domain(X5)) != domain(X5),
    inference(fof_nnf,[status(thm)],[22]) ).

fof(64,negated_conjecture,
    ? [X6,X7] : addition(backward_diamond(zero,domain(X6)),domain(X7)) != domain(X7),
    inference(variable_rename,[status(thm)],[63]) ).

fof(65,negated_conjecture,
    addition(backward_diamond(zero,domain(esk1_0)),domain(esk2_0)) != domain(esk2_0),
    inference(skolemize,[status(esa)],[64]) ).

cnf(66,negated_conjecture,
    addition(backward_diamond(zero,domain(esk1_0)),domain(esk2_0)) != domain(esk2_0),
    inference(split_conjunct,[status(thm)],[65]) ).

cnf(67,plain,
    coantidomain(coantidomain(multiplication(coantidomain(coantidomain(X2)),X1))) = backward_diamond(X1,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[50,48,theory(equality)]),48,theory(equality)]),
    [unfolding] ).

cnf(68,negated_conjecture,
    addition(backward_diamond(zero,antidomain(antidomain(esk1_0))),antidomain(antidomain(esk2_0))) != antidomain(antidomain(esk2_0)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[66,62,theory(equality)]),62,theory(equality)]),62,theory(equality)]),
    [unfolding] ).

cnf(69,negated_conjecture,
    addition(coantidomain(coantidomain(multiplication(coantidomain(coantidomain(antidomain(antidomain(esk1_0)))),zero))),antidomain(antidomain(esk2_0))) != antidomain(antidomain(esk2_0)),
    inference(rw,[status(thm)],[68,67,theory(equality)]),
    [unfolding] ).

cnf(70,plain,
    zero = coantidomain(one),
    inference(spm,[status(thm)],[28,44,theory(equality)]) ).

cnf(72,plain,
    addition(zero,X1) = X1,
    inference(spm,[status(thm)],[30,34,theory(equality)]) ).

cnf(78,plain,
    addition(coantidomain(X1),coantidomain(coantidomain(X1))) = one,
    inference(rw,[status(thm)],[40,34,theory(equality)]) ).

cnf(215,negated_conjecture,
    addition(antidomain(antidomain(esk2_0)),coantidomain(coantidomain(zero))) != antidomain(antidomain(esk2_0)),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[69,26,theory(equality)]),34,theory(equality)]) ).

cnf(235,plain,
    addition(zero,coantidomain(zero)) = one,
    inference(spm,[status(thm)],[78,70,theory(equality)]) ).

cnf(251,plain,
    coantidomain(zero) = one,
    inference(rw,[status(thm)],[235,72,theory(equality)]) ).

cnf(255,negated_conjecture,
    $false,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[215,251,theory(equality)]),70,theory(equality)]),30,theory(equality)]) ).

cnf(256,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[255,theory(equality)]) ).

cnf(257,negated_conjecture,
    $false,
    256,
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % SZS status Started for /home/graph/tptp/TPTP/Problems/KLE/KLE119+1.p
% --creating new selector for [KLE001+0.ax, KLE001+4.ax, KLE001+6.ax]
% -running prover on /tmp/tmpb139sm/sel_KLE119+1.p_1 with time limit 29
% -prover status Theorem
% Problem KLE119+1.p solved in phase 0.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/KLE/KLE119+1.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/KLE/KLE119+1.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
% 
%------------------------------------------------------------------------------