TSTP Solution File: KLE119+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : KLE119+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sun Jul 17 01:37:17 EDT 2022

% Result   : Theorem 0.86s 1.22s
% Output   : Refutation 0.86s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.14  % Problem  : KLE119+1 : TPTP v8.1.0. Released v4.0.0.
% 0.08/0.14  % Command  : bliksem %s
% 0.14/0.36  % Computer : n023.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit : 300
% 0.14/0.36  % DateTime : Thu Jun 16 13:12:35 EDT 2022
% 0.14/0.36  % CPUTime  : 
% 0.86/1.22  *** allocated 10000 integers for termspace/termends
% 0.86/1.22  *** allocated 10000 integers for clauses
% 0.86/1.22  *** allocated 10000 integers for justifications
% 0.86/1.22  Bliksem 1.12
% 0.86/1.22  
% 0.86/1.22  
% 0.86/1.22  Automatic Strategy Selection
% 0.86/1.22  
% 0.86/1.22  
% 0.86/1.22  Clauses:
% 0.86/1.22  
% 0.86/1.22  { addition( X, Y ) = addition( Y, X ) }.
% 0.86/1.22  { addition( Z, addition( Y, X ) ) = addition( addition( Z, Y ), X ) }.
% 0.86/1.22  { addition( X, zero ) = X }.
% 0.86/1.22  { addition( X, X ) = X }.
% 0.86/1.22  { multiplication( X, multiplication( Y, Z ) ) = multiplication( 
% 0.86/1.22    multiplication( X, Y ), Z ) }.
% 0.86/1.22  { multiplication( X, one ) = X }.
% 0.86/1.22  { multiplication( one, X ) = X }.
% 0.86/1.22  { multiplication( X, addition( Y, Z ) ) = addition( multiplication( X, Y )
% 0.86/1.22    , multiplication( X, Z ) ) }.
% 0.86/1.22  { multiplication( addition( X, Y ), Z ) = addition( multiplication( X, Z )
% 0.86/1.22    , multiplication( Y, Z ) ) }.
% 0.86/1.22  { multiplication( X, zero ) = zero }.
% 0.86/1.22  { multiplication( zero, X ) = zero }.
% 0.86/1.22  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.86/1.22  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.86/1.22  { multiplication( antidomain( X ), X ) = zero }.
% 0.86/1.22  { addition( antidomain( multiplication( X, Y ) ), antidomain( 
% 0.86/1.22    multiplication( X, antidomain( antidomain( Y ) ) ) ) ) = antidomain( 
% 0.86/1.22    multiplication( X, antidomain( antidomain( Y ) ) ) ) }.
% 0.86/1.22  { addition( antidomain( antidomain( X ) ), antidomain( X ) ) = one }.
% 0.86/1.22  { domain( X ) = antidomain( antidomain( X ) ) }.
% 0.86/1.22  { multiplication( X, coantidomain( X ) ) = zero }.
% 0.86/1.22  { addition( coantidomain( multiplication( X, Y ) ), coantidomain( 
% 0.86/1.22    multiplication( coantidomain( coantidomain( X ) ), Y ) ) ) = coantidomain
% 0.86/1.22    ( multiplication( coantidomain( coantidomain( X ) ), Y ) ) }.
% 0.86/1.22  { addition( coantidomain( coantidomain( X ) ), coantidomain( X ) ) = one }
% 0.86/1.22    .
% 0.86/1.22  { codomain( X ) = coantidomain( coantidomain( X ) ) }.
% 0.86/1.22  { c( X ) = antidomain( domain( X ) ) }.
% 0.86/1.22  { domain_difference( X, Y ) = multiplication( domain( X ), antidomain( Y )
% 0.86/1.22     ) }.
% 0.86/1.22  { forward_diamond( X, Y ) = domain( multiplication( X, domain( Y ) ) ) }.
% 0.86/1.22  { backward_diamond( X, Y ) = codomain( multiplication( codomain( Y ), X ) )
% 0.86/1.22     }.
% 0.86/1.22  { forward_box( X, Y ) = c( forward_diamond( X, c( Y ) ) ) }.
% 0.86/1.22  { backward_box( X, Y ) = c( backward_diamond( X, c( Y ) ) ) }.
% 0.86/1.22  { ! addition( backward_diamond( zero, domain( skol1 ) ), domain( skol2 ) ) 
% 0.86/1.22    = domain( skol2 ) }.
% 0.86/1.22  
% 0.86/1.22  percentage equality = 0.933333, percentage horn = 1.000000
% 0.86/1.22  This is a pure equality problem
% 0.86/1.22  
% 0.86/1.22  
% 0.86/1.22  
% 0.86/1.22  Options Used:
% 0.86/1.22  
% 0.86/1.22  useres =            1
% 0.86/1.22  useparamod =        1
% 0.86/1.22  useeqrefl =         1
% 0.86/1.22  useeqfact =         1
% 0.86/1.22  usefactor =         1
% 0.86/1.22  usesimpsplitting =  0
% 0.86/1.22  usesimpdemod =      5
% 0.86/1.22  usesimpres =        3
% 0.86/1.22  
% 0.86/1.22  resimpinuse      =  1000
% 0.86/1.22  resimpclauses =     20000
% 0.86/1.22  substype =          eqrewr
% 0.86/1.22  backwardsubs =      1
% 0.86/1.22  selectoldest =      5
% 0.86/1.22  
% 0.86/1.22  litorderings [0] =  split
% 0.86/1.22  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.86/1.22  
% 0.86/1.22  termordering =      kbo
% 0.86/1.22  
% 0.86/1.22  litapriori =        0
% 0.86/1.22  termapriori =       1
% 0.86/1.22  litaposteriori =    0
% 0.86/1.22  termaposteriori =   0
% 0.86/1.22  demodaposteriori =  0
% 0.86/1.22  ordereqreflfact =   0
% 0.86/1.22  
% 0.86/1.22  litselect =         negord
% 0.86/1.22  
% 0.86/1.22  maxweight =         15
% 0.86/1.22  maxdepth =          30000
% 0.86/1.22  maxlength =         115
% 0.86/1.22  maxnrvars =         195
% 0.86/1.22  excuselevel =       1
% 0.86/1.22  increasemaxweight = 1
% 0.86/1.22  
% 0.86/1.22  maxselected =       10000000
% 0.86/1.22  maxnrclauses =      10000000
% 0.86/1.22  
% 0.86/1.22  showgenerated =    0
% 0.86/1.22  showkept =         0
% 0.86/1.22  showselected =     0
% 0.86/1.22  showdeleted =      0
% 0.86/1.22  showresimp =       1
% 0.86/1.22  showstatus =       2000
% 0.86/1.22  
% 0.86/1.22  prologoutput =     0
% 0.86/1.22  nrgoals =          5000000
% 0.86/1.22  totalproof =       1
% 0.86/1.22  
% 0.86/1.22  Symbols occurring in the translation:
% 0.86/1.22  
% 0.86/1.22  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.86/1.22  .  [1, 2]      (w:1, o:25, a:1, s:1, b:0), 
% 0.86/1.22  !  [4, 1]      (w:0, o:15, a:1, s:1, b:0), 
% 0.86/1.22  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.86/1.22  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.86/1.22  addition  [37, 2]      (w:1, o:49, a:1, s:1, b:0), 
% 0.86/1.22  zero  [39, 0]      (w:1, o:9, a:1, s:1, b:0), 
% 0.86/1.22  multiplication  [40, 2]      (w:1, o:51, a:1, s:1, b:0), 
% 0.86/1.22  one  [41, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 0.86/1.22  leq  [42, 2]      (w:1, o:50, a:1, s:1, b:0), 
% 0.86/1.22  antidomain  [44, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.86/1.22  domain  [46, 1]      (w:1, o:24, a:1, s:1, b:0), 
% 0.86/1.22  coantidomain  [47, 1]      (w:1, o:21, a:1, s:1, b:0), 
% 0.86/1.22  codomain  [48, 1]      (w:1, o:22, a:1, s:1, b:0), 
% 0.86/1.22  c  [49, 1]      (w:1, o:23, a:1, s:1, b:0), 
% 0.86/1.22  domain_difference  [50, 2]      (w:1, o:52, a:1, s:1, b:0), 
% 0.86/1.22  forward_diamond  [51, 2]      (w:1, o:53, a:1, s:1, b:0), 
% 0.86/1.22  backward_diamond  [52, 2]      (w:1, o:54, a:1, s:1, b:0), 
% 0.86/1.22  forward_box  [53, 2]      (w:1, o:55, a:1, s:1, b:0), 
% 0.86/1.22  backward_box  [54, 2]      (w:1, o:56, a:1, s:1, b:0), 
% 0.86/1.22  skol1  [55, 0]      (w:1, o:13, a:1, s:1, b:1), 
% 0.86/1.22  skol2  [56, 0]      (w:1, o:14, a:1, s:1, b:1).
% 0.86/1.22  
% 0.86/1.22  
% 0.86/1.22  Starting Search:
% 0.86/1.22  
% 0.86/1.22  *** allocated 15000 integers for clauses
% 0.86/1.22  *** allocated 22500 integers for clauses
% 0.86/1.22  *** allocated 33750 integers for clauses
% 0.86/1.22  
% 0.86/1.22  Bliksems!, er is een bewijs:
% 0.86/1.22  % SZS status Theorem
% 0.86/1.22  % SZS output start Refutation
% 0.86/1.22  
% 0.86/1.22  (0) {G0,W7,D3,L1,V2,M1} I { addition( X, Y ) = addition( Y, X ) }.
% 0.86/1.22  (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.86/1.22  (6) {G0,W5,D3,L1,V1,M1} I { multiplication( one, X ) ==> X }.
% 0.86/1.22  (9) {G0,W5,D3,L1,V1,M1} I { multiplication( X, zero ) ==> zero }.
% 0.86/1.22  (17) {G0,W6,D4,L1,V1,M1} I { multiplication( X, coantidomain( X ) ) ==> 
% 0.86/1.22    zero }.
% 0.86/1.22  (19) {G0,W8,D5,L1,V1,M1} I { addition( coantidomain( coantidomain( X ) ), 
% 0.86/1.22    coantidomain( X ) ) ==> one }.
% 0.86/1.22  (20) {G0,W6,D4,L1,V1,M1} I { coantidomain( coantidomain( X ) ) ==> codomain
% 0.86/1.22    ( X ) }.
% 0.86/1.22  (24) {G0,W9,D5,L1,V2,M1} I { codomain( multiplication( codomain( Y ), X ) )
% 0.86/1.22     ==> backward_diamond( X, Y ) }.
% 0.86/1.22  (27) {G0,W10,D5,L1,V0,M1} I { ! addition( backward_diamond( zero, domain( 
% 0.86/1.22    skol1 ) ), domain( skol2 ) ) ==> domain( skol2 ) }.
% 0.86/1.22  (28) {G1,W5,D3,L1,V1,M1} P(2,0) { addition( zero, X ) ==> X }.
% 0.86/1.22  (34) {G1,W7,D4,L1,V1,M1} P(20,17) { multiplication( coantidomain( X ), 
% 0.86/1.22    codomain( X ) ) ==> zero }.
% 0.86/1.22  (35) {G1,W4,D3,L1,V0,M1} P(17,6) { coantidomain( one ) ==> zero }.
% 0.86/1.22  (36) {G2,W5,D3,L1,V0,M1} P(35,20) { codomain( one ) ==> coantidomain( zero
% 0.86/1.22     ) }.
% 0.86/1.22  (198) {G1,W7,D4,L1,V1,M1} S(19);d(20) { addition( codomain( X ), 
% 0.86/1.22    coantidomain( X ) ) ==> one }.
% 0.86/1.22  (268) {G1,W6,D3,L1,V1,M1} P(9,24) { backward_diamond( zero, X ) ==> 
% 0.86/1.22    codomain( zero ) }.
% 0.86/1.22  (337) {G3,W4,D3,L1,V0,M1} P(36,198);d(35);d(2) { coantidomain( zero ) ==> 
% 0.86/1.22    one }.
% 0.86/1.22  (344) {G4,W4,D3,L1,V0,M1} P(337,34);d(6) { codomain( zero ) ==> zero }.
% 0.86/1.22  (345) {G5,W0,D0,L0,V0,M0} S(27);d(268);d(344);d(28);q {  }.
% 0.86/1.22  
% 0.86/1.22  
% 0.86/1.22  % SZS output end Refutation
% 0.86/1.22  found a proof!
% 0.86/1.22  
% 0.86/1.22  
% 0.86/1.22  Unprocessed initial clauses:
% 0.86/1.22  
% 0.86/1.22  (347) {G0,W7,D3,L1,V2,M1}  { addition( X, Y ) = addition( Y, X ) }.
% 0.86/1.22  (348) {G0,W11,D4,L1,V3,M1}  { addition( Z, addition( Y, X ) ) = addition( 
% 0.86/1.22    addition( Z, Y ), X ) }.
% 0.86/1.22  (349) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.86/1.22  (350) {G0,W5,D3,L1,V1,M1}  { addition( X, X ) = X }.
% 0.86/1.22  (351) {G0,W11,D4,L1,V3,M1}  { multiplication( X, multiplication( Y, Z ) ) =
% 0.86/1.22     multiplication( multiplication( X, Y ), Z ) }.
% 0.86/1.22  (352) {G0,W5,D3,L1,V1,M1}  { multiplication( X, one ) = X }.
% 0.86/1.22  (353) {G0,W5,D3,L1,V1,M1}  { multiplication( one, X ) = X }.
% 0.86/1.22  (354) {G0,W13,D4,L1,V3,M1}  { multiplication( X, addition( Y, Z ) ) = 
% 0.86/1.22    addition( multiplication( X, Y ), multiplication( X, Z ) ) }.
% 0.86/1.22  (355) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X, Y ), Z ) = 
% 0.86/1.22    addition( multiplication( X, Z ), multiplication( Y, Z ) ) }.
% 0.86/1.22  (356) {G0,W5,D3,L1,V1,M1}  { multiplication( X, zero ) = zero }.
% 0.86/1.22  (357) {G0,W5,D3,L1,V1,M1}  { multiplication( zero, X ) = zero }.
% 0.86/1.22  (358) {G0,W8,D3,L2,V2,M2}  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.86/1.22  (359) {G0,W8,D3,L2,V2,M2}  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.86/1.22  (360) {G0,W6,D4,L1,V1,M1}  { multiplication( antidomain( X ), X ) = zero
% 0.86/1.22     }.
% 0.86/1.22  (361) {G0,W18,D7,L1,V2,M1}  { addition( antidomain( multiplication( X, Y )
% 0.86/1.22     ), antidomain( multiplication( X, antidomain( antidomain( Y ) ) ) ) ) = 
% 0.86/1.22    antidomain( multiplication( X, antidomain( antidomain( Y ) ) ) ) }.
% 0.86/1.22  (362) {G0,W8,D5,L1,V1,M1}  { addition( antidomain( antidomain( X ) ), 
% 0.86/1.22    antidomain( X ) ) = one }.
% 0.86/1.22  (363) {G0,W6,D4,L1,V1,M1}  { domain( X ) = antidomain( antidomain( X ) )
% 0.86/1.22     }.
% 0.86/1.22  (364) {G0,W6,D4,L1,V1,M1}  { multiplication( X, coantidomain( X ) ) = zero
% 0.86/1.22     }.
% 0.86/1.22  (365) {G0,W18,D7,L1,V2,M1}  { addition( coantidomain( multiplication( X, Y
% 0.86/1.22     ) ), coantidomain( multiplication( coantidomain( coantidomain( X ) ), Y
% 0.86/1.22     ) ) ) = coantidomain( multiplication( coantidomain( coantidomain( X ) )
% 0.86/1.22    , Y ) ) }.
% 0.86/1.22  (366) {G0,W8,D5,L1,V1,M1}  { addition( coantidomain( coantidomain( X ) ), 
% 0.86/1.22    coantidomain( X ) ) = one }.
% 0.86/1.22  (367) {G0,W6,D4,L1,V1,M1}  { codomain( X ) = coantidomain( coantidomain( X
% 0.86/1.22     ) ) }.
% 0.86/1.22  (368) {G0,W6,D4,L1,V1,M1}  { c( X ) = antidomain( domain( X ) ) }.
% 0.86/1.22  (369) {G0,W9,D4,L1,V2,M1}  { domain_difference( X, Y ) = multiplication( 
% 0.86/1.22    domain( X ), antidomain( Y ) ) }.
% 0.86/1.22  (370) {G0,W9,D5,L1,V2,M1}  { forward_diamond( X, Y ) = domain( 
% 0.86/1.22    multiplication( X, domain( Y ) ) ) }.
% 0.86/1.22  (371) {G0,W9,D5,L1,V2,M1}  { backward_diamond( X, Y ) = codomain( 
% 0.86/1.22    multiplication( codomain( Y ), X ) ) }.
% 0.86/1.22  (372) {G0,W9,D5,L1,V2,M1}  { forward_box( X, Y ) = c( forward_diamond( X, c
% 0.86/1.22    ( Y ) ) ) }.
% 0.86/1.22  (373) {G0,W9,D5,L1,V2,M1}  { backward_box( X, Y ) = c( backward_diamond( X
% 0.86/1.22    , c( Y ) ) ) }.
% 0.86/1.22  (374) {G0,W10,D5,L1,V0,M1}  { ! addition( backward_diamond( zero, domain( 
% 0.86/1.22    skol1 ) ), domain( skol2 ) ) = domain( skol2 ) }.
% 0.86/1.22  
% 0.86/1.22  
% 0.86/1.22  Total Proof:
% 0.86/1.22  
% 0.86/1.22  subsumption: (0) {G0,W7,D3,L1,V2,M1} I { addition( X, Y ) = addition( Y, X
% 0.86/1.22     ) }.
% 0.86/1.22  parent0: (347) {G0,W7,D3,L1,V2,M1}  { addition( X, Y ) = addition( Y, X )
% 0.86/1.22     }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22     Y := Y
% 0.86/1.22  end
% 0.86/1.22  permutation0:
% 0.86/1.22     0 ==> 0
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  subsumption: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.86/1.22  parent0: (349) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22  end
% 0.86/1.22  permutation0:
% 0.86/1.22     0 ==> 0
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  subsumption: (6) {G0,W5,D3,L1,V1,M1} I { multiplication( one, X ) ==> X }.
% 0.86/1.22  parent0: (353) {G0,W5,D3,L1,V1,M1}  { multiplication( one, X ) = X }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22  end
% 0.86/1.22  permutation0:
% 0.86/1.22     0 ==> 0
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  subsumption: (9) {G0,W5,D3,L1,V1,M1} I { multiplication( X, zero ) ==> zero
% 0.86/1.22     }.
% 0.86/1.22  parent0: (356) {G0,W5,D3,L1,V1,M1}  { multiplication( X, zero ) = zero }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22  end
% 0.86/1.22  permutation0:
% 0.86/1.22     0 ==> 0
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  subsumption: (17) {G0,W6,D4,L1,V1,M1} I { multiplication( X, coantidomain( 
% 0.86/1.22    X ) ) ==> zero }.
% 0.86/1.22  parent0: (364) {G0,W6,D4,L1,V1,M1}  { multiplication( X, coantidomain( X )
% 0.86/1.22     ) = zero }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22  end
% 0.86/1.22  permutation0:
% 0.86/1.22     0 ==> 0
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  subsumption: (19) {G0,W8,D5,L1,V1,M1} I { addition( coantidomain( 
% 0.86/1.22    coantidomain( X ) ), coantidomain( X ) ) ==> one }.
% 0.86/1.22  parent0: (366) {G0,W8,D5,L1,V1,M1}  { addition( coantidomain( coantidomain
% 0.86/1.22    ( X ) ), coantidomain( X ) ) = one }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22  end
% 0.86/1.22  permutation0:
% 0.86/1.22     0 ==> 0
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  eqswap: (447) {G0,W6,D4,L1,V1,M1}  { coantidomain( coantidomain( X ) ) = 
% 0.86/1.22    codomain( X ) }.
% 0.86/1.22  parent0[0]: (367) {G0,W6,D4,L1,V1,M1}  { codomain( X ) = coantidomain( 
% 0.86/1.22    coantidomain( X ) ) }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  subsumption: (20) {G0,W6,D4,L1,V1,M1} I { coantidomain( coantidomain( X ) )
% 0.86/1.22     ==> codomain( X ) }.
% 0.86/1.22  parent0: (447) {G0,W6,D4,L1,V1,M1}  { coantidomain( coantidomain( X ) ) = 
% 0.86/1.22    codomain( X ) }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22  end
% 0.86/1.22  permutation0:
% 0.86/1.22     0 ==> 0
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  eqswap: (471) {G0,W9,D5,L1,V2,M1}  { codomain( multiplication( codomain( Y
% 0.86/1.22     ), X ) ) = backward_diamond( X, Y ) }.
% 0.86/1.22  parent0[0]: (371) {G0,W9,D5,L1,V2,M1}  { backward_diamond( X, Y ) = 
% 0.86/1.22    codomain( multiplication( codomain( Y ), X ) ) }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22     Y := Y
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  subsumption: (24) {G0,W9,D5,L1,V2,M1} I { codomain( multiplication( 
% 0.86/1.22    codomain( Y ), X ) ) ==> backward_diamond( X, Y ) }.
% 0.86/1.22  parent0: (471) {G0,W9,D5,L1,V2,M1}  { codomain( multiplication( codomain( Y
% 0.86/1.22     ), X ) ) = backward_diamond( X, Y ) }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22     Y := Y
% 0.86/1.22  end
% 0.86/1.22  permutation0:
% 0.86/1.22     0 ==> 0
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  subsumption: (27) {G0,W10,D5,L1,V0,M1} I { ! addition( backward_diamond( 
% 0.86/1.22    zero, domain( skol1 ) ), domain( skol2 ) ) ==> domain( skol2 ) }.
% 0.86/1.22  parent0: (374) {G0,W10,D5,L1,V0,M1}  { ! addition( backward_diamond( zero, 
% 0.86/1.22    domain( skol1 ) ), domain( skol2 ) ) = domain( skol2 ) }.
% 0.86/1.22  substitution0:
% 0.86/1.22  end
% 0.86/1.22  permutation0:
% 0.86/1.22     0 ==> 0
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  eqswap: (499) {G0,W5,D3,L1,V1,M1}  { X ==> addition( X, zero ) }.
% 0.86/1.22  parent0[0]: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  paramod: (500) {G1,W5,D3,L1,V1,M1}  { X ==> addition( zero, X ) }.
% 0.86/1.22  parent0[0]: (0) {G0,W7,D3,L1,V2,M1} I { addition( X, Y ) = addition( Y, X )
% 0.86/1.22     }.
% 0.86/1.22  parent1[0; 2]: (499) {G0,W5,D3,L1,V1,M1}  { X ==> addition( X, zero ) }.
% 0.86/1.22  substitution0:
% 0.86/1.22     X := X
% 0.86/1.22     Y := zero
% 0.86/1.22  end
% 0.86/1.22  substitution1:
% 0.86/1.22     X := X
% 0.86/1.22  end
% 0.86/1.22  
% 0.86/1.22  eqswap: (503) {G1,W5,D3,L1,V1,M1}  { addition( zero, X ) ==> X }.
% 0.86/1.22  parent0[0]: (500) {G1,W5,D3,L1,V1,M1}  { X ==> addition( zero, X ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  subsumption: (28) {G1,W5,D3,L1,V1,M1} P(2,0) { addition( zero, X ) ==> X
% 0.86/1.23     }.
% 0.86/1.23  parent0: (503) {G1,W5,D3,L1,V1,M1}  { addition( zero, X ) ==> X }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  permutation0:
% 0.86/1.23     0 ==> 0
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  eqswap: (505) {G0,W6,D4,L1,V1,M1}  { zero ==> multiplication( X, 
% 0.86/1.23    coantidomain( X ) ) }.
% 0.86/1.23  parent0[0]: (17) {G0,W6,D4,L1,V1,M1} I { multiplication( X, coantidomain( X
% 0.86/1.23     ) ) ==> zero }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (506) {G1,W7,D4,L1,V1,M1}  { zero ==> multiplication( coantidomain
% 0.86/1.23    ( X ), codomain( X ) ) }.
% 0.86/1.23  parent0[0]: (20) {G0,W6,D4,L1,V1,M1} I { coantidomain( coantidomain( X ) ) 
% 0.86/1.23    ==> codomain( X ) }.
% 0.86/1.23  parent1[0; 5]: (505) {G0,W6,D4,L1,V1,M1}  { zero ==> multiplication( X, 
% 0.86/1.23    coantidomain( X ) ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23     X := coantidomain( X )
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  eqswap: (507) {G1,W7,D4,L1,V1,M1}  { multiplication( coantidomain( X ), 
% 0.86/1.23    codomain( X ) ) ==> zero }.
% 0.86/1.23  parent0[0]: (506) {G1,W7,D4,L1,V1,M1}  { zero ==> multiplication( 
% 0.86/1.23    coantidomain( X ), codomain( X ) ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  subsumption: (34) {G1,W7,D4,L1,V1,M1} P(20,17) { multiplication( 
% 0.86/1.23    coantidomain( X ), codomain( X ) ) ==> zero }.
% 0.86/1.23  parent0: (507) {G1,W7,D4,L1,V1,M1}  { multiplication( coantidomain( X ), 
% 0.86/1.23    codomain( X ) ) ==> zero }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  permutation0:
% 0.86/1.23     0 ==> 0
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  eqswap: (508) {G0,W6,D4,L1,V1,M1}  { zero ==> multiplication( X, 
% 0.86/1.23    coantidomain( X ) ) }.
% 0.86/1.23  parent0[0]: (17) {G0,W6,D4,L1,V1,M1} I { multiplication( X, coantidomain( X
% 0.86/1.23     ) ) ==> zero }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (510) {G1,W4,D3,L1,V0,M1}  { zero ==> coantidomain( one ) }.
% 0.86/1.23  parent0[0]: (6) {G0,W5,D3,L1,V1,M1} I { multiplication( one, X ) ==> X }.
% 0.86/1.23  parent1[0; 2]: (508) {G0,W6,D4,L1,V1,M1}  { zero ==> multiplication( X, 
% 0.86/1.23    coantidomain( X ) ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := coantidomain( one )
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23     X := one
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  eqswap: (511) {G1,W4,D3,L1,V0,M1}  { coantidomain( one ) ==> zero }.
% 0.86/1.23  parent0[0]: (510) {G1,W4,D3,L1,V0,M1}  { zero ==> coantidomain( one ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  subsumption: (35) {G1,W4,D3,L1,V0,M1} P(17,6) { coantidomain( one ) ==> 
% 0.86/1.23    zero }.
% 0.86/1.23  parent0: (511) {G1,W4,D3,L1,V0,M1}  { coantidomain( one ) ==> zero }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  permutation0:
% 0.86/1.23     0 ==> 0
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  eqswap: (513) {G0,W6,D4,L1,V1,M1}  { codomain( X ) ==> coantidomain( 
% 0.86/1.23    coantidomain( X ) ) }.
% 0.86/1.23  parent0[0]: (20) {G0,W6,D4,L1,V1,M1} I { coantidomain( coantidomain( X ) ) 
% 0.86/1.23    ==> codomain( X ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (514) {G1,W5,D3,L1,V0,M1}  { codomain( one ) ==> coantidomain( 
% 0.86/1.23    zero ) }.
% 0.86/1.23  parent0[0]: (35) {G1,W4,D3,L1,V0,M1} P(17,6) { coantidomain( one ) ==> zero
% 0.86/1.23     }.
% 0.86/1.23  parent1[0; 4]: (513) {G0,W6,D4,L1,V1,M1}  { codomain( X ) ==> coantidomain
% 0.86/1.23    ( coantidomain( X ) ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23     X := one
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  subsumption: (36) {G2,W5,D3,L1,V0,M1} P(35,20) { codomain( one ) ==> 
% 0.86/1.23    coantidomain( zero ) }.
% 0.86/1.23  parent0: (514) {G1,W5,D3,L1,V0,M1}  { codomain( one ) ==> coantidomain( 
% 0.86/1.23    zero ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  permutation0:
% 0.86/1.23     0 ==> 0
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (518) {G1,W7,D4,L1,V1,M1}  { addition( codomain( X ), coantidomain
% 0.86/1.23    ( X ) ) ==> one }.
% 0.86/1.23  parent0[0]: (20) {G0,W6,D4,L1,V1,M1} I { coantidomain( coantidomain( X ) ) 
% 0.86/1.23    ==> codomain( X ) }.
% 0.86/1.23  parent1[0; 2]: (19) {G0,W8,D5,L1,V1,M1} I { addition( coantidomain( 
% 0.86/1.23    coantidomain( X ) ), coantidomain( X ) ) ==> one }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  subsumption: (198) {G1,W7,D4,L1,V1,M1} S(19);d(20) { addition( codomain( X
% 0.86/1.23     ), coantidomain( X ) ) ==> one }.
% 0.86/1.23  parent0: (518) {G1,W7,D4,L1,V1,M1}  { addition( codomain( X ), coantidomain
% 0.86/1.23    ( X ) ) ==> one }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  permutation0:
% 0.86/1.23     0 ==> 0
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  eqswap: (521) {G0,W9,D5,L1,V2,M1}  { backward_diamond( Y, X ) ==> codomain
% 0.86/1.23    ( multiplication( codomain( X ), Y ) ) }.
% 0.86/1.23  parent0[0]: (24) {G0,W9,D5,L1,V2,M1} I { codomain( multiplication( codomain
% 0.86/1.23    ( Y ), X ) ) ==> backward_diamond( X, Y ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := Y
% 0.86/1.23     Y := X
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (522) {G1,W6,D3,L1,V1,M1}  { backward_diamond( zero, X ) ==> 
% 0.86/1.23    codomain( zero ) }.
% 0.86/1.23  parent0[0]: (9) {G0,W5,D3,L1,V1,M1} I { multiplication( X, zero ) ==> zero
% 0.86/1.23     }.
% 0.86/1.23  parent1[0; 5]: (521) {G0,W9,D5,L1,V2,M1}  { backward_diamond( Y, X ) ==> 
% 0.86/1.23    codomain( multiplication( codomain( X ), Y ) ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := codomain( X )
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23     X := X
% 0.86/1.23     Y := zero
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  subsumption: (268) {G1,W6,D3,L1,V1,M1} P(9,24) { backward_diamond( zero, X
% 0.86/1.23     ) ==> codomain( zero ) }.
% 0.86/1.23  parent0: (522) {G1,W6,D3,L1,V1,M1}  { backward_diamond( zero, X ) ==> 
% 0.86/1.23    codomain( zero ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  permutation0:
% 0.86/1.23     0 ==> 0
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  eqswap: (525) {G1,W7,D4,L1,V1,M1}  { one ==> addition( codomain( X ), 
% 0.86/1.23    coantidomain( X ) ) }.
% 0.86/1.23  parent0[0]: (198) {G1,W7,D4,L1,V1,M1} S(19);d(20) { addition( codomain( X )
% 0.86/1.23    , coantidomain( X ) ) ==> one }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (528) {G2,W7,D4,L1,V0,M1}  { one ==> addition( coantidomain( zero
% 0.86/1.23     ), coantidomain( one ) ) }.
% 0.86/1.23  parent0[0]: (36) {G2,W5,D3,L1,V0,M1} P(35,20) { codomain( one ) ==> 
% 0.86/1.23    coantidomain( zero ) }.
% 0.86/1.23  parent1[0; 3]: (525) {G1,W7,D4,L1,V1,M1}  { one ==> addition( codomain( X )
% 0.86/1.23    , coantidomain( X ) ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23     X := one
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (529) {G2,W6,D4,L1,V0,M1}  { one ==> addition( coantidomain( zero
% 0.86/1.23     ), zero ) }.
% 0.86/1.23  parent0[0]: (35) {G1,W4,D3,L1,V0,M1} P(17,6) { coantidomain( one ) ==> zero
% 0.86/1.23     }.
% 0.86/1.23  parent1[0; 5]: (528) {G2,W7,D4,L1,V0,M1}  { one ==> addition( coantidomain
% 0.86/1.23    ( zero ), coantidomain( one ) ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (530) {G1,W4,D3,L1,V0,M1}  { one ==> coantidomain( zero ) }.
% 0.86/1.23  parent0[0]: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.86/1.23  parent1[0; 2]: (529) {G2,W6,D4,L1,V0,M1}  { one ==> addition( coantidomain
% 0.86/1.23    ( zero ), zero ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := coantidomain( zero )
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  eqswap: (531) {G1,W4,D3,L1,V0,M1}  { coantidomain( zero ) ==> one }.
% 0.86/1.23  parent0[0]: (530) {G1,W4,D3,L1,V0,M1}  { one ==> coantidomain( zero ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  subsumption: (337) {G3,W4,D3,L1,V0,M1} P(36,198);d(35);d(2) { coantidomain
% 0.86/1.23    ( zero ) ==> one }.
% 0.86/1.23  parent0: (531) {G1,W4,D3,L1,V0,M1}  { coantidomain( zero ) ==> one }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  permutation0:
% 0.86/1.23     0 ==> 0
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  eqswap: (533) {G1,W7,D4,L1,V1,M1}  { zero ==> multiplication( coantidomain
% 0.86/1.23    ( X ), codomain( X ) ) }.
% 0.86/1.23  parent0[0]: (34) {G1,W7,D4,L1,V1,M1} P(20,17) { multiplication( 
% 0.86/1.23    coantidomain( X ), codomain( X ) ) ==> zero }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := X
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (535) {G2,W6,D4,L1,V0,M1}  { zero ==> multiplication( one, 
% 0.86/1.23    codomain( zero ) ) }.
% 0.86/1.23  parent0[0]: (337) {G3,W4,D3,L1,V0,M1} P(36,198);d(35);d(2) { coantidomain( 
% 0.86/1.23    zero ) ==> one }.
% 0.86/1.23  parent1[0; 3]: (533) {G1,W7,D4,L1,V1,M1}  { zero ==> multiplication( 
% 0.86/1.23    coantidomain( X ), codomain( X ) ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23     X := zero
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (536) {G1,W4,D3,L1,V0,M1}  { zero ==> codomain( zero ) }.
% 0.86/1.23  parent0[0]: (6) {G0,W5,D3,L1,V1,M1} I { multiplication( one, X ) ==> X }.
% 0.86/1.23  parent1[0; 2]: (535) {G2,W6,D4,L1,V0,M1}  { zero ==> multiplication( one, 
% 0.86/1.23    codomain( zero ) ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := codomain( zero )
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  eqswap: (537) {G1,W4,D3,L1,V0,M1}  { codomain( zero ) ==> zero }.
% 0.86/1.23  parent0[0]: (536) {G1,W4,D3,L1,V0,M1}  { zero ==> codomain( zero ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  subsumption: (344) {G4,W4,D3,L1,V0,M1} P(337,34);d(6) { codomain( zero ) 
% 0.86/1.23    ==> zero }.
% 0.86/1.23  parent0: (537) {G1,W4,D3,L1,V0,M1}  { codomain( zero ) ==> zero }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  permutation0:
% 0.86/1.23     0 ==> 0
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (542) {G1,W8,D4,L1,V0,M1}  { ! addition( codomain( zero ), domain
% 0.86/1.23    ( skol2 ) ) ==> domain( skol2 ) }.
% 0.86/1.23  parent0[0]: (268) {G1,W6,D3,L1,V1,M1} P(9,24) { backward_diamond( zero, X )
% 0.86/1.23     ==> codomain( zero ) }.
% 0.86/1.23  parent1[0; 3]: (27) {G0,W10,D5,L1,V0,M1} I { ! addition( backward_diamond( 
% 0.86/1.23    zero, domain( skol1 ) ), domain( skol2 ) ) ==> domain( skol2 ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := domain( skol1 )
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (543) {G2,W7,D4,L1,V0,M1}  { ! addition( zero, domain( skol2 ) ) 
% 0.86/1.23    ==> domain( skol2 ) }.
% 0.86/1.23  parent0[0]: (344) {G4,W4,D3,L1,V0,M1} P(337,34);d(6) { codomain( zero ) ==>
% 0.86/1.23     zero }.
% 0.86/1.23  parent1[0; 3]: (542) {G1,W8,D4,L1,V0,M1}  { ! addition( codomain( zero ), 
% 0.86/1.23    domain( skol2 ) ) ==> domain( skol2 ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  paramod: (544) {G2,W5,D3,L1,V0,M1}  { ! domain( skol2 ) ==> domain( skol2 )
% 0.86/1.23     }.
% 0.86/1.23  parent0[0]: (28) {G1,W5,D3,L1,V1,M1} P(2,0) { addition( zero, X ) ==> X }.
% 0.86/1.23  parent1[0; 2]: (543) {G2,W7,D4,L1,V0,M1}  { ! addition( zero, domain( skol2
% 0.86/1.23     ) ) ==> domain( skol2 ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23     X := domain( skol2 )
% 0.86/1.23  end
% 0.86/1.23  substitution1:
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  eqrefl: (545) {G0,W0,D0,L0,V0,M0}  {  }.
% 0.86/1.23  parent0[0]: (544) {G2,W5,D3,L1,V0,M1}  { ! domain( skol2 ) ==> domain( 
% 0.86/1.23    skol2 ) }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  subsumption: (345) {G5,W0,D0,L0,V0,M0} S(27);d(268);d(344);d(28);q {  }.
% 0.86/1.23  parent0: (545) {G0,W0,D0,L0,V0,M0}  {  }.
% 0.86/1.23  substitution0:
% 0.86/1.23  end
% 0.86/1.23  permutation0:
% 0.86/1.23  end
% 0.86/1.23  
% 0.86/1.23  Proof check complete!
% 0.86/1.23  
% 0.86/1.23  Memory use:
% 0.86/1.23  
% 0.86/1.23  space for terms:        4047
% 0.86/1.23  space for clauses:      28130
% 0.86/1.23  
% 0.86/1.23  
% 0.86/1.23  clauses generated:      2011
% 0.86/1.23  clauses kept:           346
% 0.86/1.23  clauses selected:       76
% 0.86/1.23  clauses deleted:        10
% 0.86/1.23  clauses inuse deleted:  0
% 0.86/1.23  
% 0.86/1.23  subsentry:          3582
% 0.86/1.23  literals s-matched: 1960
% 0.86/1.23  literals matched:   1960
% 0.86/1.23  full subsumption:   158
% 0.86/1.23  
% 0.86/1.23  checksum:           339959707
% 0.86/1.23  
% 0.86/1.23  
% 0.86/1.23  Bliksem ended
%------------------------------------------------------------------------------