TSTP Solution File: KLE110-10 by EQP---0.9e

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : EQP---0.9e
% Problem  : KLE110-10 : TPTP v8.1.0. Released v7.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_eqp %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 01:52:18 EDT 2022

% Result   : Unknown 10.73s 11.13s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.13  % Problem  : KLE110-10 : TPTP v8.1.0. Released v7.3.0.
% 0.14/0.14  % Command  : tptp2X_and_run_eqp %s
% 0.15/0.35  % Computer : n020.cluster.edu
% 0.15/0.35  % Model    : x86_64 x86_64
% 0.15/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.35  % Memory   : 8042.1875MB
% 0.15/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.35  % CPULimit : 300
% 0.15/0.35  % WCLimit  : 600
% 0.15/0.35  % DateTime : Thu Jun 16 13:02:19 EDT 2022
% 0.15/0.35  % CPUTime  : 
% 0.74/1.13  ----- EQP 0.9e, May 2009 -----
% 0.74/1.13  The job began on n020.cluster.edu, Thu Jun 16 13:02:20 2022
% 0.74/1.13  The command was "./eqp09e".
% 0.74/1.13  
% 0.74/1.13  set(prolog_style_variables).
% 0.74/1.13  set(lrpo).
% 0.74/1.13  set(basic_paramod).
% 0.74/1.13  set(functional_subsume).
% 0.74/1.13  set(ordered_paramod).
% 0.74/1.13  set(prime_paramod).
% 0.74/1.13  set(para_pairs).
% 0.74/1.13  assign(pick_given_ratio,4).
% 0.74/1.13  clear(print_kept).
% 0.74/1.13  clear(print_new_demod).
% 0.74/1.13  clear(print_back_demod).
% 0.74/1.13  clear(print_given).
% 0.74/1.13  assign(max_mem,64000).
% 0.74/1.13  end_of_commands.
% 0.74/1.13  
% 0.74/1.13  Usable:
% 0.74/1.13  end_of_list.
% 0.74/1.13  
% 0.74/1.13  Sos:
% 0.74/1.13  0 (wt=-1) [] ifeq2(A,A,B,C) = B.
% 0.74/1.13  0 (wt=-1) [] ifeq(A,A,B,C) = B.
% 0.74/1.13  0 (wt=-1) [] addition(A,B) = addition(B,A).
% 0.74/1.13  0 (wt=-1) [] addition(A,addition(B,C)) = addition(addition(A,B),C).
% 0.74/1.13  0 (wt=-1) [] addition(A,zero) = A.
% 0.74/1.13  0 (wt=-1) [] addition(A,A) = A.
% 0.74/1.13  0 (wt=-1) [] multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C).
% 0.74/1.13  0 (wt=-1) [] multiplication(A,one) = A.
% 0.74/1.13  0 (wt=-1) [] multiplication(one,A) = A.
% 0.74/1.13  0 (wt=-1) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.74/1.13  0 (wt=-1) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 0.74/1.13  0 (wt=-1) [] multiplication(A,zero) = zero.
% 0.74/1.13  0 (wt=-1) [] multiplication(zero,A) = zero.
% 0.74/1.13  0 (wt=-1) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 0.74/1.13  0 (wt=-1) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 0.74/1.13  0 (wt=-1) [] multiplication(antidomain(A),A) = zero.
% 0.74/1.13  0 (wt=-1) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 0.74/1.13  0 (wt=-1) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.74/1.13  0 (wt=-1) [] domain(A) = antidomain(antidomain(A)).
% 0.74/1.13  0 (wt=-1) [] multiplication(A,coantidomain(A)) = zero.
% 0.74/1.13  0 (wt=-1) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 0.74/1.13  0 (wt=-1) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.74/1.13  0 (wt=-1) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.74/1.13  0 (wt=-1) [] c(A) = antidomain(domain(A)).
% 0.74/1.13  0 (wt=-1) [] domain_difference(A,B) = multiplication(domain(A),antidomain(B)).
% 0.74/1.13  0 (wt=-1) [] forward_diamond(A,B) = domain(multiplication(A,domain(B))).
% 0.74/1.13  0 (wt=-1) [] backward_diamond(A,B) = codomain(multiplication(codomain(B),A)).
% 0.74/1.13  0 (wt=-1) [] forward_box(A,B) = c(forward_diamond(A,c(B))).
% 0.74/1.13  0 (wt=-1) [] backward_box(A,B) = c(backward_diamond(A,c(B))).
% 0.74/1.13  0 (wt=-1) [] -(addition(domain(sK2_goals_X0),backward_box(sK1_goals_X1,forward_diamond(sK1_goals_X1,domain(sK2_goals_X0)))) = backward_box(sK1_goals_X1,forward_diamond(sK1_goals_X1,domain(sK2_goals_X0)))).
% 0.74/1.13  end_of_list.
% 0.74/1.13  
% 0.74/1.13  Demodulators:
% 0.74/1.13  end_of_list.
% 0.74/1.13  
% 0.74/1.13  Passive:
% 0.74/1.13  end_of_list.
% 0.74/1.13  
% 0.74/1.13  Starting to process input.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.74/1.13  1 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 2 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.74/1.13  2 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 3 (wt=7) [] addition(A,B) = addition(B,A).
% 0.74/1.13  clause forward subsumed: 0 (wt=7) [flip(3)] addition(B,A) = addition(A,B).
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 0.74/1.13  4 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 5 (wt=5) [] addition(A,zero) = A.
% 0.74/1.13  5 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 6 (wt=5) [] addition(A,A) = A.
% 0.74/1.13  6 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 0.74/1.13  7 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 8 (wt=5) [] multiplication(A,one) = A.
% 0.74/1.13  8 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 9 (wt=5) [] multiplication(one,A) = A.
% 0.74/1.13  9 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.74/1.13  10 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 0.74/1.13  11 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 12 (wt=5) [] multiplication(A,zero) = zero.
% 0.74/1.13  12 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 13 (wt=5) [] multiplication(zero,A) = zero.
% 0.74/1.13  13 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 0.74/1.13  14 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 0.74/1.13  15 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 0.74/1.13  16 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 0.74/1.13  17 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.74/1.13  18 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 0.74/1.13  19 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 0.74/1.13  20 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 0.74/1.13  21 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.74/1.13  22 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.74/1.13  23 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 0.74/1.13  24 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 0.74/1.13  25 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 0.74/1.13  26 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 0.74/1.13  27 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 0.74/1.13  28 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 0.74/1.13  29 is a new demodulator.
% 0.74/1.13  
% 0.74/1.13  ** KEPT: 30 (wt=19) [demod([19,19,19])] -(addition(antidomain(antidomain(sK2_goals_X0)),backward_box(sK1_goals_X1,forward_diamond(sK1_goals_X1,antidomain(antidomain(sK2_goals_X0))))) = backward_box(sK1_goals_X1,forward_diamond(sK1_goals_X1,antidomain(antidomain(sK2_goals_X0))))).
% 0.74/1.13  
% 0.74/1.13  After processing input:
% 0.74/1.13  
% 0.74/1.13  Usable:
% 0.74/1.13  end_of_list.
% 0.74/1.13  
% 0.74/1.13  Sos:
% 0.74/1.13  5 (wt=5) [] addition(A,zero) = A.
% 0.74/1.13  6 (wt=5) [] addition(A,A) = A.
% 0.74/1.13  8 (wt=5) [] multiplication(A,one) = A.
% 0.74/1.13  9 (wt=5) [] multiplication(one,A) = A.
% 0.74/1.13  12 (wt=5) [] multiplication(A,zero) = zero.
% 0.74/1.13  13 (wt=5) [] multiplication(zero,A) = zero.
% 0.74/1.13  16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 0.74/1.13  19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 0.74/1.13  20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 0.74/1.13  23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 0.74/1.13  1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 0.74/1.13  2 (wt=7) [] ifeq(A,A,B,C) = B.
% 0.74/1.13  3 (wt=7) [] addition(A,B) = addition(B,A).
% 0.74/1.13  24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 0.74/1.13  18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 0.74/1.13  22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 0.74/1.13  25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 0.74/1.13  4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 0.74/1.13  7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 0.74/1.13  14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 0.74/1.13  15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 0.74/1.13  26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 0.74/1.13  27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 0.74/1.13  10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 0.74/1.13  11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 0.74/1.13  28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 0.74/1.13  29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 10.73/11.12  17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 10.73/11.12  21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 10.73/11.12  30 (wt=19) [demod([19,19,19])] -(addition(antidomain(antidomain(sK2_goals_X0)),backward_box(sK1_goals_X1,forward_diamond(sK1_goals_X1,antidomain(antidomain(sK2_goals_X0))))) = backward_box(sK1_goals_X1,forward_diamond(sK1_goals_X1,antidomain(antidomain(sK2_goals_X0))))).
% 10.73/11.12  end_of_list.
% 10.73/11.12  
% 10.73/11.12  Demodulators:
% 10.73/11.12  1 (wt=7) [] ifeq2(A,A,B,C) = B.
% 10.73/11.12  2 (wt=7) [] ifeq(A,A,B,C) = B.
% 10.73/11.12  4 (wt=11) [flip(1)] addition(addition(A,B),C) = addition(A,addition(B,C)).
% 10.73/11.12  5 (wt=5) [] addition(A,zero) = A.
% 10.73/11.12  6 (wt=5) [] addition(A,A) = A.
% 10.73/11.12  7 (wt=11) [flip(1)] multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)).
% 10.73/11.12  8 (wt=5) [] multiplication(A,one) = A.
% 10.73/11.12  9 (wt=5) [] multiplication(one,A) = A.
% 10.73/11.12  10 (wt=13) [] multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)).
% 10.73/11.12  11 (wt=13) [] multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)).
% 10.73/11.12  12 (wt=5) [] multiplication(A,zero) = zero.
% 10.73/11.12  13 (wt=5) [] multiplication(zero,A) = zero.
% 10.73/11.12  14 (wt=11) [] ifeq(leq(A,B),true,addition(A,B),B) = B.
% 10.73/11.12  15 (wt=11) [] ifeq2(addition(A,B),B,leq(A,B),true) = true.
% 10.73/11.12  16 (wt=6) [] multiplication(antidomain(A),A) = zero.
% 10.73/11.12  17 (wt=18) [] addition(antidomain(multiplication(A,B)),antidomain(multiplication(A,antidomain(antidomain(B))))) = antidomain(multiplication(A,antidomain(antidomain(B)))).
% 10.73/11.12  18 (wt=8) [] addition(antidomain(antidomain(A)),antidomain(A)) = one.
% 10.73/11.12  19 (wt=6) [] domain(A) = antidomain(antidomain(A)).
% 10.73/11.12  20 (wt=6) [] multiplication(A,coantidomain(A)) = zero.
% 10.73/11.12  21 (wt=18) [] addition(coantidomain(multiplication(A,B)),coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = coantidomain(multiplication(coantidomain(coantidomain(A)),B)).
% 10.73/11.12  22 (wt=8) [] addition(coantidomain(coantidomain(A)),coantidomain(A)) = one.
% 10.73/11.12  23 (wt=6) [] codomain(A) = coantidomain(coantidomain(A)).
% 10.73/11.12  24 (wt=7) [demod([19])] c(A) = antidomain(antidomain(antidomain(A))).
% 10.73/11.12  25 (wt=10) [demod([19]),flip(1)] multiplication(antidomain(antidomain(A)),antidomain(B)) = domain_difference(A,B).
% 10.73/11.12  26 (wt=11) [demod([19,19]),flip(1)] antidomain(antidomain(multiplication(A,antidomain(antidomain(B))))) = forward_diamond(A,B).
% 10.73/11.12  27 (wt=11) [demod([23,23]),flip(1)] coantidomain(coantidomain(multiplication(coantidomain(coantidomain(A)),B))) = backward_diamond(B,A).
% 10.73/11.12  28 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(forward_diamond(A,antidomain(antidomain(antidomain(B))))))) = forward_box(A,B).
% 10.73/11.12  29 (wt=13) [demod([24,24]),flip(1)] antidomain(antidomain(antidomain(backward_diamond(A,antidomain(antidomain(antidomain(B))))))) = backward_box(A,B).
% 10.73/11.12  end_of_list.
% 10.73/11.12  
% 10.73/11.12  Passive:
% 10.73/11.12  end_of_list.
% 10.73/11.12  
% 10.73/11.12  ------------- memory usage ------------
% 10.73/11.12  Memory dynamically allocated (tp_alloc): 63964.
% 10.73/11.12    type (bytes each)        gets      frees     in use      avail      bytes
% 10.73/11.12  sym_ent (  96)               73          0         73          0      6.8 K
% 10.73/11.12  term (  16)             3729024    2883841     845183         21  16412.1 K
% 10.73/11.12  gen_ptr (   8)          5016439     529094    4487345          0  35057.4 K
% 10.73/11.12  context ( 808)          5016650    5016648          2          7      7.1 K
% 10.73/11.12  trail (  12)            6363240    6363240          0          9      0.1 K
% 10.73/11.12  bt_node (  68)          2042108    2042105          3         48      3.4 K
% 10.73/11.12  ac_position (285432)          0          0          0          0      0.0 K
% 10.73/11.12  ac_match_pos (14044)          0          0          0          0      0.0 K
% 10.73/11.12  ac_match_free_vars_pos (4020)
% 10.73/11.12                                0          0          0          0      0.0 K
% 10.73/11.12  discrim (  12)           580512      42866     537646          0   6300.5 K
% 10.73/11.12  flat (  40)             9850435    9850435          0        131      5.1 K
% 10.73/11.12  discrim_pos (  12)       171760     171760          0          1      0.0 K
% 10.73/11.13  fpa_head (  12)           86902          0      86902          0   1018.4 K
% 10.73/11.13  fpa_tree (  28)          136052     136052          0         49      1.3 K
% 10.73/11.13  fpa_pos (  36)            37998      37998          0          1      0.0 K
% 10.73/11.13  literal (  12)           147537     123027      24510          1    287.2 K
% 10.73/11.13  clause (  24)            147537     123027      24510          1    574.5 K
% 10.73/11.13  list (  12)               13547      13491         56          5      0.7 K
% 10.73/11.13  list_pos (  20)           90519       8162      82357          0   1608.5 K
% 10.73/11.13  pair_index (   40)              2          0          2          0      0.1 K
% 10.73/11.13  
% 10.73/11.13  -------------- statistics -------------
% 10.73/11.13  Clauses input                 30
% 10.73/11.13    Usable input                   0
% 10.73/11.13    Sos input                     30
% 10.73/11.13    Demodulators input             0
% 10.73/11.13    Passive input                  0
% 10.73/11.13  
% 10.73/11.13  Processed BS (before search)  31
% 10.73/11.13  Forward subsumed BS            1
% 10.73/11.13  Kept BS                       30
% 10.73/11.13  New demodulators BS           28
% 10.73/11.13  Back demodulated BS            0
% 10.73/11.13  
% 10.73/11.13  Clauses or pairs given    316035
% 10.73/11.13  Clauses generated          96319
% 10.73/11.13  Forward subsumed           71839
% 10.73/11.13  Deleted by weight              0
% 10.73/11.13  Deleted by variable count      0
% 10.73/11.13  Kept                       24480
% 10.73/11.13  New demodulators           13460
% 10.73/11.13  Back demodulated            1700
% 10.73/11.13  Ordered paramod prunes         0
% 10.73/11.13  Basic paramod prunes     1236719
% 10.73/11.13  Prime paramod prunes        6186
% 10.73/11.13  Semantic prunes                0
% 10.73/11.13  
% 10.73/11.13  Rewrite attmepts         1610233
% 10.73/11.13  Rewrites                  141850
% 10.73/11.13  
% 10.73/11.13  FPA overloads                  0
% 10.73/11.13  FPA underloads                 0
% 10.73/11.13  
% 10.73/11.13  Usable size                    0
% 10.73/11.13  Sos size                   22810
% 10.73/11.13  Demodulators size          12227
% 10.73/11.13  Passive size                   0
% 10.73/11.13  Disabled size               1700
% 10.73/11.13  
% 10.73/11.13  Proofs found                   0
% 10.73/11.13  
% 10.73/11.13  ----------- times (seconds) ----------- Thu Jun 16 13:02:30 2022
% 10.73/11.13  
% 10.73/11.13  user CPU time             8.30   (0 hr, 0 min, 8 sec)
% 10.73/11.13  system CPU time           1.70   (0 hr, 0 min, 1 sec)
% 10.73/11.13  wall-clock time          10      (0 hr, 0 min, 10 sec)
% 10.73/11.13  input time                0.00
% 10.73/11.13  paramodulation time       0.56
% 10.73/11.13  demodulation time         0.38
% 10.73/11.13  orient time               0.18
% 10.73/11.13  weigh time                0.05
% 10.73/11.13  forward subsume time      0.14
% 10.73/11.13  back demod find 
% 10.73/11.13  
% 10.73/11.13  ********** ABNORMAL END **********
% 10.73/11.13  ********** in tp_alloc, max_mem parameter exceeded.
% 10.73/11.13  time      0.90
% 10.73/11.13  conflict time             0.02
% 10.73/11.13  LRPO time                 0.08
% 10.73/11.13  store clause time         5.27
% 10.73/11.13  disable clause time       0.17
% 10.73/11.13  prime paramod time        0.12
% 10.73/11.13  semantics time            0.00
% 10.73/11.13  
% 10.73/11.13  EQP interrupted
%------------------------------------------------------------------------------