TSTP Solution File: KLE089+1 by ePrincess---1.0
View Problem
- Process Solution
%------------------------------------------------------------------------------
% File : ePrincess---1.0
% Problem : KLE089+1 : TPTP v6.2.0. Released v4.0.0.
% Transfm : none
% Format : tptp:raw
% Command : ePrincess-casc -timeout=%d %s
% Computer : n049.star.cs.uiowa.edu
% Model : x86_64 x86_64
% CPU : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory : 32286.75MB
% OS : Linux 2.6.32-573.1.1.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Oct 8 13:58:51 EDT 2015
% Result : Theorem 10.32s
% Output : Proof 12.57s
% Verified :
% SZS Type : None (Parsing solution fails)
% Syntax : Number of formulae : 0
% Comments :
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.02 % Problem : KLE089+1 : TPTP v6.2.0. Released v4.0.0.
% 0.00/0.02 % Command : ePrincess-casc -timeout=%d %s
% 0.02/1.07 % Computer : n049.star.cs.uiowa.edu
% 0.02/1.07 % Model : x86_64 x86_64
% 0.02/1.07 % CPU : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% 0.02/1.07 % Memory : 32286.75MB
% 0.02/1.07 % OS : Linux 2.6.32-573.1.1.el6.x86_64
% 0.02/1.07 % CPULimit : 300
% 0.02/1.07 % DateTime : Tue Oct 6 22:02:56 CDT 2015
% 0.02/1.07 % CPUTime :
% 0.02/1.31 ____ _
% 0.02/1.31 ___ / __ \_____(_)___ ________ __________
% 0.02/1.31 / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.02/1.31 / __/ ____/ / / / / / / /__/ __(__ |__ )
% 0.02/1.31 \___/_/ /_/ /_/_/ /_/\___/\___/____/____/
% 0.02/1.31
% 0.02/1.31 A Theorem Prover for First-Order Logic
% 0.02/1.32 (ePrincess v.1.0)
% 0.02/1.32
% 0.02/1.32 (c) Philipp Rümmer, 2009-2015
% 0.02/1.32 (c) Peter Backeman, 2014-2015
% 0.02/1.32 (contributions by Angelo Brillout, Peter Baumgartner)
% 0.02/1.32 Free software under GNU Lesser General Public License (LGPL).
% 0.02/1.32 Bug reports to peter@backeman.se
% 0.02/1.32
% 0.02/1.32 For more information, visit http://user.uu.se/~petba168/breu/
% 0.02/1.32
% 0.02/1.32 Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.02/1.38 Prover 0: Options: -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 0.02/2.04 Prover 0: Preprocessing ...
% 2.26/2.71 Prover 0: Constructing countermodel ...
% 7.98/6.68 Prover 1: Options: +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -resolutionMethod=normal +ignoreQuantifiers -generateTriggers=all
% 8.12/6.79 Prover 1: Preprocessing ...
% 8.45/6.95 Prover 1: Constructing countermodel ...
% 9.08/7.33 Prover 1: gave up
% 9.08/7.33 Prover 2: Options: +triggersInConjecture +genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 9.28/7.42 Prover 2: Preprocessing ...
% 9.50/7.59 Prover 2: Warning: ignoring some quantifiers
% 9.71/7.61 Prover 2: Constructing countermodel ...
% 10.09/7.89 Prover 2: proved (560ms)
% 10.32/7.90 Prover 0: stopped
% 10.32/7.90
% 10.32/7.90 No countermodel exists, formula is valid
% 10.32/7.90 % SZS status Theorem for theBenchmark
% 10.32/7.90
% 10.32/7.90 Generating proof ... Warning: ignoring some quantifiers
% 11.95/8.59 found it (size 37)
% 11.95/8.59
% 11.95/8.59 % SZS output start Proof for theBenchmark
% 11.95/8.59 Assumed formulas after preprocessing and simplification:
% 11.95/8.60 | (0) ? [v0] : ? [v1] : ? [v2] : ? [v3] : ? [v4] : ( ~ (v4 = zero) & domain(v0) = v2 & antidomain(v1) = v3 & multiplication(v2, v1) = v4 & addition(v2, v3) = v3 & ! [v5] : ! [v6] : ! [v7] : ! [v8] : ! [v9] : ! [v10] : ( ~ (multiplication(v6, v7) = v9) | ~ (multiplication(v5, v7) = v8) | ~ (addition(v8, v9) = v10) | ? [v11] : (multiplication(v11, v7) = v10 & addition(v5, v6) = v11)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : ! [v9] : ! [v10] : ( ~ (multiplication(v5, v7) = v9) | ~ (multiplication(v5, v6) = v8) | ~ (addition(v8, v9) = v10) | ? [v11] : (multiplication(v5, v11) = v10 & addition(v6, v7) = v11)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : ! [v9] : ( ~ (coantidomain(v7) = v8) | ~ (coantidomain(v5) = v7) | ~ (multiplication(v8, v6) = v9) | ? [v10] : ? [v11] : ? [v12] : (coantidomain(v10) = v11 & coantidomain(v9) = v12 & multiplication(v5, v6) = v10 & addition(v11, v12) = v12)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : ! [v9] : ( ~ (antidomain(v7) = v8) | ~
% (antidomain(v6) = v7) | ~ (multiplication(v5, v8) = v9) | ? [v10] : ? [v11] : ? [v12] : (antidomain(v10) = v11 & antidomain(v9) = v12 & multiplication(v5, v6) = v10 & addition(v11, v12) = v12)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : ! [v9] : ( ~ (multiplication(v8, v7) = v9) | ~ (multiplication(v5, v6) = v8) | ? [v10] : (multiplication(v6, v7) = v10 & multiplication(v5, v10) = v9)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : ! [v9] : ( ~ (multiplication(v8, v7) = v9) | ~ (addition(v5, v6) = v8) | ? [v10] : ? [v11] : (multiplication(v6, v7) = v11 & multiplication(v5, v7) = v10 & addition(v10, v11) = v9)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : ! [v9] : ( ~ (multiplication(v6, v7) = v8) | ~ (multiplication(v5, v8) = v9) | ? [v10] : (multiplication(v10, v7) = v9 & multiplication(v5, v6) = v10)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : ! [v9] : ( ~ (multiplication(v5, v8) = v9) | ~ (addition(v6, v7) = v8) | ? [v10] : ? [v11] : (multiplication(v5, v7) = v11 & multiplication(v5, v6) = v10 &
% addition(v10, v11) = v9)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : ! [v9] : ( ~ (addition(v8, v5) = v9) | ~ (addition(v7, v6) = v8) | ? [v10] : (addition(v7, v10) = v9 & addition(v6, v5) = v10)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : ! [v9] : ( ~ (addition(v7, v8) = v9) | ~ (addition(v6, v5) = v8) | ? [v10] : (addition(v10, v5) = v9 & addition(v7, v6) = v10)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : (v6 = v5 | ~ (leq(v8, v7) = v6) | ~ (leq(v8, v7) = v5)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : (v6 = v5 | ~ (multiplication(v8, v7) = v6) | ~ (multiplication(v8, v7) = v5)) & ! [v5] : ! [v6] : ! [v7] : ! [v8] : (v6 = v5 | ~ (addition(v8, v7) = v6) | ~ (addition(v8, v7) = v5)) & ! [v5] : ! [v6] : ! [v7] : (v7 = v6 | ~ (addition(v5, v6) = v7) | ? [v8] : ( ~ (v8 = 0) & leq(v5, v6) = v8)) & ! [v5] : ! [v6] : ! [v7] : (v7 = 0 | ~ (leq(v5, v6) = v7) | ? [v8] : ( ~ (v8 = v6) & addition(v5, v6) = v8)) & ! [v5] : ! [v6] : ! [v7] : (v6 = v5 | ~ (codomain(v7) = v6) | ~ (codomain(v7) =
% v5)) & ! [v5] : ! [v6] : ! [v7] : (v6 = v5 | ~ (coantidomain(v7) = v6) | ~ (coantidomain(v7) = v5)) & ! [v5] : ! [v6] : ! [v7] : (v6 = v5 | ~ (domain(v7) = v6) | ~ (domain(v7) = v5)) & ! [v5] : ! [v6] : ! [v7] : (v6 = v5 | ~ (antidomain(v7) = v6) | ~ (antidomain(v7) = v5)) & ! [v5] : ! [v6] : ! [v7] : ( ~ (multiplication(v5, v6) = v7) | ? [v8] : ? [v9] : ? [v10] : ? [v11] : ? [v12] : (coantidomain(v11) = v12 & coantidomain(v9) = v10 & coantidomain(v7) = v8 & coantidomain(v5) = v9 & multiplication(v10, v6) = v11 & addition(v8, v12) = v12)) & ! [v5] : ! [v6] : ! [v7] : ( ~ (multiplication(v5, v6) = v7) | ? [v8] : ? [v9] : ? [v10] : ? [v11] : ? [v12] : (antidomain(v11) = v12 & antidomain(v9) = v10 & antidomain(v7) = v8 & antidomain(v6) = v9 & multiplication(v5, v10) = v11 & addition(v8, v12) = v12)) & ! [v5] : ! [v6] : ! [v7] : ( ~ (addition(v6, v5) = v7) | addition(v5, v6) = v7) & ! [v5] : ! [v6] : ! [v7] : ( ~ (addition(v5, v6) = v7) | addition(v6, v5) = v7) & ! [v5] : !
% [v6] : (v6 = v5 | ~ (multiplication(v5, one) = v6)) & ! [v5] : ! [v6] : (v6 = v5 | ~ (multiplication(one, v5) = v6)) & ! [v5] : ! [v6] : (v6 = v5 | ~ (addition(v5, v5) = v6)) & ! [v5] : ! [v6] : (v6 = v5 | ~ (addition(v5, zero) = v6)) & ! [v5] : ! [v6] : (v6 = zero | ~ (multiplication(v5, zero) = v6)) & ! [v5] : ! [v6] : (v6 = zero | ~ (multiplication(zero, v5) = v6)) & ! [v5] : ! [v6] : ( ~ (codomain(v5) = v6) | ? [v7] : (coantidomain(v7) = v6 & coantidomain(v5) = v7)) & ! [v5] : ! [v6] : ( ~ (coantidomain(v5) = v6) | multiplication(v5, v6) = zero) & ! [v5] : ! [v6] : ( ~ (coantidomain(v5) = v6) | ? [v7] : (codomain(v5) = v7 & coantidomain(v6) = v7)) & ! [v5] : ! [v6] : ( ~ (coantidomain(v5) = v6) | ? [v7] : (coantidomain(v6) = v7 & addition(v7, v6) = one)) & ! [v5] : ! [v6] : ( ~ (domain(v5) = v6) | ? [v7] : (antidomain(v7) = v6 & antidomain(v5) = v7)) & ! [v5] : ! [v6] : ( ~ (antidomain(v5) = v6) | multiplication(v6, v5) = zero) & ! [v5] : ! [v6] : ( ~ (antidomain(v5) =
% v6) | ? [v7] : (domain(v5) = v7 & antidomain(v6) = v7)) & ! [v5] : ! [v6] : ( ~ (antidomain(v5) = v6) | ? [v7] : (antidomain(v6) = v7 & addition(v7, v6) = one)) & ! [v5] : ! [v6] : ( ~ (leq(v5, v6) = 0) | addition(v5, v6) = v6) & ! [v5] : ! [v6] : ( ~ (addition(v5, v6) = v6) | leq(v5, v6) = 0) & ? [v5] : ? [v6] : ? [v7] : leq(v6, v5) = v7 & ? [v5] : ? [v6] : ? [v7] : multiplication(v6, v5) = v7 & ? [v5] : ? [v6] : ? [v7] : addition(v6, v5) = v7 & ? [v5] : ? [v6] : codomain(v5) = v6 & ? [v5] : ? [v6] : coantidomain(v5) = v6 & ? [v5] : ? [v6] : domain(v5) = v6 & ? [v5] : ? [v6] : antidomain(v5) = v6)
% 12.25/8.66 | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4 yields:
% 12.25/8.66 | (1) ~ (all_0_0_0 = zero) & domain(all_0_4_4) = all_0_2_2 & antidomain(all_0_3_3) = all_0_1_1 & multiplication(all_0_2_2, all_0_3_3) = all_0_0_0 & addition(all_0_2_2, all_0_1_1) = all_0_1_1 & ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ! [v5] : ( ~ (multiplication(v1, v2) = v4) | ~ (multiplication(v0, v2) = v3) | ~ (addition(v3, v4) = v5) | ? [v6] : (multiplication(v6, v2) = v5 & addition(v0, v1) = v6)) & ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ! [v5] : ( ~ (multiplication(v0, v2) = v4) | ~ (multiplication(v0, v1) = v3) | ~ (addition(v3, v4) = v5) | ? [v6] : (multiplication(v0, v6) = v5 & addition(v1, v2) = v6)) & ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (coantidomain(v2) = v3) | ~ (coantidomain(v0) = v2) | ~ (multiplication(v3, v1) = v4) | ? [v5] : ? [v6] : ? [v7] : (coantidomain(v5) = v6 & coantidomain(v4) = v7 & multiplication(v0, v1) = v5 & addition(v6, v7) = v7)) & ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (antidomain(v2) = v3) | ~
% (antidomain(v1) = v2) | ~ (multiplication(v0, v3) = v4) | ? [v5] : ? [v6] : ? [v7] : (antidomain(v5) = v6 & antidomain(v4) = v7 & multiplication(v0, v1) = v5 & addition(v6, v7) = v7)) & ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (multiplication(v3, v2) = v4) | ~ (multiplication(v0, v1) = v3) | ? [v5] : (multiplication(v1, v2) = v5 & multiplication(v0, v5) = v4)) & ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (multiplication(v3, v2) = v4) | ~ (addition(v0, v1) = v3) | ? [v5] : ? [v6] : (multiplication(v1, v2) = v6 & multiplication(v0, v2) = v5 & addition(v5, v6) = v4)) & ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (multiplication(v1, v2) = v3) | ~ (multiplication(v0, v3) = v4) | ? [v5] : (multiplication(v5, v2) = v4 & multiplication(v0, v1) = v5)) & ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (multiplication(v0, v3) = v4) | ~ (addition(v1, v2) = v3) | ? [v5] : ? [v6] : (multiplication(v0, v2) = v6 & multiplication(v0, v1) = v5 & addition(v5, v6) = v4)) &
% ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (addition(v3, v0) = v4) | ~ (addition(v2, v1) = v3) | ? [v5] : (addition(v2, v5) = v4 & addition(v1, v0) = v5)) & ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (addition(v2, v3) = v4) | ~ (addition(v1, v0) = v3) | ? [v5] : (addition(v5, v0) = v4 & addition(v2, v1) = v5)) & ! [v0] : ! [v1] : ! [v2] : ! [v3] : (v1 = v0 | ~ (leq(v3, v2) = v1) | ~ (leq(v3, v2) = v0)) & ! [v0] : ! [v1] : ! [v2] : ! [v3] : (v1 = v0 | ~ (multiplication(v3, v2) = v1) | ~ (multiplication(v3, v2) = v0)) & ! [v0] : ! [v1] : ! [v2] : ! [v3] : (v1 = v0 | ~ (addition(v3, v2) = v1) | ~ (addition(v3, v2) = v0)) & ! [v0] : ! [v1] : ! [v2] : (v2 = v1 | ~ (addition(v0, v1) = v2) | ? [v3] : ( ~ (v3 = 0) & leq(v0, v1) = v3)) & ! [v0] : ! [v1] : ! [v2] : (v2 = 0 | ~ (leq(v0, v1) = v2) | ? [v3] : ( ~ (v3 = v1) & addition(v0, v1) = v3)) & ! [v0] : ! [v1] : ! [v2] : (v1 = v0 | ~ (codomain(v2) = v1) | ~ (codomain(v2) = v0)) & ! [v0] : ! [v1] : ! [v2]
% : (v1 = v0 | ~ (coantidomain(v2) = v1) | ~ (coantidomain(v2) = v0)) & ! [v0] : ! [v1] : ! [v2] : (v1 = v0 | ~ (domain(v2) = v1) | ~ (domain(v2) = v0)) & ! [v0] : ! [v1] : ! [v2] : (v1 = v0 | ~ (antidomain(v2) = v1) | ~ (antidomain(v2) = v0)) & ! [v0] : ! [v1] : ! [v2] : ( ~ (multiplication(v0, v1) = v2) | ? [v3] : ? [v4] : ? [v5] : ? [v6] : ? [v7] : (coantidomain(v6) = v7 & coantidomain(v4) = v5 & coantidomain(v2) = v3 & coantidomain(v0) = v4 & multiplication(v5, v1) = v6 & addition(v3, v7) = v7)) & ! [v0] : ! [v1] : ! [v2] : ( ~ (multiplication(v0, v1) = v2) | ? [v3] : ? [v4] : ? [v5] : ? [v6] : ? [v7] : (antidomain(v6) = v7 & antidomain(v4) = v5 & antidomain(v2) = v3 & antidomain(v1) = v4 & multiplication(v0, v5) = v6 & addition(v3, v7) = v7)) & ! [v0] : ! [v1] : ! [v2] : ( ~ (addition(v1, v0) = v2) | addition(v0, v1) = v2) & ! [v0] : ! [v1] : ! [v2] : ( ~ (addition(v0, v1) = v2) | addition(v1, v0) = v2) & ! [v0] : ! [v1] : (v1 = v0 | ~ (multiplication(v0, one) = v1)) &
% ! [v0] : ! [v1] : (v1 = v0 | ~ (multiplication(one, v0) = v1)) & ! [v0] : ! [v1] : (v1 = v0 | ~ (addition(v0, v0) = v1)) & ! [v0] : ! [v1] : (v1 = v0 | ~ (addition(v0, zero) = v1)) & ! [v0] : ! [v1] : (v1 = zero | ~ (multiplication(v0, zero) = v1)) & ! [v0] : ! [v1] : (v1 = zero | ~ (multiplication(zero, v0) = v1)) & ! [v0] : ! [v1] : ( ~ (codomain(v0) = v1) | ? [v2] : (coantidomain(v2) = v1 & coantidomain(v0) = v2)) & ! [v0] : ! [v1] : ( ~ (coantidomain(v0) = v1) | multiplication(v0, v1) = zero) & ! [v0] : ! [v1] : ( ~ (coantidomain(v0) = v1) | ? [v2] : (codomain(v0) = v2 & coantidomain(v1) = v2)) & ! [v0] : ! [v1] : ( ~ (coantidomain(v0) = v1) | ? [v2] : (coantidomain(v1) = v2 & addition(v2, v1) = one)) & ! [v0] : ! [v1] : ( ~ (domain(v0) = v1) | ? [v2] : (antidomain(v2) = v1 & antidomain(v0) = v2)) & ! [v0] : ! [v1] : ( ~ (antidomain(v0) = v1) | multiplication(v1, v0) = zero) & ! [v0] : ! [v1] : ( ~ (antidomain(v0) = v1) | ? [v2] : (domain(v0) = v2 & antidomain(v1) = v2))
% & ! [v0] : ! [v1] : ( ~ (antidomain(v0) = v1) | ? [v2] : (antidomain(v1) = v2 & addition(v2, v1) = one)) & ! [v0] : ! [v1] : ( ~ (leq(v0, v1) = 0) | addition(v0, v1) = v1) & ! [v0] : ! [v1] : ( ~ (addition(v0, v1) = v1) | leq(v0, v1) = 0) & ? [v0] : ? [v1] : ? [v2] : leq(v1, v0) = v2 & ? [v0] : ? [v1] : ? [v2] : multiplication(v1, v0) = v2 & ? [v0] : ? [v1] : ? [v2] : addition(v1, v0) = v2 & ? [v0] : ? [v1] : codomain(v0) = v1 & ? [v0] : ? [v1] : coantidomain(v0) = v1 & ? [v0] : ? [v1] : domain(v0) = v1 & ? [v0] : ? [v1] : antidomain(v0) = v1
% 12.25/8.70 |
% 12.25/8.70 | Applying alpha-rule on (1) yields:
% 12.25/8.70 | (2) ! [v0] : ! [v1] : ! [v2] : ! [v3] : (v1 = v0 | ~ (addition(v3, v2) = v1) | ~ (addition(v3, v2) = v0))
% 12.25/8.70 | (3) ! [v0] : ! [v1] : ! [v2] : (v1 = v0 | ~ (domain(v2) = v1) | ~ (domain(v2) = v0))
% 12.25/8.70 | (4) ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (addition(v3, v0) = v4) | ~ (addition(v2, v1) = v3) | ? [v5] : (addition(v2, v5) = v4 & addition(v1, v0) = v5))
% 12.25/8.71 | (5) ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (addition(v2, v3) = v4) | ~ (addition(v1, v0) = v3) | ? [v5] : (addition(v5, v0) = v4 & addition(v2, v1) = v5))
% 12.25/8.71 | (6) ! [v0] : ! [v1] : ! [v2] : (v1 = v0 | ~ (antidomain(v2) = v1) | ~ (antidomain(v2) = v0))
% 12.25/8.71 | (7) ! [v0] : ! [v1] : ( ~ (codomain(v0) = v1) | ? [v2] : (coantidomain(v2) = v1 & coantidomain(v0) = v2))
% 12.25/8.71 | (8) ! [v0] : ! [v1] : ! [v2] : (v1 = v0 | ~ (codomain(v2) = v1) | ~ (codomain(v2) = v0))
% 12.25/8.71 | (9) ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ! [v5] : ( ~ (multiplication(v0, v2) = v4) | ~ (multiplication(v0, v1) = v3) | ~ (addition(v3, v4) = v5) | ? [v6] : (multiplication(v0, v6) = v5 & addition(v1, v2) = v6))
% 12.25/8.71 | (10) ! [v0] : ! [v1] : ( ~ (addition(v0, v1) = v1) | leq(v0, v1) = 0)
% 12.25/8.71 | (11) ! [v0] : ! [v1] : ( ~ (leq(v0, v1) = 0) | addition(v0, v1) = v1)
% 12.25/8.71 | (12) ~ (all_0_0_0 = zero)
% 12.25/8.71 | (13) ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (antidomain(v2) = v3) | ~ (antidomain(v1) = v2) | ~ (multiplication(v0, v3) = v4) | ? [v5] : ? [v6] : ? [v7] : (antidomain(v5) = v6 & antidomain(v4) = v7 & multiplication(v0, v1) = v5 & addition(v6, v7) = v7))
% 12.57/8.72 | (14) ! [v0] : ! [v1] : ( ~ (coantidomain(v0) = v1) | ? [v2] : (coantidomain(v1) = v2 & addition(v2, v1) = one))
% 12.57/8.72 | (15) ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (multiplication(v1, v2) = v3) | ~ (multiplication(v0, v3) = v4) | ? [v5] : (multiplication(v5, v2) = v4 & multiplication(v0, v1) = v5))
% 12.57/8.72 | (16) ! [v0] : ! [v1] : ! [v2] : ( ~ (multiplication(v0, v1) = v2) | ? [v3] : ? [v4] : ? [v5] : ? [v6] : ? [v7] : (antidomain(v6) = v7 & antidomain(v4) = v5 & antidomain(v2) = v3 & antidomain(v1) = v4 & multiplication(v0, v5) = v6 & addition(v3, v7) = v7))
% 12.57/8.72 | (17) ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (multiplication(v3, v2) = v4) | ~ (multiplication(v0, v1) = v3) | ? [v5] : (multiplication(v1, v2) = v5 & multiplication(v0, v5) = v4))
% 12.57/8.72 | (18) ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (multiplication(v3, v2) = v4) | ~ (addition(v0, v1) = v3) | ? [v5] : ? [v6] : (multiplication(v1, v2) = v6 & multiplication(v0, v2) = v5 & addition(v5, v6) = v4))
% 12.57/8.72 | (19) ! [v0] : ! [v1] : ! [v2] : (v2 = v1 | ~ (addition(v0, v1) = v2) | ? [v3] : ( ~ (v3 = 0) & leq(v0, v1) = v3))
% 12.57/8.72 | (20) ! [v0] : ! [v1] : ( ~ (domain(v0) = v1) | ? [v2] : (antidomain(v2) = v1 & antidomain(v0) = v2))
% 12.57/8.74 | (21) ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (multiplication(v0, v3) = v4) | ~ (addition(v1, v2) = v3) | ? [v5] : ? [v6] : (multiplication(v0, v2) = v6 & multiplication(v0, v1) = v5 & addition(v5, v6) = v4))
% 12.57/8.74 | (22) ! [v0] : ! [v1] : ! [v2] : (v1 = v0 | ~ (coantidomain(v2) = v1) | ~ (coantidomain(v2) = v0))
% 12.57/8.74 | (23) ! [v0] : ! [v1] : (v1 = v0 | ~ (addition(v0, v0) = v1))
% 12.57/8.74 | (24) ! [v0] : ! [v1] : (v1 = zero | ~ (multiplication(zero, v0) = v1))
% 12.57/8.74 | (25) ! [v0] : ! [v1] : ! [v2] : ! [v3] : (v1 = v0 | ~ (leq(v3, v2) = v1) | ~ (leq(v3, v2) = v0))
% 12.57/8.74 | (26) ! [v0] : ! [v1] : ! [v2] : (v2 = 0 | ~ (leq(v0, v1) = v2) | ? [v3] : ( ~ (v3 = v1) & addition(v0, v1) = v3))
% 12.57/8.74 | (27) ! [v0] : ! [v1] : ( ~ (antidomain(v0) = v1) | ? [v2] : (antidomain(v1) = v2 & addition(v2, v1) = one))
% 12.57/8.74 | (28) antidomain(all_0_3_3) = all_0_1_1
% 12.57/8.74 | (29) ! [v0] : ! [v1] : ( ~ (coantidomain(v0) = v1) | multiplication(v0, v1) = zero)
% 12.57/8.74 | (30) domain(all_0_4_4) = all_0_2_2
% 12.57/8.74 | (31) ? [v0] : ? [v1] : ? [v2] : addition(v1, v0) = v2
% 12.57/8.74 | (32) ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ( ~ (coantidomain(v2) = v3) | ~ (coantidomain(v0) = v2) | ~ (multiplication(v3, v1) = v4) | ? [v5] : ? [v6] : ? [v7] : (coantidomain(v5) = v6 & coantidomain(v4) = v7 & multiplication(v0, v1) = v5 & addition(v6, v7) = v7))
% 12.57/8.74 | (33) addition(all_0_2_2, all_0_1_1) = all_0_1_1
% 12.57/8.74 | (34) ! [v0] : ! [v1] : (v1 = v0 | ~ (multiplication(one, v0) = v1))
% 12.57/8.74 | (35) ! [v0] : ! [v1] : ( ~ (antidomain(v0) = v1) | ? [v2] : (domain(v0) = v2 & antidomain(v1) = v2))
% 12.57/8.75 | (36) ! [v0] : ! [v1] : (v1 = v0 | ~ (addition(v0, zero) = v1))
% 12.57/8.75 | (37) ? [v0] : ? [v1] : coantidomain(v0) = v1
% 12.57/8.75 | (38) ! [v0] : ! [v1] : (v1 = v0 | ~ (multiplication(v0, one) = v1))
% 12.57/8.75 | (39) ? [v0] : ? [v1] : domain(v0) = v1
% 12.57/8.75 | (40) multiplication(all_0_2_2, all_0_3_3) = all_0_0_0
% 12.57/8.75 | (41) ? [v0] : ? [v1] : antidomain(v0) = v1
% 12.57/8.75 | (42) ! [v0] : ! [v1] : ( ~ (coantidomain(v0) = v1) | ? [v2] : (codomain(v0) = v2 & coantidomain(v1) = v2))
% 12.57/8.75 | (43) ! [v0] : ! [v1] : ! [v2] : ( ~ (multiplication(v0, v1) = v2) | ? [v3] : ? [v4] : ? [v5] : ? [v6] : ? [v7] : (coantidomain(v6) = v7 & coantidomain(v4) = v5 & coantidomain(v2) = v3 & coantidomain(v0) = v4 & multiplication(v5, v1) = v6 & addition(v3, v7) = v7))
% 12.57/8.75 | (44) ! [v0] : ! [v1] : (v1 = zero | ~ (multiplication(v0, zero) = v1))
% 12.57/8.75 | (45) ! [v0] : ! [v1] : ( ~ (antidomain(v0) = v1) | multiplication(v1, v0) = zero)
% 12.57/8.75 | (46) ? [v0] : ? [v1] : ? [v2] : leq(v1, v0) = v2
% 12.57/8.75 | (47) ? [v0] : ? [v1] : codomain(v0) = v1
% 12.57/8.75 | (48) ? [v0] : ? [v1] : ? [v2] : multiplication(v1, v0) = v2
% 12.57/8.75 | (49) ! [v0] : ! [v1] : ! [v2] : ( ~ (addition(v0, v1) = v2) | addition(v1, v0) = v2)
% 12.57/8.75 | (50) ! [v0] : ! [v1] : ! [v2] : ( ~ (addition(v1, v0) = v2) | addition(v0, v1) = v2)
% 12.57/8.75 | (51) ! [v0] : ! [v1] : ! [v2] : ! [v3] : ! [v4] : ! [v5] : ( ~ (multiplication(v1, v2) = v4) | ~ (multiplication(v0, v2) = v3) | ~ (addition(v3, v4) = v5) | ? [v6] : (multiplication(v6, v2) = v5 & addition(v0, v1) = v6))
% 12.57/8.76 | (52) ! [v0] : ! [v1] : ! [v2] : ! [v3] : (v1 = v0 | ~ (multiplication(v3, v2) = v1) | ~ (multiplication(v3, v2) = v0))
% 12.57/8.76 |
% 12.57/8.76 | Instantiating formula (45) with all_0_1_1, all_0_3_3 and discharging atoms antidomain(all_0_3_3) = all_0_1_1, yields:
% 12.57/8.76 | (53) multiplication(all_0_1_1, all_0_3_3) = zero
% 12.57/8.76 |
% 12.57/8.76 | Instantiating formula (5) with all_0_1_1, all_0_1_1, all_0_2_2, all_0_2_2, all_0_1_1 and discharging atoms addition(all_0_2_2, all_0_1_1) = all_0_1_1, yields:
% 12.57/8.76 | (54) ? [v0] : (addition(v0, all_0_1_1) = all_0_1_1 & addition(all_0_2_2, all_0_2_2) = v0)
% 12.57/8.76 |
% 12.57/8.76 | Instantiating formula (50) with all_0_1_1, all_0_2_2, all_0_1_1 and discharging atoms addition(all_0_2_2, all_0_1_1) = all_0_1_1, yields:
% 12.57/8.76 | (55) addition(all_0_1_1, all_0_2_2) = all_0_1_1
% 12.57/8.76 |
% 12.57/8.76 | Instantiating (54) with all_31_0_34 yields:
% 12.57/8.76 | (56) addition(all_31_0_34, all_0_1_1) = all_0_1_1 & addition(all_0_2_2, all_0_2_2) = all_31_0_34
% 12.57/8.76 |
% 12.57/8.76 | Applying alpha-rule on (56) yields:
% 12.57/8.76 | (57) addition(all_31_0_34, all_0_1_1) = all_0_1_1
% 12.57/8.76 | (58) addition(all_0_2_2, all_0_2_2) = all_31_0_34
% 12.57/8.76 |
% 12.57/8.76 | Instantiating formula (23) with all_31_0_34, all_0_2_2 and discharging atoms addition(all_0_2_2, all_0_2_2) = all_31_0_34, yields:
% 12.57/8.76 | (59) all_31_0_34 = all_0_2_2
% 12.57/8.76 |
% 12.57/8.76 | From (59) and (57) follows:
% 12.57/8.76 | (33) addition(all_0_2_2, all_0_1_1) = all_0_1_1
% 12.57/8.76 |
% 12.57/8.76 | From (59) and (58) follows:
% 12.57/8.76 | (61) addition(all_0_2_2, all_0_2_2) = all_0_2_2
% 12.57/8.76 |
% 12.57/8.76 | Instantiating formula (18) with zero, all_0_1_1, all_0_3_3, all_0_1_1, all_0_2_2 and discharging atoms multiplication(all_0_1_1, all_0_3_3) = zero, addition(all_0_2_2, all_0_1_1) = all_0_1_1, yields:
% 12.57/8.76 | (62) ? [v0] : ? [v1] : (multiplication(all_0_1_1, all_0_3_3) = v1 & multiplication(all_0_2_2, all_0_3_3) = v0 & addition(v0, v1) = zero)
% 12.57/8.77 |
% 12.57/8.77 | Instantiating formula (18) with zero, all_0_1_1, all_0_3_3, all_0_2_2, all_0_1_1 and discharging atoms multiplication(all_0_1_1, all_0_3_3) = zero, addition(all_0_1_1, all_0_2_2) = all_0_1_1, yields:
% 12.57/8.77 | (63) ? [v0] : ? [v1] : (multiplication(all_0_1_1, all_0_3_3) = v0 & multiplication(all_0_2_2, all_0_3_3) = v1 & addition(v0, v1) = zero)
% 12.57/8.77 |
% 12.57/8.77 | Instantiating formula (18) with all_0_0_0, all_0_2_2, all_0_3_3, all_0_2_2, all_0_2_2 and discharging atoms multiplication(all_0_2_2, all_0_3_3) = all_0_0_0, addition(all_0_2_2, all_0_2_2) = all_0_2_2, yields:
% 12.57/8.77 | (64) ? [v0] : ? [v1] : (multiplication(all_0_2_2, all_0_3_3) = v1 & multiplication(all_0_2_2, all_0_3_3) = v0 & addition(v0, v1) = all_0_0_0)
% 12.57/8.77 |
% 12.57/8.77 | Instantiating (64) with all_53_0_39, all_53_1_40 yields:
% 12.57/8.77 | (65) multiplication(all_0_2_2, all_0_3_3) = all_53_0_39 & multiplication(all_0_2_2, all_0_3_3) = all_53_1_40 & addition(all_53_1_40, all_53_0_39) = all_0_0_0
% 12.57/8.77 |
% 12.57/8.77 | Applying alpha-rule on (65) yields:
% 12.57/8.77 | (66) multiplication(all_0_2_2, all_0_3_3) = all_53_0_39
% 12.57/8.77 | (67) multiplication(all_0_2_2, all_0_3_3) = all_53_1_40
% 12.57/8.77 | (68) addition(all_53_1_40, all_53_0_39) = all_0_0_0
% 12.57/8.77 |
% 12.57/8.77 | Instantiating (62) with all_67_0_59, all_67_1_60 yields:
% 12.57/8.77 | (69) multiplication(all_0_1_1, all_0_3_3) = all_67_0_59 & multiplication(all_0_2_2, all_0_3_3) = all_67_1_60 & addition(all_67_1_60, all_67_0_59) = zero
% 12.57/8.77 |
% 12.57/8.77 | Applying alpha-rule on (69) yields:
% 12.57/8.77 | (70) multiplication(all_0_1_1, all_0_3_3) = all_67_0_59
% 12.57/8.77 | (71) multiplication(all_0_2_2, all_0_3_3) = all_67_1_60
% 12.57/8.77 | (72) addition(all_67_1_60, all_67_0_59) = zero
% 12.57/8.77 |
% 12.57/8.77 | Instantiating (63) with all_83_0_72, all_83_1_73 yields:
% 12.57/8.77 | (73) multiplication(all_0_1_1, all_0_3_3) = all_83_1_73 & multiplication(all_0_2_2, all_0_3_3) = all_83_0_72 & addition(all_83_1_73, all_83_0_72) = zero
% 12.57/8.77 |
% 12.57/8.77 | Applying alpha-rule on (73) yields:
% 12.57/8.77 | (74) multiplication(all_0_1_1, all_0_3_3) = all_83_1_73
% 12.57/8.77 | (75) multiplication(all_0_2_2, all_0_3_3) = all_83_0_72
% 12.57/8.77 | (76) addition(all_83_1_73, all_83_0_72) = zero
% 12.57/8.77 |
% 12.57/8.77 | Instantiating formula (52) with all_0_1_1, all_0_3_3, all_83_1_73, zero and discharging atoms multiplication(all_0_1_1, all_0_3_3) = all_83_1_73, multiplication(all_0_1_1, all_0_3_3) = zero, yields:
% 12.57/8.77 | (77) all_83_1_73 = zero
% 12.57/8.78 |
% 12.57/8.78 | Instantiating formula (52) with all_0_1_1, all_0_3_3, all_67_0_59, all_83_1_73 and discharging atoms multiplication(all_0_1_1, all_0_3_3) = all_83_1_73, multiplication(all_0_1_1, all_0_3_3) = all_67_0_59, yields:
% 12.57/8.78 | (78) all_83_1_73 = all_67_0_59
% 12.57/8.78 |
% 12.57/8.78 | Instantiating formula (52) with all_0_2_2, all_0_3_3, all_67_1_60, all_0_0_0 and discharging atoms multiplication(all_0_2_2, all_0_3_3) = all_67_1_60, multiplication(all_0_2_2, all_0_3_3) = all_0_0_0, yields:
% 12.57/8.78 | (79) all_67_1_60 = all_0_0_0
% 12.57/8.78 |
% 12.57/8.78 | Instantiating formula (52) with all_0_2_2, all_0_3_3, all_67_1_60, all_83_0_72 and discharging atoms multiplication(all_0_2_2, all_0_3_3) = all_83_0_72, multiplication(all_0_2_2, all_0_3_3) = all_67_1_60, yields:
% 12.57/8.78 | (80) all_83_0_72 = all_67_1_60
% 12.57/8.78 |
% 12.57/8.78 | Instantiating formula (52) with all_0_2_2, all_0_3_3, all_53_0_39, all_67_1_60 and discharging atoms multiplication(all_0_2_2, all_0_3_3) = all_67_1_60, multiplication(all_0_2_2, all_0_3_3) = all_53_0_39, yields:
% 12.57/8.78 | (81) all_67_1_60 = all_53_0_39
% 12.57/8.78 |
% 12.57/8.78 | Instantiating formula (52) with all_0_2_2, all_0_3_3, all_53_1_40, all_83_0_72 and discharging atoms multiplication(all_0_2_2, all_0_3_3) = all_83_0_72, multiplication(all_0_2_2, all_0_3_3) = all_53_1_40, yields:
% 12.57/8.78 | (82) all_83_0_72 = all_53_1_40
% 12.57/8.78 |
% 12.57/8.78 | Combining equations (80,82) yields a new equation:
% 12.57/8.78 | (83) all_67_1_60 = all_53_1_40
% 12.57/8.78 |
% 12.57/8.78 | Simplifying 83 yields:
% 12.57/8.78 | (84) all_67_1_60 = all_53_1_40
% 12.57/8.78 |
% 12.57/8.78 | Combining equations (77,78) yields a new equation:
% 12.57/8.78 | (85) all_67_0_59 = zero
% 12.57/8.78 |
% 12.57/8.78 | Combining equations (79,81) yields a new equation:
% 12.57/8.78 | (86) all_53_0_39 = all_0_0_0
% 12.57/8.78 |
% 12.57/8.78 | Combining equations (84,81) yields a new equation:
% 12.57/8.78 | (87) all_53_0_39 = all_53_1_40
% 12.57/8.78 |
% 12.57/8.78 | Combining equations (86,87) yields a new equation:
% 12.57/8.78 | (88) all_53_1_40 = all_0_0_0
% 12.57/8.78 |
% 12.57/8.78 | Combining equations (88,87) yields a new equation:
% 12.57/8.78 | (86) all_53_0_39 = all_0_0_0
% 12.57/8.78 |
% 12.57/8.78 | Combining equations (86,81) yields a new equation:
% 12.57/8.78 | (79) all_67_1_60 = all_0_0_0
% 12.57/8.78 |
% 12.57/8.78 | From (79)(85) and (72) follows:
% 12.57/8.78 | (91) addition(all_0_0_0, zero) = zero
% 12.57/8.78 |
% 12.57/8.78 | Instantiating formula (36) with zero, all_0_0_0 and discharging atoms addition(all_0_0_0, zero) = zero, yields:
% 12.57/8.78 | (92) all_0_0_0 = zero
% 12.57/8.78 |
% 12.57/8.78 | Equations (92) can reduce 12 to:
% 12.57/8.78 | (93) $false
% 12.57/8.78 |
% 12.57/8.78 |-The branch is then unsatisfiable
% 12.57/8.78 % SZS output end Proof for theBenchmark
% 12.57/8.78
% 12.57/8.78 7453ms
%------------------------------------------------------------------------------