TSTP Solution File: KLE089+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : KLE089+1 : TPTP v6.3.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_bliksem %s

% Computer : n035.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32218.875MB
% OS       : Linux 3.10.0-229.20.1.el7.x86_64
% CPULimit : 300s
% DateTime : Thu Nov 26 23:52:59 EST 2015

% Result   : Theorem 0.16s
% Output   : Refutation 0.16s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.03  % Problem  : KLE089+1 : TPTP v6.3.0. Released v4.0.0.
% 0.00/0.04  % Command  : run_bliksem %s
% 0.02/0.22  % Computer : n035.star.cs.uiowa.edu
% 0.02/0.22  % Model    : x86_64 x86_64
% 0.02/0.22  % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% 0.02/0.22  % Memory   : 32218.875MB
% 0.02/0.22  % OS       : Linux 3.10.0-229.20.1.el7.x86_64
% 0.02/0.22  % CPULimit : 300
% 0.02/0.22  % DateTime : Thu Nov 26 20:31:02 CST 2015
% 0.02/0.22  % CPUTime  : 
% 0.16/2.47  *** allocated 10000 integers for termspace/termends
% 0.16/2.47  *** allocated 10000 integers for clauses
% 0.16/2.47  *** allocated 10000 integers for justifications
% 0.16/2.47  Bliksem 1.12
% 0.16/2.47  
% 0.16/2.47  
% 0.16/2.47  Automatic Strategy Selection
% 0.16/2.47  
% 0.16/2.47  
% 0.16/2.47  Clauses:
% 0.16/2.47  
% 0.16/2.47  { addition( X, Y ) = addition( Y, X ) }.
% 0.16/2.47  { addition( Z, addition( Y, X ) ) = addition( addition( Z, Y ), X ) }.
% 0.16/2.47  { addition( X, zero ) = X }.
% 0.16/2.47  { addition( X, X ) = X }.
% 0.16/2.47  { multiplication( X, multiplication( Y, Z ) ) = multiplication( 
% 0.16/2.47    multiplication( X, Y ), Z ) }.
% 0.16/2.47  { multiplication( X, one ) = X }.
% 0.16/2.47  { multiplication( one, X ) = X }.
% 0.16/2.47  { multiplication( X, addition( Y, Z ) ) = addition( multiplication( X, Y )
% 0.16/2.47    , multiplication( X, Z ) ) }.
% 0.16/2.47  { multiplication( addition( X, Y ), Z ) = addition( multiplication( X, Z )
% 0.16/2.47    , multiplication( Y, Z ) ) }.
% 0.16/2.47  { multiplication( X, zero ) = zero }.
% 0.16/2.47  { multiplication( zero, X ) = zero }.
% 0.16/2.47  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.16/2.47  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.16/2.47  { multiplication( antidomain( X ), X ) = zero }.
% 0.16/2.47  { addition( antidomain( multiplication( X, Y ) ), antidomain( 
% 0.16/2.47    multiplication( X, antidomain( antidomain( Y ) ) ) ) ) = antidomain( 
% 0.16/2.47    multiplication( X, antidomain( antidomain( Y ) ) ) ) }.
% 0.16/2.47  { addition( antidomain( antidomain( X ) ), antidomain( X ) ) = one }.
% 0.16/2.47  { domain( X ) = antidomain( antidomain( X ) ) }.
% 0.16/2.47  { multiplication( X, coantidomain( X ) ) = zero }.
% 0.16/2.47  { addition( coantidomain( multiplication( X, Y ) ), coantidomain( 
% 0.16/2.47    multiplication( coantidomain( coantidomain( X ) ), Y ) ) ) = coantidomain
% 0.16/2.47    ( multiplication( coantidomain( coantidomain( X ) ), Y ) ) }.
% 0.16/2.47  { addition( coantidomain( coantidomain( X ) ), coantidomain( X ) ) = one }
% 0.16/2.47    .
% 0.16/2.47  { codomain( X ) = coantidomain( coantidomain( X ) ) }.
% 0.16/2.47  { addition( domain( skol1 ), antidomain( skol2 ) ) = antidomain( skol2 ) }
% 0.16/2.47    .
% 0.16/2.47  { ! multiplication( domain( skol1 ), skol2 ) = zero }.
% 0.16/2.47  
% 0.16/2.47  percentage equality = 0.920000, percentage horn = 1.000000
% 0.16/2.47  This is a pure equality problem
% 0.16/2.47  
% 0.16/2.47  
% 0.16/2.47  
% 0.16/2.47  Options Used:
% 0.16/2.47  
% 0.16/2.47  useres =            1
% 0.16/2.47  useparamod =        1
% 0.16/2.47  useeqrefl =         1
% 0.16/2.47  useeqfact =         1
% 0.16/2.47  usefactor =         1
% 0.16/2.47  usesimpsplitting =  0
% 0.16/2.47  usesimpdemod =      5
% 0.16/2.47  usesimpres =        3
% 0.16/2.47  
% 0.16/2.47  resimpinuse      =  1000
% 0.16/2.47  resimpclauses =     20000
% 0.16/2.47  substype =          eqrewr
% 0.16/2.47  backwardsubs =      1
% 0.16/2.47  selectoldest =      5
% 0.16/2.47  
% 0.16/2.47  litorderings [0] =  split
% 0.16/2.47  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.16/2.47  
% 0.16/2.47  termordering =      kbo
% 0.16/2.47  
% 0.16/2.47  litapriori =        0
% 0.16/2.47  termapriori =       1
% 0.16/2.47  litaposteriori =    0
% 0.16/2.47  termaposteriori =   0
% 0.16/2.47  demodaposteriori =  0
% 0.16/2.47  ordereqreflfact =   0
% 0.16/2.47  
% 0.16/2.47  litselect =         negord
% 0.16/2.47  
% 0.16/2.47  maxweight =         15
% 0.16/2.47  maxdepth =          30000
% 0.16/2.47  maxlength =         115
% 0.16/2.47  maxnrvars =         195
% 0.16/2.47  excuselevel =       1
% 0.16/2.47  increasemaxweight = 1
% 0.16/2.47  
% 0.16/2.47  maxselected =       10000000
% 0.16/2.47  maxnrclauses =      10000000
% 0.16/2.47  
% 0.16/2.47  showgenerated =    0
% 0.16/2.47  showkept =         0
% 0.16/2.47  showselected =     0
% 0.16/2.47  showdeleted =      0
% 0.16/2.47  showresimp =       1
% 0.16/2.47  showstatus =       2000
% 0.16/2.47  
% 0.16/2.47  prologoutput =     0
% 0.16/2.47  nrgoals =          5000000
% 0.16/2.47  totalproof =       1
% 0.16/2.47  
% 0.16/2.47  Symbols occurring in the translation:
% 0.16/2.47  
% 0.16/2.47  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.16/2.47  .  [1, 2]      (w:1, o:24, a:1, s:1, b:0), 
% 0.16/2.47  !  [4, 1]      (w:0, o:15, a:1, s:1, b:0), 
% 0.16/2.47  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.16/2.47  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.16/2.47  addition  [37, 2]      (w:1, o:48, a:1, s:1, b:0), 
% 0.16/2.47  zero  [39, 0]      (w:1, o:9, a:1, s:1, b:0), 
% 0.16/2.47  multiplication  [40, 2]      (w:1, o:50, a:1, s:1, b:0), 
% 0.16/2.47  one  [41, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 0.16/2.47  leq  [42, 2]      (w:1, o:49, a:1, s:1, b:0), 
% 0.16/2.47  antidomain  [44, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.16/2.47  domain  [46, 1]      (w:1, o:23, a:1, s:1, b:0), 
% 0.16/2.47  coantidomain  [47, 1]      (w:1, o:21, a:1, s:1, b:0), 
% 0.16/2.47  codomain  [48, 1]      (w:1, o:22, a:1, s:1, b:0), 
% 0.16/2.47  skol1  [49, 0]      (w:1, o:13, a:1, s:1, b:1), 
% 0.16/2.47  skol2  [50, 0]      (w:1, o:14, a:1, s:1, b:1).
% 0.16/2.47  
% 0.16/2.47  
% 0.16/2.47  Starting Search:
% 0.16/2.47  
% 0.16/2.47  *** allocated 15000 integers for clauses
% 0.16/2.47  *** allocated 22500 integers for clauses
% 0.16/2.47  *** allocated 33750 integers for clauses
% 0.16/2.47  *** allocated 50625 integers for clauses
% 0.16/2.47  *** allocated 75937 integers for clauses
% 0.16/2.47  *** allocated 15000 integers for termspace/termends
% 0.16/2.47  Resimplifying inuse:
% 0.16/2.47  Done
% 0.16/2.47  
% 0.16/2.47  *** allocated 113905 integers for clauses
% 0.16/2.47  
% 0.16/2.47  Bliksems!, er is een bewijs:
% 0.16/2.47  % SZS status Theorem
% 0.16/2.47  % SZS output start Refutation
% 0.16/2.47  
% 0.16/2.47  (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.16/2.47  (8) {G0,W13,D4,L1,V3,M1} I { addition( multiplication( X, Z ), 
% 0.16/2.47    multiplication( Y, Z ) ) ==> multiplication( addition( X, Y ), Z ) }.
% 0.16/2.47  (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), X ) ==> zero
% 0.16/2.47     }.
% 0.16/2.47  (21) {G0,W8,D4,L1,V0,M1} I { addition( domain( skol1 ), antidomain( skol2 )
% 0.16/2.47     ) ==> antidomain( skol2 ) }.
% 0.16/2.47  (22) {G0,W6,D4,L1,V0,M1} I { ! multiplication( domain( skol1 ), skol2 ) ==>
% 0.16/2.47     zero }.
% 0.16/2.47  (67) {G1,W10,D5,L1,V2,M1} P(13,8);d(2) { multiplication( addition( Y, 
% 0.16/2.47    antidomain( X ) ), X ) ==> multiplication( Y, X ) }.
% 0.16/2.47  (1220) {G2,W6,D4,L1,V0,M1} P(21,67);d(13) { multiplication( domain( skol1 )
% 0.16/2.47    , skol2 ) ==> zero }.
% 0.16/2.47  (1225) {G3,W0,D0,L0,V0,M0} S(1220);r(22) {  }.
% 0.16/2.47  
% 0.16/2.47  
% 0.16/2.47  % SZS output end Refutation
% 0.16/2.47  found a proof!
% 0.16/2.47  
% 0.16/2.47  
% 0.16/2.47  Unprocessed initial clauses:
% 0.16/2.47  
% 0.16/2.47  (1227) {G0,W7,D3,L1,V2,M1}  { addition( X, Y ) = addition( Y, X ) }.
% 0.16/2.47  (1228) {G0,W11,D4,L1,V3,M1}  { addition( Z, addition( Y, X ) ) = addition( 
% 0.16/2.47    addition( Z, Y ), X ) }.
% 0.16/2.47  (1229) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.16/2.47  (1230) {G0,W5,D3,L1,V1,M1}  { addition( X, X ) = X }.
% 0.16/2.47  (1231) {G0,W11,D4,L1,V3,M1}  { multiplication( X, multiplication( Y, Z ) ) 
% 0.16/2.47    = multiplication( multiplication( X, Y ), Z ) }.
% 0.16/2.47  (1232) {G0,W5,D3,L1,V1,M1}  { multiplication( X, one ) = X }.
% 0.16/2.47  (1233) {G0,W5,D3,L1,V1,M1}  { multiplication( one, X ) = X }.
% 0.16/2.47  (1234) {G0,W13,D4,L1,V3,M1}  { multiplication( X, addition( Y, Z ) ) = 
% 0.16/2.47    addition( multiplication( X, Y ), multiplication( X, Z ) ) }.
% 0.16/2.47  (1235) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X, Y ), Z ) = 
% 0.16/2.47    addition( multiplication( X, Z ), multiplication( Y, Z ) ) }.
% 0.16/2.47  (1236) {G0,W5,D3,L1,V1,M1}  { multiplication( X, zero ) = zero }.
% 0.16/2.47  (1237) {G0,W5,D3,L1,V1,M1}  { multiplication( zero, X ) = zero }.
% 0.16/2.47  (1238) {G0,W8,D3,L2,V2,M2}  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.16/2.47  (1239) {G0,W8,D3,L2,V2,M2}  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.16/2.47  (1240) {G0,W6,D4,L1,V1,M1}  { multiplication( antidomain( X ), X ) = zero
% 0.16/2.47     }.
% 0.16/2.47  (1241) {G0,W18,D7,L1,V2,M1}  { addition( antidomain( multiplication( X, Y )
% 0.16/2.47     ), antidomain( multiplication( X, antidomain( antidomain( Y ) ) ) ) ) = 
% 0.16/2.47    antidomain( multiplication( X, antidomain( antidomain( Y ) ) ) ) }.
% 0.16/2.47  (1242) {G0,W8,D5,L1,V1,M1}  { addition( antidomain( antidomain( X ) ), 
% 0.16/2.47    antidomain( X ) ) = one }.
% 0.16/2.47  (1243) {G0,W6,D4,L1,V1,M1}  { domain( X ) = antidomain( antidomain( X ) )
% 0.16/2.47     }.
% 0.16/2.47  (1244) {G0,W6,D4,L1,V1,M1}  { multiplication( X, coantidomain( X ) ) = zero
% 0.16/2.47     }.
% 0.16/2.47  (1245) {G0,W18,D7,L1,V2,M1}  { addition( coantidomain( multiplication( X, Y
% 0.16/2.47     ) ), coantidomain( multiplication( coantidomain( coantidomain( X ) ), Y
% 0.16/2.47     ) ) ) = coantidomain( multiplication( coantidomain( coantidomain( X ) )
% 0.16/2.47    , Y ) ) }.
% 0.16/2.47  (1246) {G0,W8,D5,L1,V1,M1}  { addition( coantidomain( coantidomain( X ) ), 
% 0.16/2.47    coantidomain( X ) ) = one }.
% 0.16/2.47  (1247) {G0,W6,D4,L1,V1,M1}  { codomain( X ) = coantidomain( coantidomain( X
% 0.16/2.47     ) ) }.
% 0.16/2.47  (1248) {G0,W8,D4,L1,V0,M1}  { addition( domain( skol1 ), antidomain( skol2
% 0.16/2.47     ) ) = antidomain( skol2 ) }.
% 0.16/2.47  (1249) {G0,W6,D4,L1,V0,M1}  { ! multiplication( domain( skol1 ), skol2 ) = 
% 0.16/2.47    zero }.
% 0.16/2.47  
% 0.16/2.47  
% 0.16/2.47  Total Proof:
% 0.16/2.47  
% 0.16/2.47  subsumption: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.16/2.47  parent0: (1229) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.16/2.47  substitution0:
% 0.16/2.47     X := X
% 0.16/2.47  end
% 0.16/2.47  permutation0:
% 0.16/2.47     0 ==> 0
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  eqswap: (1259) {G0,W13,D4,L1,V3,M1}  { addition( multiplication( X, Z ), 
% 0.16/2.47    multiplication( Y, Z ) ) = multiplication( addition( X, Y ), Z ) }.
% 0.16/2.47  parent0[0]: (1235) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X, Y )
% 0.16/2.47    , Z ) = addition( multiplication( X, Z ), multiplication( Y, Z ) ) }.
% 0.16/2.47  substitution0:
% 0.16/2.47     X := X
% 0.16/2.47     Y := Y
% 0.16/2.47     Z := Z
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  subsumption: (8) {G0,W13,D4,L1,V3,M1} I { addition( multiplication( X, Z )
% 0.16/2.47    , multiplication( Y, Z ) ) ==> multiplication( addition( X, Y ), Z ) }.
% 0.16/2.47  parent0: (1259) {G0,W13,D4,L1,V3,M1}  { addition( multiplication( X, Z ), 
% 0.16/2.47    multiplication( Y, Z ) ) = multiplication( addition( X, Y ), Z ) }.
% 0.16/2.47  substitution0:
% 0.16/2.47     X := X
% 0.16/2.47     Y := Y
% 0.16/2.47     Z := Z
% 0.16/2.47  end
% 0.16/2.47  permutation0:
% 0.16/2.47     0 ==> 0
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  subsumption: (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), 
% 0.16/2.47    X ) ==> zero }.
% 0.16/2.47  parent0: (1240) {G0,W6,D4,L1,V1,M1}  { multiplication( antidomain( X ), X )
% 0.16/2.47     = zero }.
% 0.16/2.47  substitution0:
% 0.16/2.47     X := X
% 0.16/2.47  end
% 0.16/2.47  permutation0:
% 0.16/2.47     0 ==> 0
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  subsumption: (21) {G0,W8,D4,L1,V0,M1} I { addition( domain( skol1 ), 
% 0.16/2.47    antidomain( skol2 ) ) ==> antidomain( skol2 ) }.
% 0.16/2.47  parent0: (1248) {G0,W8,D4,L1,V0,M1}  { addition( domain( skol1 ), 
% 0.16/2.47    antidomain( skol2 ) ) = antidomain( skol2 ) }.
% 0.16/2.47  substitution0:
% 0.16/2.47  end
% 0.16/2.47  permutation0:
% 0.16/2.47     0 ==> 0
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  subsumption: (22) {G0,W6,D4,L1,V0,M1} I { ! multiplication( domain( skol1 )
% 0.16/2.47    , skol2 ) ==> zero }.
% 0.16/2.47  parent0: (1249) {G0,W6,D4,L1,V0,M1}  { ! multiplication( domain( skol1 ), 
% 0.16/2.47    skol2 ) = zero }.
% 0.16/2.47  substitution0:
% 0.16/2.47  end
% 0.16/2.47  permutation0:
% 0.16/2.47     0 ==> 0
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  eqswap: (1317) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X, Z ), Y
% 0.16/2.47     ) ==> addition( multiplication( X, Y ), multiplication( Z, Y ) ) }.
% 0.16/2.47  parent0[0]: (8) {G0,W13,D4,L1,V3,M1} I { addition( multiplication( X, Z ), 
% 0.16/2.47    multiplication( Y, Z ) ) ==> multiplication( addition( X, Y ), Z ) }.
% 0.16/2.47  substitution0:
% 0.16/2.47     X := X
% 0.16/2.47     Y := Z
% 0.16/2.47     Z := Y
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  paramod: (1320) {G1,W12,D5,L1,V2,M1}  { multiplication( addition( X, 
% 0.16/2.47    antidomain( Y ) ), Y ) ==> addition( multiplication( X, Y ), zero ) }.
% 0.16/2.47  parent0[0]: (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), X
% 0.16/2.47     ) ==> zero }.
% 0.16/2.47  parent1[0; 11]: (1317) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X
% 0.16/2.47    , Z ), Y ) ==> addition( multiplication( X, Y ), multiplication( Z, Y ) )
% 0.16/2.47     }.
% 0.16/2.47  substitution0:
% 0.16/2.47     X := Y
% 0.16/2.47  end
% 0.16/2.47  substitution1:
% 0.16/2.47     X := X
% 0.16/2.47     Y := Y
% 0.16/2.47     Z := antidomain( Y )
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  paramod: (1321) {G1,W10,D5,L1,V2,M1}  { multiplication( addition( X, 
% 0.16/2.47    antidomain( Y ) ), Y ) ==> multiplication( X, Y ) }.
% 0.16/2.47  parent0[0]: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.16/2.47  parent1[0; 7]: (1320) {G1,W12,D5,L1,V2,M1}  { multiplication( addition( X, 
% 0.16/2.47    antidomain( Y ) ), Y ) ==> addition( multiplication( X, Y ), zero ) }.
% 0.16/2.47  substitution0:
% 0.16/2.47     X := multiplication( X, Y )
% 0.16/2.47  end
% 0.16/2.47  substitution1:
% 0.16/2.47     X := X
% 0.16/2.47     Y := Y
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  subsumption: (67) {G1,W10,D5,L1,V2,M1} P(13,8);d(2) { multiplication( 
% 0.16/2.47    addition( Y, antidomain( X ) ), X ) ==> multiplication( Y, X ) }.
% 0.16/2.47  parent0: (1321) {G1,W10,D5,L1,V2,M1}  { multiplication( addition( X, 
% 0.16/2.47    antidomain( Y ) ), Y ) ==> multiplication( X, Y ) }.
% 0.16/2.47  substitution0:
% 0.16/2.47     X := Y
% 0.16/2.47     Y := X
% 0.16/2.47  end
% 0.16/2.47  permutation0:
% 0.16/2.47     0 ==> 0
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  eqswap: (1324) {G1,W10,D5,L1,V2,M1}  { multiplication( X, Y ) ==> 
% 0.16/2.47    multiplication( addition( X, antidomain( Y ) ), Y ) }.
% 0.16/2.47  parent0[0]: (67) {G1,W10,D5,L1,V2,M1} P(13,8);d(2) { multiplication( 
% 0.16/2.47    addition( Y, antidomain( X ) ), X ) ==> multiplication( Y, X ) }.
% 0.16/2.47  substitution0:
% 0.16/2.47     X := Y
% 0.16/2.47     Y := X
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  paramod: (1326) {G1,W9,D4,L1,V0,M1}  { multiplication( domain( skol1 ), 
% 0.16/2.47    skol2 ) ==> multiplication( antidomain( skol2 ), skol2 ) }.
% 0.16/2.47  parent0[0]: (21) {G0,W8,D4,L1,V0,M1} I { addition( domain( skol1 ), 
% 0.16/2.47    antidomain( skol2 ) ) ==> antidomain( skol2 ) }.
% 0.16/2.47  parent1[0; 6]: (1324) {G1,W10,D5,L1,V2,M1}  { multiplication( X, Y ) ==> 
% 0.16/2.47    multiplication( addition( X, antidomain( Y ) ), Y ) }.
% 0.16/2.47  substitution0:
% 0.16/2.47  end
% 0.16/2.47  substitution1:
% 0.16/2.47     X := domain( skol1 )
% 0.16/2.47     Y := skol2
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  paramod: (1327) {G1,W6,D4,L1,V0,M1}  { multiplication( domain( skol1 ), 
% 0.16/2.47    skol2 ) ==> zero }.
% 0.16/2.47  parent0[0]: (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), X
% 0.16/2.47     ) ==> zero }.
% 0.16/2.47  parent1[0; 5]: (1326) {G1,W9,D4,L1,V0,M1}  { multiplication( domain( skol1
% 0.16/2.47     ), skol2 ) ==> multiplication( antidomain( skol2 ), skol2 ) }.
% 0.16/2.47  substitution0:
% 0.16/2.47     X := skol2
% 0.16/2.47  end
% 0.16/2.47  substitution1:
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  subsumption: (1220) {G2,W6,D4,L1,V0,M1} P(21,67);d(13) { multiplication( 
% 0.16/2.47    domain( skol1 ), skol2 ) ==> zero }.
% 0.16/2.47  parent0: (1327) {G1,W6,D4,L1,V0,M1}  { multiplication( domain( skol1 ), 
% 0.16/2.47    skol2 ) ==> zero }.
% 0.16/2.47  substitution0:
% 0.16/2.47  end
% 0.16/2.47  permutation0:
% 0.16/2.47     0 ==> 0
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  resolution: (1331) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.16/2.47  parent0[0]: (22) {G0,W6,D4,L1,V0,M1} I { ! multiplication( domain( skol1 )
% 0.16/2.47    , skol2 ) ==> zero }.
% 0.16/2.47  parent1[0]: (1220) {G2,W6,D4,L1,V0,M1} P(21,67);d(13) { multiplication( 
% 0.16/2.47    domain( skol1 ), skol2 ) ==> zero }.
% 0.16/2.47  substitution0:
% 0.16/2.47  end
% 0.16/2.47  substitution1:
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  subsumption: (1225) {G3,W0,D0,L0,V0,M0} S(1220);r(22) {  }.
% 0.16/2.47  parent0: (1331) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.16/2.47  substitution0:
% 0.16/2.47  end
% 0.16/2.47  permutation0:
% 0.16/2.47  end
% 0.16/2.47  
% 0.16/2.47  Proof check complete!
% 0.16/2.47  
% 0.16/2.47  Memory use:
% 0.16/2.47  
% 0.16/2.47  space for terms:        14095
% 0.16/2.47  space for clauses:      79920
% 0.16/2.47  
% 0.16/2.47  
% 0.16/2.47  clauses generated:      7874
% 0.16/2.47  clauses kept:           1226
% 0.16/2.47  clauses selected:       207
% 0.16/2.47  clauses deleted:        13
% 0.16/2.47  clauses inuse deleted:  3
% 0.16/2.47  
% 0.16/2.47  subsentry:          9394
% 0.16/2.47  literals s-matched: 6556
% 0.16/2.47  literals matched:   6494
% 0.16/2.47  full subsumption:   312
% 0.16/2.47  
% 0.16/2.47  checksum:           -1004615695
% 0.16/2.47  
% 0.16/2.47  
% 0.16/2.47  Bliksem ended
%------------------------------------------------------------------------------