TSTP Solution File: KLE083+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : KLE083+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sun Jul 17 01:37:04 EDT 2022

% Result   : Theorem 0.71s 1.14s
% Output   : Refutation 0.71s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : KLE083+1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.13  % Command  : bliksem %s
% 0.13/0.33  % Computer : n022.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % DateTime : Thu Jun 16 15:35:02 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.71/1.14  *** allocated 10000 integers for termspace/termends
% 0.71/1.14  *** allocated 10000 integers for clauses
% 0.71/1.14  *** allocated 10000 integers for justifications
% 0.71/1.14  Bliksem 1.12
% 0.71/1.14  
% 0.71/1.14  
% 0.71/1.14  Automatic Strategy Selection
% 0.71/1.14  
% 0.71/1.14  
% 0.71/1.14  Clauses:
% 0.71/1.14  
% 0.71/1.14  { addition( X, Y ) = addition( Y, X ) }.
% 0.71/1.14  { addition( Z, addition( Y, X ) ) = addition( addition( Z, Y ), X ) }.
% 0.71/1.14  { addition( X, zero ) = X }.
% 0.71/1.14  { addition( X, X ) = X }.
% 0.71/1.14  { multiplication( X, multiplication( Y, Z ) ) = multiplication( 
% 0.71/1.14    multiplication( X, Y ), Z ) }.
% 0.71/1.14  { multiplication( X, one ) = X }.
% 0.71/1.14  { multiplication( one, X ) = X }.
% 0.71/1.14  { multiplication( X, addition( Y, Z ) ) = addition( multiplication( X, Y )
% 0.71/1.14    , multiplication( X, Z ) ) }.
% 0.71/1.14  { multiplication( addition( X, Y ), Z ) = addition( multiplication( X, Z )
% 0.71/1.14    , multiplication( Y, Z ) ) }.
% 0.71/1.14  { multiplication( X, zero ) = zero }.
% 0.71/1.14  { multiplication( zero, X ) = zero }.
% 0.71/1.14  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.71/1.14  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.71/1.14  { multiplication( antidomain( X ), X ) = zero }.
% 0.71/1.14  { addition( antidomain( multiplication( X, Y ) ), antidomain( 
% 0.71/1.14    multiplication( X, antidomain( antidomain( Y ) ) ) ) ) = antidomain( 
% 0.71/1.14    multiplication( X, antidomain( antidomain( Y ) ) ) ) }.
% 0.71/1.14  { addition( antidomain( antidomain( X ) ), antidomain( X ) ) = one }.
% 0.71/1.14  { domain( X ) = antidomain( antidomain( X ) ) }.
% 0.71/1.14  { multiplication( X, coantidomain( X ) ) = zero }.
% 0.71/1.14  { addition( coantidomain( multiplication( X, Y ) ), coantidomain( 
% 0.71/1.14    multiplication( coantidomain( coantidomain( X ) ), Y ) ) ) = coantidomain
% 0.71/1.14    ( multiplication( coantidomain( coantidomain( X ) ), Y ) ) }.
% 0.71/1.14  { addition( coantidomain( coantidomain( X ) ), coantidomain( X ) ) = one }
% 0.71/1.14    .
% 0.71/1.14  { codomain( X ) = coantidomain( coantidomain( X ) ) }.
% 0.71/1.14  { ! skol1 = multiplication( domain( skol1 ), skol1 ) }.
% 0.71/1.14  
% 0.71/1.14  percentage equality = 0.916667, percentage horn = 1.000000
% 0.71/1.14  This is a pure equality problem
% 0.71/1.14  
% 0.71/1.14  
% 0.71/1.14  
% 0.71/1.14  Options Used:
% 0.71/1.14  
% 0.71/1.14  useres =            1
% 0.71/1.14  useparamod =        1
% 0.71/1.14  useeqrefl =         1
% 0.71/1.14  useeqfact =         1
% 0.71/1.14  usefactor =         1
% 0.71/1.14  usesimpsplitting =  0
% 0.71/1.14  usesimpdemod =      5
% 0.71/1.14  usesimpres =        3
% 0.71/1.14  
% 0.71/1.14  resimpinuse      =  1000
% 0.71/1.14  resimpclauses =     20000
% 0.71/1.14  substype =          eqrewr
% 0.71/1.14  backwardsubs =      1
% 0.71/1.14  selectoldest =      5
% 0.71/1.14  
% 0.71/1.14  litorderings [0] =  split
% 0.71/1.14  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.71/1.14  
% 0.71/1.14  termordering =      kbo
% 0.71/1.14  
% 0.71/1.14  litapriori =        0
% 0.71/1.14  termapriori =       1
% 0.71/1.14  litaposteriori =    0
% 0.71/1.14  termaposteriori =   0
% 0.71/1.14  demodaposteriori =  0
% 0.71/1.14  ordereqreflfact =   0
% 0.71/1.14  
% 0.71/1.14  litselect =         negord
% 0.71/1.14  
% 0.71/1.14  maxweight =         15
% 0.71/1.14  maxdepth =          30000
% 0.71/1.14  maxlength =         115
% 0.71/1.14  maxnrvars =         195
% 0.71/1.14  excuselevel =       1
% 0.71/1.14  increasemaxweight = 1
% 0.71/1.14  
% 0.71/1.14  maxselected =       10000000
% 0.71/1.14  maxnrclauses =      10000000
% 0.71/1.14  
% 0.71/1.14  showgenerated =    0
% 0.71/1.14  showkept =         0
% 0.71/1.14  showselected =     0
% 0.71/1.14  showdeleted =      0
% 0.71/1.14  showresimp =       1
% 0.71/1.14  showstatus =       2000
% 0.71/1.14  
% 0.71/1.14  prologoutput =     0
% 0.71/1.14  nrgoals =          5000000
% 0.71/1.14  totalproof =       1
% 0.71/1.14  
% 0.71/1.14  Symbols occurring in the translation:
% 0.71/1.14  
% 0.71/1.14  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.71/1.14  .  [1, 2]      (w:1, o:23, a:1, s:1, b:0), 
% 0.71/1.14  !  [4, 1]      (w:0, o:14, a:1, s:1, b:0), 
% 0.71/1.14  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.71/1.14  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.71/1.14  addition  [37, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.71/1.14  zero  [39, 0]      (w:1, o:9, a:1, s:1, b:0), 
% 0.71/1.14  multiplication  [40, 2]      (w:1, o:49, a:1, s:1, b:0), 
% 0.71/1.14  one  [41, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 0.71/1.14  leq  [42, 2]      (w:1, o:48, a:1, s:1, b:0), 
% 0.71/1.14  antidomain  [44, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.71/1.14  domain  [46, 1]      (w:1, o:22, a:1, s:1, b:0), 
% 0.71/1.14  coantidomain  [47, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.71/1.14  codomain  [48, 1]      (w:1, o:21, a:1, s:1, b:0), 
% 0.71/1.14  skol1  [49, 0]      (w:1, o:13, a:1, s:1, b:1).
% 0.71/1.14  
% 0.71/1.14  
% 0.71/1.14  Starting Search:
% 0.71/1.14  
% 0.71/1.14  *** allocated 15000 integers for clauses
% 0.71/1.14  *** allocated 22500 integers for clauses
% 0.71/1.14  *** allocated 33750 integers for clauses
% 0.71/1.14  *** allocated 50625 integers for clauses
% 0.71/1.14  *** allocated 75937 integers for clauses
% 0.71/1.14  *** allocated 15000 integers for termspace/termends
% 0.71/1.14  Resimplifying inuse:
% 0.71/1.14  Done
% 0.71/1.14  
% 0.71/1.14  *** allocated 113905 integers for clauses
% 0.71/1.14  
% 0.71/1.14  Bliksems!, er is een bewijs:
% 0.71/1.14  % SZS status Theorem
% 0.71/1.14  % SZS output start Refutation
% 0.71/1.14  
% 0.71/1.14  (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.71/1.14  (6) {G0,W5,D3,L1,V1,M1} I { multiplication( one, X ) ==> X }.
% 0.71/1.14  (8) {G0,W13,D4,L1,V3,M1} I { addition( multiplication( X, Z ), 
% 0.71/1.14    multiplication( Y, Z ) ) ==> multiplication( addition( X, Y ), Z ) }.
% 0.71/1.14  (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), X ) ==> zero
% 0.71/1.14     }.
% 0.71/1.14  (15) {G0,W8,D5,L1,V1,M1} I { addition( antidomain( antidomain( X ) ), 
% 0.71/1.14    antidomain( X ) ) ==> one }.
% 0.71/1.14  (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> domain( X )
% 0.71/1.14     }.
% 0.71/1.14  (21) {G0,W6,D4,L1,V0,M1} I { ! multiplication( domain( skol1 ), skol1 ) ==>
% 0.71/1.14     skol1 }.
% 0.71/1.14  (66) {G1,W10,D5,L1,V2,M1} P(13,8);d(2) { multiplication( addition( Y, 
% 0.71/1.14    antidomain( X ) ), X ) ==> multiplication( Y, X ) }.
% 0.71/1.14  (143) {G1,W7,D4,L1,V1,M1} S(15);d(16) { addition( domain( X ), antidomain( 
% 0.71/1.14    X ) ) ==> one }.
% 0.71/1.14  (1091) {G2,W6,D4,L1,V1,M1} P(143,66);d(6) { multiplication( domain( X ), X
% 0.71/1.14     ) ==> X }.
% 0.71/1.14  (1096) {G3,W0,D0,L0,V0,M0} R(1091,21) {  }.
% 0.71/1.14  
% 0.71/1.14  
% 0.71/1.14  % SZS output end Refutation
% 0.71/1.14  found a proof!
% 0.71/1.14  
% 0.71/1.14  
% 0.71/1.14  Unprocessed initial clauses:
% 0.71/1.14  
% 0.71/1.14  (1098) {G0,W7,D3,L1,V2,M1}  { addition( X, Y ) = addition( Y, X ) }.
% 0.71/1.14  (1099) {G0,W11,D4,L1,V3,M1}  { addition( Z, addition( Y, X ) ) = addition( 
% 0.71/1.14    addition( Z, Y ), X ) }.
% 0.71/1.14  (1100) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.71/1.14  (1101) {G0,W5,D3,L1,V1,M1}  { addition( X, X ) = X }.
% 0.71/1.14  (1102) {G0,W11,D4,L1,V3,M1}  { multiplication( X, multiplication( Y, Z ) ) 
% 0.71/1.14    = multiplication( multiplication( X, Y ), Z ) }.
% 0.71/1.14  (1103) {G0,W5,D3,L1,V1,M1}  { multiplication( X, one ) = X }.
% 0.71/1.14  (1104) {G0,W5,D3,L1,V1,M1}  { multiplication( one, X ) = X }.
% 0.71/1.14  (1105) {G0,W13,D4,L1,V3,M1}  { multiplication( X, addition( Y, Z ) ) = 
% 0.71/1.14    addition( multiplication( X, Y ), multiplication( X, Z ) ) }.
% 0.71/1.14  (1106) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X, Y ), Z ) = 
% 0.71/1.14    addition( multiplication( X, Z ), multiplication( Y, Z ) ) }.
% 0.71/1.14  (1107) {G0,W5,D3,L1,V1,M1}  { multiplication( X, zero ) = zero }.
% 0.71/1.14  (1108) {G0,W5,D3,L1,V1,M1}  { multiplication( zero, X ) = zero }.
% 0.71/1.14  (1109) {G0,W8,D3,L2,V2,M2}  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.71/1.14  (1110) {G0,W8,D3,L2,V2,M2}  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.71/1.14  (1111) {G0,W6,D4,L1,V1,M1}  { multiplication( antidomain( X ), X ) = zero
% 0.71/1.14     }.
% 0.71/1.14  (1112) {G0,W18,D7,L1,V2,M1}  { addition( antidomain( multiplication( X, Y )
% 0.71/1.14     ), antidomain( multiplication( X, antidomain( antidomain( Y ) ) ) ) ) = 
% 0.71/1.14    antidomain( multiplication( X, antidomain( antidomain( Y ) ) ) ) }.
% 0.71/1.14  (1113) {G0,W8,D5,L1,V1,M1}  { addition( antidomain( antidomain( X ) ), 
% 0.71/1.14    antidomain( X ) ) = one }.
% 0.71/1.14  (1114) {G0,W6,D4,L1,V1,M1}  { domain( X ) = antidomain( antidomain( X ) )
% 0.71/1.14     }.
% 0.71/1.14  (1115) {G0,W6,D4,L1,V1,M1}  { multiplication( X, coantidomain( X ) ) = zero
% 0.71/1.14     }.
% 0.71/1.14  (1116) {G0,W18,D7,L1,V2,M1}  { addition( coantidomain( multiplication( X, Y
% 0.71/1.14     ) ), coantidomain( multiplication( coantidomain( coantidomain( X ) ), Y
% 0.71/1.14     ) ) ) = coantidomain( multiplication( coantidomain( coantidomain( X ) )
% 0.71/1.14    , Y ) ) }.
% 0.71/1.14  (1117) {G0,W8,D5,L1,V1,M1}  { addition( coantidomain( coantidomain( X ) ), 
% 0.71/1.14    coantidomain( X ) ) = one }.
% 0.71/1.14  (1118) {G0,W6,D4,L1,V1,M1}  { codomain( X ) = coantidomain( coantidomain( X
% 0.71/1.14     ) ) }.
% 0.71/1.14  (1119) {G0,W6,D4,L1,V0,M1}  { ! skol1 = multiplication( domain( skol1 ), 
% 0.71/1.14    skol1 ) }.
% 0.71/1.14  
% 0.71/1.14  
% 0.71/1.14  Total Proof:
% 0.71/1.14  
% 0.71/1.14  subsumption: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.71/1.14  parent0: (1100) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  permutation0:
% 0.71/1.14     0 ==> 0
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  subsumption: (6) {G0,W5,D3,L1,V1,M1} I { multiplication( one, X ) ==> X }.
% 0.71/1.14  parent0: (1104) {G0,W5,D3,L1,V1,M1}  { multiplication( one, X ) = X }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  permutation0:
% 0.71/1.14     0 ==> 0
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  eqswap: (1135) {G0,W13,D4,L1,V3,M1}  { addition( multiplication( X, Z ), 
% 0.71/1.14    multiplication( Y, Z ) ) = multiplication( addition( X, Y ), Z ) }.
% 0.71/1.14  parent0[0]: (1106) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X, Y )
% 0.71/1.14    , Z ) = addition( multiplication( X, Z ), multiplication( Y, Z ) ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14     Y := Y
% 0.71/1.14     Z := Z
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  subsumption: (8) {G0,W13,D4,L1,V3,M1} I { addition( multiplication( X, Z )
% 0.71/1.14    , multiplication( Y, Z ) ) ==> multiplication( addition( X, Y ), Z ) }.
% 0.71/1.14  parent0: (1135) {G0,W13,D4,L1,V3,M1}  { addition( multiplication( X, Z ), 
% 0.71/1.14    multiplication( Y, Z ) ) = multiplication( addition( X, Y ), Z ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14     Y := Y
% 0.71/1.14     Z := Z
% 0.71/1.14  end
% 0.71/1.14  permutation0:
% 0.71/1.14     0 ==> 0
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  subsumption: (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), 
% 0.71/1.14    X ) ==> zero }.
% 0.71/1.14  parent0: (1111) {G0,W6,D4,L1,V1,M1}  { multiplication( antidomain( X ), X )
% 0.71/1.14     = zero }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  permutation0:
% 0.71/1.14     0 ==> 0
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  subsumption: (15) {G0,W8,D5,L1,V1,M1} I { addition( antidomain( antidomain
% 0.71/1.14    ( X ) ), antidomain( X ) ) ==> one }.
% 0.71/1.14  parent0: (1113) {G0,W8,D5,L1,V1,M1}  { addition( antidomain( antidomain( X
% 0.71/1.14     ) ), antidomain( X ) ) = one }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  permutation0:
% 0.71/1.14     0 ==> 0
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  eqswap: (1179) {G0,W6,D4,L1,V1,M1}  { antidomain( antidomain( X ) ) = 
% 0.71/1.14    domain( X ) }.
% 0.71/1.14  parent0[0]: (1114) {G0,W6,D4,L1,V1,M1}  { domain( X ) = antidomain( 
% 0.71/1.14    antidomain( X ) ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  subsumption: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==>
% 0.71/1.14     domain( X ) }.
% 0.71/1.14  parent0: (1179) {G0,W6,D4,L1,V1,M1}  { antidomain( antidomain( X ) ) = 
% 0.71/1.14    domain( X ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  permutation0:
% 0.71/1.14     0 ==> 0
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  eqswap: (1200) {G0,W6,D4,L1,V0,M1}  { ! multiplication( domain( skol1 ), 
% 0.71/1.14    skol1 ) = skol1 }.
% 0.71/1.14  parent0[0]: (1119) {G0,W6,D4,L1,V0,M1}  { ! skol1 = multiplication( domain
% 0.71/1.14    ( skol1 ), skol1 ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  subsumption: (21) {G0,W6,D4,L1,V0,M1} I { ! multiplication( domain( skol1 )
% 0.71/1.14    , skol1 ) ==> skol1 }.
% 0.71/1.14  parent0: (1200) {G0,W6,D4,L1,V0,M1}  { ! multiplication( domain( skol1 ), 
% 0.71/1.14    skol1 ) = skol1 }.
% 0.71/1.14  substitution0:
% 0.71/1.14  end
% 0.71/1.14  permutation0:
% 0.71/1.14     0 ==> 0
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  eqswap: (1202) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X, Z ), Y
% 0.71/1.14     ) ==> addition( multiplication( X, Y ), multiplication( Z, Y ) ) }.
% 0.71/1.14  parent0[0]: (8) {G0,W13,D4,L1,V3,M1} I { addition( multiplication( X, Z ), 
% 0.71/1.14    multiplication( Y, Z ) ) ==> multiplication( addition( X, Y ), Z ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14     Y := Z
% 0.71/1.14     Z := Y
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  paramod: (1205) {G1,W12,D5,L1,V2,M1}  { multiplication( addition( X, 
% 0.71/1.14    antidomain( Y ) ), Y ) ==> addition( multiplication( X, Y ), zero ) }.
% 0.71/1.14  parent0[0]: (13) {G0,W6,D4,L1,V1,M1} I { multiplication( antidomain( X ), X
% 0.71/1.14     ) ==> zero }.
% 0.71/1.14  parent1[0; 11]: (1202) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X
% 0.71/1.14    , Z ), Y ) ==> addition( multiplication( X, Y ), multiplication( Z, Y ) )
% 0.71/1.14     }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := Y
% 0.71/1.14  end
% 0.71/1.14  substitution1:
% 0.71/1.14     X := X
% 0.71/1.14     Y := Y
% 0.71/1.14     Z := antidomain( Y )
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  paramod: (1206) {G1,W10,D5,L1,V2,M1}  { multiplication( addition( X, 
% 0.71/1.14    antidomain( Y ) ), Y ) ==> multiplication( X, Y ) }.
% 0.71/1.14  parent0[0]: (2) {G0,W5,D3,L1,V1,M1} I { addition( X, zero ) ==> X }.
% 0.71/1.14  parent1[0; 7]: (1205) {G1,W12,D5,L1,V2,M1}  { multiplication( addition( X, 
% 0.71/1.14    antidomain( Y ) ), Y ) ==> addition( multiplication( X, Y ), zero ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := multiplication( X, Y )
% 0.71/1.14  end
% 0.71/1.14  substitution1:
% 0.71/1.14     X := X
% 0.71/1.14     Y := Y
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  subsumption: (66) {G1,W10,D5,L1,V2,M1} P(13,8);d(2) { multiplication( 
% 0.71/1.14    addition( Y, antidomain( X ) ), X ) ==> multiplication( Y, X ) }.
% 0.71/1.14  parent0: (1206) {G1,W10,D5,L1,V2,M1}  { multiplication( addition( X, 
% 0.71/1.14    antidomain( Y ) ), Y ) ==> multiplication( X, Y ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := Y
% 0.71/1.14     Y := X
% 0.71/1.14  end
% 0.71/1.14  permutation0:
% 0.71/1.14     0 ==> 0
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  paramod: (1210) {G1,W7,D4,L1,V1,M1}  { addition( domain( X ), antidomain( X
% 0.71/1.14     ) ) ==> one }.
% 0.71/1.14  parent0[0]: (16) {G0,W6,D4,L1,V1,M1} I { antidomain( antidomain( X ) ) ==> 
% 0.71/1.14    domain( X ) }.
% 0.71/1.14  parent1[0; 2]: (15) {G0,W8,D5,L1,V1,M1} I { addition( antidomain( 
% 0.71/1.14    antidomain( X ) ), antidomain( X ) ) ==> one }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  substitution1:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  subsumption: (143) {G1,W7,D4,L1,V1,M1} S(15);d(16) { addition( domain( X )
% 0.71/1.14    , antidomain( X ) ) ==> one }.
% 0.71/1.14  parent0: (1210) {G1,W7,D4,L1,V1,M1}  { addition( domain( X ), antidomain( X
% 0.71/1.14     ) ) ==> one }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  permutation0:
% 0.71/1.14     0 ==> 0
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  eqswap: (1213) {G1,W10,D5,L1,V2,M1}  { multiplication( X, Y ) ==> 
% 0.71/1.14    multiplication( addition( X, antidomain( Y ) ), Y ) }.
% 0.71/1.14  parent0[0]: (66) {G1,W10,D5,L1,V2,M1} P(13,8);d(2) { multiplication( 
% 0.71/1.14    addition( Y, antidomain( X ) ), X ) ==> multiplication( Y, X ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := Y
% 0.71/1.14     Y := X
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  paramod: (1215) {G2,W8,D4,L1,V1,M1}  { multiplication( domain( X ), X ) ==>
% 0.71/1.14     multiplication( one, X ) }.
% 0.71/1.14  parent0[0]: (143) {G1,W7,D4,L1,V1,M1} S(15);d(16) { addition( domain( X ), 
% 0.71/1.14    antidomain( X ) ) ==> one }.
% 0.71/1.14  parent1[0; 6]: (1213) {G1,W10,D5,L1,V2,M1}  { multiplication( X, Y ) ==> 
% 0.71/1.14    multiplication( addition( X, antidomain( Y ) ), Y ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  substitution1:
% 0.71/1.14     X := domain( X )
% 0.71/1.14     Y := X
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  paramod: (1216) {G1,W6,D4,L1,V1,M1}  { multiplication( domain( X ), X ) ==>
% 0.71/1.14     X }.
% 0.71/1.14  parent0[0]: (6) {G0,W5,D3,L1,V1,M1} I { multiplication( one, X ) ==> X }.
% 0.71/1.14  parent1[0; 5]: (1215) {G2,W8,D4,L1,V1,M1}  { multiplication( domain( X ), X
% 0.71/1.14     ) ==> multiplication( one, X ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  substitution1:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  subsumption: (1091) {G2,W6,D4,L1,V1,M1} P(143,66);d(6) { multiplication( 
% 0.71/1.14    domain( X ), X ) ==> X }.
% 0.71/1.14  parent0: (1216) {G1,W6,D4,L1,V1,M1}  { multiplication( domain( X ), X ) ==>
% 0.71/1.14     X }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  permutation0:
% 0.71/1.14     0 ==> 0
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  eqswap: (1218) {G2,W6,D4,L1,V1,M1}  { X ==> multiplication( domain( X ), X
% 0.71/1.14     ) }.
% 0.71/1.14  parent0[0]: (1091) {G2,W6,D4,L1,V1,M1} P(143,66);d(6) { multiplication( 
% 0.71/1.14    domain( X ), X ) ==> X }.
% 0.71/1.14  substitution0:
% 0.71/1.14     X := X
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  eqswap: (1219) {G0,W6,D4,L1,V0,M1}  { ! skol1 ==> multiplication( domain( 
% 0.71/1.14    skol1 ), skol1 ) }.
% 0.71/1.14  parent0[0]: (21) {G0,W6,D4,L1,V0,M1} I { ! multiplication( domain( skol1 )
% 0.71/1.14    , skol1 ) ==> skol1 }.
% 0.71/1.14  substitution0:
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  resolution: (1220) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.71/1.14  parent0[0]: (1219) {G0,W6,D4,L1,V0,M1}  { ! skol1 ==> multiplication( 
% 0.71/1.14    domain( skol1 ), skol1 ) }.
% 0.71/1.14  parent1[0]: (1218) {G2,W6,D4,L1,V1,M1}  { X ==> multiplication( domain( X )
% 0.71/1.14    , X ) }.
% 0.71/1.14  substitution0:
% 0.71/1.14  end
% 0.71/1.14  substitution1:
% 0.71/1.14     X := skol1
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  subsumption: (1096) {G3,W0,D0,L0,V0,M0} R(1091,21) {  }.
% 0.71/1.14  parent0: (1220) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.71/1.14  substitution0:
% 0.71/1.14  end
% 0.71/1.14  permutation0:
% 0.71/1.14  end
% 0.71/1.14  
% 0.71/1.14  Proof check complete!
% 0.71/1.14  
% 0.71/1.14  Memory use:
% 0.71/1.14  
% 0.71/1.14  space for terms:        12510
% 0.71/1.14  space for clauses:      76078
% 0.71/1.14  
% 0.71/1.14  
% 0.71/1.14  clauses generated:      7897
% 0.71/1.14  clauses kept:           1097
% 0.71/1.14  clauses selected:       199
% 0.71/1.14  clauses deleted:        17
% 0.71/1.14  clauses inuse deleted:  4
% 0.71/1.14  
% 0.71/1.14  subsentry:          9193
% 0.71/1.14  literals s-matched: 6397
% 0.71/1.14  literals matched:   6325
% 0.71/1.14  full subsumption:   374
% 0.71/1.14  
% 0.71/1.14  checksum:           -1191323418
% 0.71/1.14  
% 0.71/1.14  
% 0.71/1.14  Bliksem ended
%------------------------------------------------------------------------------