TSTP Solution File: KLE078+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE078+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:41 EDT 2022

% Result   : Theorem 3.01s 3.22s
% Output   : Refutation 3.01s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   10
%            Number of leaves      :   16
% Syntax   : Number of clauses     :   35 (  30 unt;   0 nHn;   7 RR)
%            Number of literals    :   40 (  32 equ;   6 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   3 con; 0-2 aty)
%            Number of variables   :   50 (   5 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ le_q(A,B)
    | addition(A,B) = B ),
    file('KLE078+1.p',unknown),
    [] ).

cnf(2,axiom,
    ( le_q(A,B)
    | addition(A,B) != B ),
    file('KLE078+1.p',unknown),
    [] ).

cnf(3,axiom,
    domain(antidomain(dollar_c1)) != antidomain(dollar_c1),
    file('KLE078+1.p',unknown),
    [] ).

cnf(5,axiom,
    addition(A,B) = addition(B,A),
    file('KLE078+1.p',unknown),
    [] ).

cnf(10,axiom,
    addition(A,zero) = A,
    file('KLE078+1.p',unknown),
    [] ).

cnf(17,axiom,
    multiplication(A,one) = A,
    file('KLE078+1.p',unknown),
    [] ).

cnf(19,axiom,
    multiplication(one,A) = A,
    file('KLE078+1.p',unknown),
    [] ).

cnf(20,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE078+1.p',unknown),
    [] ).

cnf(22,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE078+1.p',unknown),
    [] ).

cnf(27,axiom,
    multiplication(zero,A) = zero,
    file('KLE078+1.p',unknown),
    [] ).

cnf(28,axiom,
    addition(A,multiplication(domain(A),A)) = multiplication(domain(A),A),
    file('KLE078+1.p',unknown),
    [] ).

cnf(30,axiom,
    domain(multiplication(A,B)) = domain(multiplication(A,domain(B))),
    file('KLE078+1.p',unknown),
    [] ).

cnf(31,plain,
    domain(multiplication(A,domain(B))) = domain(multiplication(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[30])]),
    [iquote('copy,30,flip.1')] ).

cnf(33,axiom,
    addition(domain(A),one) = one,
    file('KLE078+1.p',unknown),
    [] ).

cnf(36,axiom,
    domain(zero) = zero,
    file('KLE078+1.p',unknown),
    [] ).

cnf(39,axiom,
    addition(domain(A),antidomain(A)) = one,
    file('KLE078+1.p',unknown),
    [] ).

cnf(42,axiom,
    multiplication(domain(A),antidomain(A)) = zero,
    file('KLE078+1.p',unknown),
    [] ).

cnf(49,plain,
    addition(zero,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[5,10])]),
    [iquote('para_into,5.1.1,9.1.1,flip.1')] ).

cnf(51,plain,
    ( le_q(A,B)
    | addition(B,A) != B ),
    inference(para_from,[status(thm),theory(equality)],[5,2]),
    [iquote('para_from,5.1.1,2.2.1')] ).

cnf(64,plain,
    addition(one,domain(A)) = one,
    inference(para_into,[status(thm),theory(equality)],[33,5]),
    [iquote('para_into,33.1.1,5.1.1')] ).

cnf(92,plain,
    ( addition(multiplication(A,B),multiplication(A,C)) = multiplication(A,C)
    | ~ le_q(B,C) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[20,1])]),
    [iquote('para_into,20.1.1.2,1.2.1,flip.1')] ).

cnf(109,plain,
    addition(A,multiplication(domain(B),A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[22,64]),19,19])]),
    [iquote('para_into,22.1.1.1,64.1.1,demod,19,19,flip.1')] ).

cnf(116,plain,
    multiplication(domain(A),A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[28]),109])]),
    [iquote('back_demod,28,demod,109,flip.1')] ).

cnf(130,plain,
    addition(antidomain(A),domain(A)) = one,
    inference(para_into,[status(thm),theory(equality)],[39,5]),
    [iquote('para_into,39.1.1,5.1.1')] ).

cnf(134,plain,
    addition(multiplication(A,domain(B)),multiplication(A,antidomain(B))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[39,20]),17])]),
    [iquote('para_from,39.1.1,20.1.1.2,demod,17,flip.1')] ).

cnf(149,plain,
    multiplication(domain(multiplication(A,B)),multiplication(A,domain(B))) = multiplication(A,domain(B)),
    inference(para_from,[status(thm),theory(equality)],[31,116]),
    [iquote('para_from,31.1.1,115.1.1.1')] ).

cnf(235,plain,
    addition(multiplication(A,antidomain(B)),multiplication(A,domain(B))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[130,20]),17])]),
    [iquote('para_from,130.1.1,20.1.1.2,demod,17,flip.1')] ).

cnf(633,plain,
    le_q(multiplication(domain(A),B),B),
    inference(hyper,[status(thm)],[109,51]),
    [iquote('hyper,108,51')] ).

cnf(1615,plain,
    ( multiplication(domain(A),B) = zero
    | ~ le_q(B,antidomain(A)) ),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[92,42]),10,42]),
    [iquote('para_into,92.1.1.2,41.1.1,demod,10,42')] ).

cnf(2290,plain,
    multiplication(domain(A),domain(antidomain(A))) = zero,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[149,42]),36,27])]),
    [iquote('para_into,149.1.1.1.1,41.1.1,demod,36,27,flip.1')] ).

cnf(2296,plain,
    multiplication(domain(A),antidomain(antidomain(A))) = domain(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[2290,134]),49]),
    [iquote('para_from,2290.1.1,134.1.1.1,demod,49')] ).

cnf(2456,plain,
    le_q(domain(A),antidomain(antidomain(A))),
    inference(para_from,[status(thm),theory(equality)],[2296,633]),
    [iquote('para_from,2296.1.1,633.1.1')] ).

cnf(2612,plain,
    multiplication(domain(antidomain(A)),domain(A)) = zero,
    inference(hyper,[status(thm)],[1615,2456]),
    [iquote('hyper,1615,2456')] ).

cnf(2616,plain,
    domain(antidomain(A)) = antidomain(A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[2612,235]),116,10])]),
    [iquote('para_from,2612.1.1,235.1.1.2,demod,116,10,flip.1')] ).

cnf(2618,plain,
    $false,
    inference(binary,[status(thm)],[2616,3]),
    [iquote('binary,2616.1,3.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : KLE078+1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n005.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 06:29:35 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.80/1.99  ----- Otter 3.3f, August 2004 -----
% 1.80/1.99  The process was started by sandbox2 on n005.cluster.edu,
% 1.80/1.99  Wed Jul 27 06:29:35 2022
% 1.80/1.99  The command was "./otter".  The process ID is 5699.
% 1.80/1.99  
% 1.80/1.99  set(prolog_style_variables).
% 1.80/1.99  set(auto).
% 1.80/1.99     dependent: set(auto1).
% 1.80/1.99     dependent: set(process_input).
% 1.80/1.99     dependent: clear(print_kept).
% 1.80/1.99     dependent: clear(print_new_demod).
% 1.80/1.99     dependent: clear(print_back_demod).
% 1.80/1.99     dependent: clear(print_back_sub).
% 1.80/1.99     dependent: set(control_memory).
% 1.80/1.99     dependent: assign(max_mem, 12000).
% 1.80/1.99     dependent: assign(pick_given_ratio, 4).
% 1.80/1.99     dependent: assign(stats_level, 1).
% 1.80/1.99     dependent: assign(max_seconds, 10800).
% 1.80/1.99  clear(print_given).
% 1.80/1.99  
% 1.80/1.99  formula_list(usable).
% 1.80/1.99  all A (A=A).
% 1.80/1.99  all A B (addition(A,B)=addition(B,A)).
% 1.80/1.99  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.80/1.99  all A (addition(A,zero)=A).
% 1.80/1.99  all A (addition(A,A)=A).
% 1.80/1.99  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.80/1.99  all A (multiplication(A,one)=A).
% 1.80/1.99  all A (multiplication(one,A)=A).
% 1.80/1.99  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.80/1.99  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.80/1.99  all A (multiplication(A,zero)=zero).
% 1.80/1.99  all A (multiplication(zero,A)=zero).
% 1.80/1.99  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.80/1.99  all X0 (addition(X0,multiplication(domain(X0),X0))=multiplication(domain(X0),X0)).
% 1.80/1.99  all X0 X1 (domain(multiplication(X0,X1))=domain(multiplication(X0,domain(X1)))).
% 1.80/1.99  all X0 (addition(domain(X0),one)=one).
% 1.80/1.99  domain(zero)=zero.
% 1.80/1.99  all X0 X1 (domain(addition(X0,X1))=addition(domain(X0),domain(X1))).
% 1.80/1.99  -(all X0 ((all X1 (addition(domain(X1),antidomain(X1))=one&multiplication(domain(X1),antidomain(X1))=zero))->domain(antidomain(X0))=antidomain(X0))).
% 1.80/1.99  end_of_list.
% 1.80/1.99  
% 1.80/1.99  -------> usable clausifies to:
% 1.80/1.99  
% 1.80/1.99  list(usable).
% 1.80/1.99  0 [] A=A.
% 1.80/1.99  0 [] addition(A,B)=addition(B,A).
% 1.80/1.99  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.80/1.99  0 [] addition(A,zero)=A.
% 1.80/1.99  0 [] addition(A,A)=A.
% 1.80/1.99  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.80/1.99  0 [] multiplication(A,one)=A.
% 1.80/1.99  0 [] multiplication(one,A)=A.
% 1.80/1.99  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.80/1.99  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.80/1.99  0 [] multiplication(A,zero)=zero.
% 1.80/1.99  0 [] multiplication(zero,A)=zero.
% 1.80/1.99  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.80/1.99  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.80/1.99  0 [] addition(X0,multiplication(domain(X0),X0))=multiplication(domain(X0),X0).
% 1.80/1.99  0 [] domain(multiplication(X0,X1))=domain(multiplication(X0,domain(X1))).
% 1.80/1.99  0 [] addition(domain(X0),one)=one.
% 1.80/1.99  0 [] domain(zero)=zero.
% 1.80/1.99  0 [] domain(addition(X0,X1))=addition(domain(X0),domain(X1)).
% 1.80/1.99  0 [] addition(domain(X1),antidomain(X1))=one.
% 1.80/1.99  0 [] multiplication(domain(X1),antidomain(X1))=zero.
% 1.80/1.99  0 [] domain(antidomain($c1))!=antidomain($c1).
% 1.80/1.99  end_of_list.
% 1.80/1.99  
% 1.80/1.99  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 1.80/1.99  
% 1.80/1.99  This is a Horn set with equality.  The strategy will be
% 1.80/1.99  Knuth-Bendix and hyper_res, with positive clauses in
% 1.80/1.99  sos and nonpositive clauses in usable.
% 1.80/1.99  
% 1.80/1.99     dependent: set(knuth_bendix).
% 1.80/1.99     dependent: set(anl_eq).
% 1.80/1.99     dependent: set(para_from).
% 1.80/1.99     dependent: set(para_into).
% 1.80/1.99     dependent: clear(para_from_right).
% 1.80/1.99     dependent: clear(para_into_right).
% 1.80/1.99     dependent: set(para_from_vars).
% 1.80/1.99     dependent: set(eq_units_both_ways).
% 1.80/1.99     dependent: set(dynamic_demod_all).
% 1.80/1.99     dependent: set(dynamic_demod).
% 1.80/1.99     dependent: set(order_eq).
% 1.80/1.99     dependent: set(back_demod).
% 1.80/1.99     dependent: set(lrpo).
% 1.80/1.99     dependent: set(hyper_res).
% 1.80/1.99     dependent: clear(order_hyper).
% 1.80/1.99  
% 1.80/1.99  ------------> process usable:
% 1.80/1.99  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 1.80/1.99  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 1.80/1.99  ** KEPT (pick-wt=6): 3 [] domain(antidomain($c1))!=antidomain($c1).
% 1.80/1.99  
% 1.80/1.99  ------------> process sos:
% 1.80/1.99  ** KEPT (pick-wt=3): 4 [] A=A.
% 1.80/1.99  ** KEPT (pick-wt=7): 5 [] addition(A,B)=addition(B,A).
% 1.80/1.99  ** KEPT (pick-wt=11): 7 [copy,6,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.80/1.99  ---> New Demodulator: 8 [new_demod,7] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.80/1.99  ** KEPT (pick-wt=5): 9 [] addition(A,zero)=A.
% 1.80/1.99  ---> New Demodulator: 10 [new_demod,9] addition(A,zero)=A.
% 3.01/3.22  ** KEPT (pick-wt=5): 11 [] addition(A,A)=A.
% 3.01/3.22  ---> New Demodulator: 12 [new_demod,11] addition(A,A)=A.
% 3.01/3.22  ** KEPT (pick-wt=11): 14 [copy,13,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 3.01/3.22  ---> New Demodulator: 15 [new_demod,14] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 3.01/3.22  ** KEPT (pick-wt=5): 16 [] multiplication(A,one)=A.
% 3.01/3.22  ---> New Demodulator: 17 [new_demod,16] multiplication(A,one)=A.
% 3.01/3.22  ** KEPT (pick-wt=5): 18 [] multiplication(one,A)=A.
% 3.01/3.22  ---> New Demodulator: 19 [new_demod,18] multiplication(one,A)=A.
% 3.01/3.22  ** KEPT (pick-wt=13): 20 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 3.01/3.22  ---> New Demodulator: 21 [new_demod,20] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 3.01/3.22  ** KEPT (pick-wt=13): 22 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 3.01/3.22  ---> New Demodulator: 23 [new_demod,22] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 3.01/3.22  ** KEPT (pick-wt=5): 24 [] multiplication(A,zero)=zero.
% 3.01/3.22  ---> New Demodulator: 25 [new_demod,24] multiplication(A,zero)=zero.
% 3.01/3.22  ** KEPT (pick-wt=5): 26 [] multiplication(zero,A)=zero.
% 3.01/3.22  ---> New Demodulator: 27 [new_demod,26] multiplication(zero,A)=zero.
% 3.01/3.22  ** KEPT (pick-wt=11): 28 [] addition(A,multiplication(domain(A),A))=multiplication(domain(A),A).
% 3.01/3.22  ---> New Demodulator: 29 [new_demod,28] addition(A,multiplication(domain(A),A))=multiplication(domain(A),A).
% 3.01/3.22  ** KEPT (pick-wt=10): 31 [copy,30,flip.1] domain(multiplication(A,domain(B)))=domain(multiplication(A,B)).
% 3.01/3.22  ---> New Demodulator: 32 [new_demod,31] domain(multiplication(A,domain(B)))=domain(multiplication(A,B)).
% 3.01/3.22  ** KEPT (pick-wt=6): 33 [] addition(domain(A),one)=one.
% 3.01/3.22  ---> New Demodulator: 34 [new_demod,33] addition(domain(A),one)=one.
% 3.01/3.22  ** KEPT (pick-wt=4): 35 [] domain(zero)=zero.
% 3.01/3.22  ---> New Demodulator: 36 [new_demod,35] domain(zero)=zero.
% 3.01/3.22  ** KEPT (pick-wt=10): 37 [] domain(addition(A,B))=addition(domain(A),domain(B)).
% 3.01/3.22  ---> New Demodulator: 38 [new_demod,37] domain(addition(A,B))=addition(domain(A),domain(B)).
% 3.01/3.22  ** KEPT (pick-wt=7): 39 [] addition(domain(A),antidomain(A))=one.
% 3.01/3.22  ---> New Demodulator: 40 [new_demod,39] addition(domain(A),antidomain(A))=one.
% 3.01/3.22  ** KEPT (pick-wt=7): 41 [] multiplication(domain(A),antidomain(A))=zero.
% 3.01/3.22  ---> New Demodulator: 42 [new_demod,41] multiplication(domain(A),antidomain(A))=zero.
% 3.01/3.22    Following clause subsumed by 4 during input processing: 0 [copy,4,flip.1] A=A.
% 3.01/3.22    Following clause subsumed by 5 during input processing: 0 [copy,5,flip.1] addition(A,B)=addition(B,A).
% 3.01/3.22  >>>> Starting back demodulation with 8.
% 3.01/3.22  >>>> Starting back demodulation with 10.
% 3.01/3.22  >>>> Starting back demodulation with 12.
% 3.01/3.22  >>>> Starting back demodulation with 15.
% 3.01/3.22  >>>> Starting back demodulation with 17.
% 3.01/3.22  >>>> Starting back demodulation with 19.
% 3.01/3.22  >>>> Starting back demodulation with 21.
% 3.01/3.22  >>>> Starting back demodulation with 23.
% 3.01/3.22  >>>> Starting back demodulation with 25.
% 3.01/3.22  >>>> Starting back demodulation with 27.
% 3.01/3.22  >>>> Starting back demodulation with 29.
% 3.01/3.22  >>>> Starting back demodulation with 32.
% 3.01/3.22  >>>> Starting back demodulation with 34.
% 3.01/3.22  >>>> Starting back demodulation with 36.
% 3.01/3.22  >>>> Starting back demodulation with 38.
% 3.01/3.22  >>>> Starting back demodulation with 40.
% 3.01/3.22  >>>> Starting back demodulation with 42.
% 3.01/3.22  
% 3.01/3.22  ======= end of input processing =======
% 3.01/3.22  
% 3.01/3.22  =========== start of search ===========
% 3.01/3.22  
% 3.01/3.22  
% 3.01/3.22  Resetting weight limit to 9.
% 3.01/3.22  
% 3.01/3.22  
% 3.01/3.22  Resetting weight limit to 9.
% 3.01/3.22  
% 3.01/3.22  sos_size=1670
% 3.01/3.22  
% 3.01/3.22  -------- PROOF -------- 
% 3.01/3.22  
% 3.01/3.22  ----> UNIT CONFLICT at   1.23 sec ----> 2618 [binary,2616.1,3.1] $F.
% 3.01/3.22  
% 3.01/3.22  Length of proof is 18.  Level of proof is 9.
% 3.01/3.22  
% 3.01/3.22  ---------------- PROOF ----------------
% 3.01/3.22  % SZS status Theorem
% 3.01/3.22  % SZS output start Refutation
% See solution above
% 3.01/3.22  ------------ end of proof -------------
% 3.01/3.22  
% 3.01/3.22  
% 3.01/3.22  Search stopped by max_proofs option.
% 3.01/3.22  
% 3.01/3.22  
% 3.01/3.22  Search stopped by max_proofs option.
% 3.01/3.22  
% 3.01/3.22  ============ end of search ============
% 3.01/3.22  
% 3.01/3.22  -------------- statistics -------------
% 3.01/3.22  clauses given                793
% 3.01/3.22  clauses generated         239679
% 3.01/3.22  clauses kept                2382
% 3.01/3.22  clauses forward subsumed   46681
% 3.01/3.22  clauses back subsumed        265
% 3.01/3.22  Kbytes malloced             5859
% 3.01/3.22  
% 3.01/3.22  ----------- times (seconds) -----------
% 3.01/3.22  user CPU time          1.23          (0 hr, 0 min, 1 sec)
% 3.01/3.22  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 3.01/3.22  wall-clock time        3             (0 hr, 0 min, 3 sec)
% 3.01/3.22  
% 3.01/3.22  That finishes the proof of the theorem.
% 3.01/3.22  
% 3.01/3.22  Process 5699 finished Wed Jul 27 06:29:38 2022
% 3.01/3.22  Otter interrupted
% 3.01/3.22  PROOF FOUND
%------------------------------------------------------------------------------