TSTP Solution File: KLE069+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : KLE069+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 05:35:46 EDT 2023

% Result   : Theorem 0.21s 0.44s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : KLE069+1 : TPTP v8.1.2. Released v4.0.0.
% 0.07/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.35  % Computer : n013.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 300
% 0.14/0.35  % DateTime : Tue Aug 29 11:29:31 EDT 2023
% 0.14/0.35  % CPUTime  : 
% 0.21/0.44  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.21/0.44  
% 0.21/0.44  % SZS status Theorem
% 0.21/0.44  
% 0.21/0.45  % SZS output start Proof
% 0.21/0.45  Take the following subset of the input axioms:
% 0.21/0.45    fof(additive_associativity, axiom, ![A, B, C]: addition(A, addition(B, C))=addition(addition(A, B), C)).
% 0.21/0.45    fof(additive_commutativity, axiom, ![A2, B2]: addition(A2, B2)=addition(B2, A2)).
% 0.21/0.45    fof(additive_idempotence, axiom, ![A2]: addition(A2, A2)=A2).
% 0.21/0.45    fof(domain1, axiom, ![X0]: addition(X0, multiplication(domain(X0), X0))=multiplication(domain(X0), X0)).
% 0.21/0.45    fof(domain2, axiom, ![X1, X0_2]: domain(multiplication(X0_2, X1))=domain(multiplication(X0_2, domain(X1)))).
% 0.21/0.45    fof(domain3, axiom, ![X0_2]: addition(domain(X0_2), one)=one).
% 0.21/0.45    fof(domain5, axiom, ![X0_2, X1_2]: domain(addition(X0_2, X1_2))=addition(domain(X0_2), domain(X1_2))).
% 0.21/0.45    fof(goals, conjecture, ![X0_2, X1_2]: multiplication(domain(X0_2), addition(domain(X0_2), domain(X1_2)))=domain(X0_2)).
% 0.21/0.46    fof(left_distributivity, axiom, ![A2, B2, C2]: multiplication(addition(A2, B2), C2)=addition(multiplication(A2, C2), multiplication(B2, C2))).
% 0.21/0.46    fof(multiplicative_left_identity, axiom, ![A2]: multiplication(one, A2)=A2).
% 0.21/0.46    fof(multiplicative_right_identity, axiom, ![A2]: multiplication(A2, one)=A2).
% 0.21/0.46    fof(right_distributivity, axiom, ![A2, B2, C2]: multiplication(A2, addition(B2, C2))=addition(multiplication(A2, B2), multiplication(A2, C2))).
% 0.21/0.46  
% 0.21/0.46  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.46  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.46  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.46    fresh(y, y, x1...xn) = u
% 0.21/0.46    C => fresh(s, t, x1...xn) = v
% 0.21/0.46  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.46  variables of u and v.
% 0.21/0.46  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.46  input problem has no model of domain size 1).
% 0.21/0.46  
% 0.21/0.46  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.46  
% 0.21/0.46  Axiom 1 (additive_idempotence): addition(X, X) = X.
% 0.21/0.46  Axiom 2 (additive_commutativity): addition(X, Y) = addition(Y, X).
% 0.21/0.46  Axiom 3 (multiplicative_right_identity): multiplication(X, one) = X.
% 0.21/0.46  Axiom 4 (multiplicative_left_identity): multiplication(one, X) = X.
% 0.21/0.46  Axiom 5 (domain3): addition(domain(X), one) = one.
% 0.21/0.46  Axiom 6 (domain5): domain(addition(X, Y)) = addition(domain(X), domain(Y)).
% 0.21/0.46  Axiom 7 (additive_associativity): addition(X, addition(Y, Z)) = addition(addition(X, Y), Z).
% 0.21/0.46  Axiom 8 (domain2): domain(multiplication(X, Y)) = domain(multiplication(X, domain(Y))).
% 0.21/0.46  Axiom 9 (domain1): addition(X, multiplication(domain(X), X)) = multiplication(domain(X), X).
% 0.21/0.46  Axiom 10 (right_distributivity): multiplication(X, addition(Y, Z)) = addition(multiplication(X, Y), multiplication(X, Z)).
% 0.21/0.46  Axiom 11 (left_distributivity): multiplication(addition(X, Y), Z) = addition(multiplication(X, Z), multiplication(Y, Z)).
% 0.21/0.46  
% 0.21/0.46  Lemma 12: addition(one, domain(X)) = one.
% 0.21/0.46  Proof:
% 0.21/0.46    addition(one, domain(X))
% 0.21/0.46  = { by axiom 2 (additive_commutativity) R->L }
% 0.21/0.46    addition(domain(X), one)
% 0.21/0.46  = { by axiom 5 (domain3) }
% 0.21/0.46    one
% 0.21/0.46  
% 0.21/0.46  Goal 1 (goals): multiplication(domain(x0), addition(domain(x0), domain(x1))) = domain(x0).
% 0.21/0.46  Proof:
% 0.21/0.46    multiplication(domain(x0), addition(domain(x0), domain(x1)))
% 0.21/0.46  = { by axiom 1 (additive_idempotence) R->L }
% 0.21/0.46    multiplication(domain(x0), addition(addition(domain(x0), domain(x0)), domain(x1)))
% 0.21/0.46  = { by axiom 7 (additive_associativity) R->L }
% 0.21/0.46    multiplication(domain(x0), addition(domain(x0), addition(domain(x0), domain(x1))))
% 0.21/0.46  = { by axiom 2 (additive_commutativity) R->L }
% 0.21/0.46    multiplication(domain(x0), addition(domain(x0), addition(domain(x1), domain(x0))))
% 0.21/0.46  = { by axiom 2 (additive_commutativity) R->L }
% 0.21/0.46    multiplication(domain(x0), addition(addition(domain(x1), domain(x0)), domain(x0)))
% 0.21/0.46  = { by axiom 10 (right_distributivity) }
% 0.21/0.46    addition(multiplication(domain(x0), addition(domain(x1), domain(x0))), multiplication(domain(x0), domain(x0)))
% 0.21/0.46  = { by axiom 2 (additive_commutativity) R->L }
% 0.21/0.46    addition(multiplication(domain(x0), addition(domain(x0), domain(x1))), multiplication(domain(x0), domain(x0)))
% 0.21/0.46  = { by axiom 4 (multiplicative_left_identity) R->L }
% 0.21/0.46    addition(multiplication(domain(x0), addition(domain(x0), domain(x1))), multiplication(domain(multiplication(one, x0)), domain(x0)))
% 0.21/0.46  = { by axiom 8 (domain2) }
% 0.21/0.46    addition(multiplication(domain(x0), addition(domain(x0), domain(x1))), multiplication(domain(multiplication(one, domain(x0))), domain(x0)))
% 0.21/0.46  = { by axiom 4 (multiplicative_left_identity) }
% 0.21/0.46    addition(multiplication(domain(x0), addition(domain(x0), domain(x1))), multiplication(domain(domain(x0)), domain(x0)))
% 0.21/0.46  = { by axiom 9 (domain1) R->L }
% 0.21/0.46    addition(multiplication(domain(x0), addition(domain(x0), domain(x1))), addition(domain(x0), multiplication(domain(domain(x0)), domain(x0))))
% 0.21/0.46  = { by axiom 4 (multiplicative_left_identity) R->L }
% 0.21/0.46    addition(multiplication(domain(x0), addition(domain(x0), domain(x1))), addition(multiplication(one, domain(x0)), multiplication(domain(domain(x0)), domain(x0))))
% 0.21/0.46  = { by axiom 11 (left_distributivity) R->L }
% 0.21/0.46    addition(multiplication(domain(x0), addition(domain(x0), domain(x1))), multiplication(addition(one, domain(domain(x0))), domain(x0)))
% 0.21/0.46  = { by lemma 12 }
% 0.21/0.46    addition(multiplication(domain(x0), addition(domain(x0), domain(x1))), multiplication(one, domain(x0)))
% 0.21/0.46  = { by axiom 4 (multiplicative_left_identity) }
% 0.21/0.46    addition(multiplication(domain(x0), addition(domain(x0), domain(x1))), domain(x0))
% 0.21/0.46  = { by axiom 2 (additive_commutativity) }
% 0.21/0.46    addition(domain(x0), multiplication(domain(x0), addition(domain(x0), domain(x1))))
% 0.21/0.46  = { by axiom 3 (multiplicative_right_identity) R->L }
% 0.21/0.46    addition(multiplication(domain(x0), one), multiplication(domain(x0), addition(domain(x0), domain(x1))))
% 0.21/0.46  = { by axiom 10 (right_distributivity) R->L }
% 0.21/0.46    multiplication(domain(x0), addition(one, addition(domain(x0), domain(x1))))
% 0.21/0.46  = { by axiom 6 (domain5) R->L }
% 0.21/0.46    multiplication(domain(x0), addition(one, domain(addition(x0, x1))))
% 0.21/0.46  = { by lemma 12 }
% 0.21/0.46    multiplication(domain(x0), one)
% 0.21/0.46  = { by axiom 3 (multiplicative_right_identity) }
% 0.21/0.46    domain(x0)
% 0.21/0.46  % SZS output end Proof
% 0.21/0.46  
% 0.21/0.46  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------