TSTP Solution File: KLE058+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : KLE058+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n015.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sun Jul 17 01:36:57 EDT 2022

% Result   : Theorem 0.47s 1.14s
% Output   : Refutation 0.47s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : KLE058+1 : TPTP v8.1.0. Released v4.0.0.
% 0.07/0.14  % Command  : bliksem %s
% 0.13/0.35  % Computer : n015.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % DateTime : Thu Jun 16 14:32:26 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 0.47/1.14  *** allocated 10000 integers for termspace/termends
% 0.47/1.14  *** allocated 10000 integers for clauses
% 0.47/1.14  *** allocated 10000 integers for justifications
% 0.47/1.14  Bliksem 1.12
% 0.47/1.14  
% 0.47/1.14  
% 0.47/1.14  Automatic Strategy Selection
% 0.47/1.14  
% 0.47/1.14  
% 0.47/1.14  Clauses:
% 0.47/1.14  
% 0.47/1.14  { addition( X, Y ) = addition( Y, X ) }.
% 0.47/1.14  { addition( Z, addition( Y, X ) ) = addition( addition( Z, Y ), X ) }.
% 0.47/1.14  { addition( X, zero ) = X }.
% 0.47/1.14  { addition( X, X ) = X }.
% 0.47/1.14  { multiplication( X, multiplication( Y, Z ) ) = multiplication( 
% 0.47/1.14    multiplication( X, Y ), Z ) }.
% 0.47/1.14  { multiplication( X, one ) = X }.
% 0.47/1.14  { multiplication( one, X ) = X }.
% 0.47/1.14  { multiplication( X, addition( Y, Z ) ) = addition( multiplication( X, Y )
% 0.47/1.14    , multiplication( X, Z ) ) }.
% 0.47/1.14  { multiplication( addition( X, Y ), Z ) = addition( multiplication( X, Z )
% 0.47/1.14    , multiplication( Y, Z ) ) }.
% 0.47/1.14  { multiplication( X, zero ) = zero }.
% 0.47/1.14  { multiplication( zero, X ) = zero }.
% 0.47/1.14  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.47/1.14  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.47/1.14  { addition( X, multiplication( domain( X ), X ) ) = multiplication( domain
% 0.47/1.14    ( X ), X ) }.
% 0.47/1.14  { domain( multiplication( X, Y ) ) = domain( multiplication( X, domain( Y )
% 0.47/1.14     ) ) }.
% 0.47/1.14  { addition( domain( X ), one ) = one }.
% 0.47/1.14  { domain( zero ) = zero }.
% 0.47/1.14  { domain( addition( X, Y ) ) = addition( domain( X ), domain( Y ) ) }.
% 0.47/1.14  { ! domain( one ) = one }.
% 0.47/1.14  
% 0.47/1.14  percentage equality = 0.904762, percentage horn = 1.000000
% 0.47/1.14  This is a pure equality problem
% 0.47/1.14  
% 0.47/1.14  
% 0.47/1.14  
% 0.47/1.14  Options Used:
% 0.47/1.14  
% 0.47/1.14  useres =            1
% 0.47/1.14  useparamod =        1
% 0.47/1.14  useeqrefl =         1
% 0.47/1.14  useeqfact =         1
% 0.47/1.14  usefactor =         1
% 0.47/1.14  usesimpsplitting =  0
% 0.47/1.14  usesimpdemod =      5
% 0.47/1.14  usesimpres =        3
% 0.47/1.14  
% 0.47/1.14  resimpinuse      =  1000
% 0.47/1.14  resimpclauses =     20000
% 0.47/1.14  substype =          eqrewr
% 0.47/1.14  backwardsubs =      1
% 0.47/1.14  selectoldest =      5
% 0.47/1.14  
% 0.47/1.14  litorderings [0] =  split
% 0.47/1.14  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.47/1.14  
% 0.47/1.14  termordering =      kbo
% 0.47/1.14  
% 0.47/1.14  litapriori =        0
% 0.47/1.14  termapriori =       1
% 0.47/1.14  litaposteriori =    0
% 0.47/1.14  termaposteriori =   0
% 0.47/1.14  demodaposteriori =  0
% 0.47/1.14  ordereqreflfact =   0
% 0.47/1.14  
% 0.47/1.14  litselect =         negord
% 0.47/1.14  
% 0.47/1.14  maxweight =         15
% 0.47/1.14  maxdepth =          30000
% 0.47/1.14  maxlength =         115
% 0.47/1.14  maxnrvars =         195
% 0.47/1.14  excuselevel =       1
% 0.47/1.14  increasemaxweight = 1
% 0.47/1.14  
% 0.47/1.14  maxselected =       10000000
% 0.47/1.14  maxnrclauses =      10000000
% 0.47/1.14  
% 0.47/1.14  showgenerated =    0
% 0.47/1.14  showkept =         0
% 0.47/1.14  showselected =     0
% 0.47/1.14  showdeleted =      0
% 0.47/1.14  showresimp =       1
% 0.47/1.14  showstatus =       2000
% 0.47/1.14  
% 0.47/1.14  prologoutput =     0
% 0.47/1.14  nrgoals =          5000000
% 0.47/1.14  totalproof =       1
% 0.47/1.14  
% 0.47/1.14  Symbols occurring in the translation:
% 0.47/1.14  
% 0.47/1.14  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.47/1.14  .  [1, 2]      (w:1, o:19, a:1, s:1, b:0), 
% 0.47/1.14  !  [4, 1]      (w:0, o:13, a:1, s:1, b:0), 
% 0.47/1.14  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.47/1.14  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.47/1.14  addition  [37, 2]      (w:1, o:43, a:1, s:1, b:0), 
% 0.47/1.14  zero  [39, 0]      (w:1, o:9, a:1, s:1, b:0), 
% 0.47/1.14  multiplication  [40, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.47/1.14  one  [41, 0]      (w:1, o:10, a:1, s:1, b:0), 
% 0.47/1.14  leq  [42, 2]      (w:1, o:44, a:1, s:1, b:0), 
% 0.47/1.14  domain  [44, 1]      (w:1, o:18, a:1, s:1, b:0).
% 0.47/1.14  
% 0.47/1.14  
% 0.47/1.14  Starting Search:
% 0.47/1.14  
% 0.47/1.14  
% 0.47/1.14  Bliksems!, er is een bewijs:
% 0.47/1.14  % SZS status Theorem
% 0.47/1.14  % SZS output start Refutation
% 0.47/1.14  
% 0.47/1.14  (0) {G0,W7,D3,L1,V2,M1} I { addition( X, Y ) = addition( Y, X ) }.
% 0.47/1.14  (5) {G0,W5,D3,L1,V1,M1} I { multiplication( X, one ) ==> X }.
% 0.47/1.14  (13) {G0,W11,D5,L1,V1,M1} I { addition( X, multiplication( domain( X ), X )
% 0.47/1.14     ) ==> multiplication( domain( X ), X ) }.
% 0.47/1.14  (15) {G0,W6,D4,L1,V1,M1} I { addition( domain( X ), one ) ==> one }.
% 0.47/1.14  (18) {G0,W4,D3,L1,V0,M1} I { ! domain( one ) ==> one }.
% 0.47/1.14  (25) {G1,W6,D4,L1,V1,M1} P(15,0) { addition( one, domain( X ) ) ==> one }.
% 0.47/1.14  (108) {G2,W4,D3,L1,V0,M1} P(5,13);d(25) { domain( one ) ==> one }.
% 0.47/1.14  (110) {G3,W0,D0,L0,V0,M0} S(108);r(18) {  }.
% 0.47/1.14  
% 0.47/1.14  
% 0.47/1.14  % SZS output end Refutation
% 0.47/1.14  found a proof!
% 0.47/1.14  
% 0.47/1.14  
% 0.47/1.14  Unprocessed initial clauses:
% 0.47/1.14  
% 0.47/1.14  (112) {G0,W7,D3,L1,V2,M1}  { addition( X, Y ) = addition( Y, X ) }.
% 0.47/1.14  (113) {G0,W11,D4,L1,V3,M1}  { addition( Z, addition( Y, X ) ) = addition( 
% 0.47/1.14    addition( Z, Y ), X ) }.
% 0.47/1.14  (114) {G0,W5,D3,L1,V1,M1}  { addition( X, zero ) = X }.
% 0.47/1.14  (115) {G0,W5,D3,L1,V1,M1}  { addition( X, X ) = X }.
% 0.47/1.14  (116) {G0,W11,D4,L1,V3,M1}  { multiplication( X, multiplication( Y, Z ) ) =
% 0.47/1.14     multiplication( multiplication( X, Y ), Z ) }.
% 0.47/1.14  (117) {G0,W5,D3,L1,V1,M1}  { multiplication( X, one ) = X }.
% 0.47/1.14  (118) {G0,W5,D3,L1,V1,M1}  { multiplication( one, X ) = X }.
% 0.47/1.14  (119) {G0,W13,D4,L1,V3,M1}  { multiplication( X, addition( Y, Z ) ) = 
% 0.47/1.14    addition( multiplication( X, Y ), multiplication( X, Z ) ) }.
% 0.47/1.14  (120) {G0,W13,D4,L1,V3,M1}  { multiplication( addition( X, Y ), Z ) = 
% 0.47/1.14    addition( multiplication( X, Z ), multiplication( Y, Z ) ) }.
% 0.47/1.14  (121) {G0,W5,D3,L1,V1,M1}  { multiplication( X, zero ) = zero }.
% 0.47/1.14  (122) {G0,W5,D3,L1,V1,M1}  { multiplication( zero, X ) = zero }.
% 0.47/1.14  (123) {G0,W8,D3,L2,V2,M2}  { ! leq( X, Y ), addition( X, Y ) = Y }.
% 0.47/1.14  (124) {G0,W8,D3,L2,V2,M2}  { ! addition( X, Y ) = Y, leq( X, Y ) }.
% 0.47/1.14  (125) {G0,W11,D5,L1,V1,M1}  { addition( X, multiplication( domain( X ), X )
% 0.47/1.14     ) = multiplication( domain( X ), X ) }.
% 0.47/1.14  (126) {G0,W10,D5,L1,V2,M1}  { domain( multiplication( X, Y ) ) = domain( 
% 0.47/1.14    multiplication( X, domain( Y ) ) ) }.
% 0.47/1.14  (127) {G0,W6,D4,L1,V1,M1}  { addition( domain( X ), one ) = one }.
% 0.47/1.14  (128) {G0,W4,D3,L1,V0,M1}  { domain( zero ) = zero }.
% 0.47/1.14  (129) {G0,W10,D4,L1,V2,M1}  { domain( addition( X, Y ) ) = addition( domain
% 0.47/1.14    ( X ), domain( Y ) ) }.
% 0.47/1.14  (130) {G0,W4,D3,L1,V0,M1}  { ! domain( one ) = one }.
% 0.47/1.14  
% 0.47/1.14  
% 0.47/1.14  Total Proof:
% 0.47/1.14  
% 0.47/1.14  subsumption: (0) {G0,W7,D3,L1,V2,M1} I { addition( X, Y ) = addition( Y, X
% 0.47/1.14     ) }.
% 0.47/1.14  parent0: (112) {G0,W7,D3,L1,V2,M1}  { addition( X, Y ) = addition( Y, X )
% 0.47/1.14     }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := X
% 0.47/1.14     Y := Y
% 0.47/1.14  end
% 0.47/1.14  permutation0:
% 0.47/1.14     0 ==> 0
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  subsumption: (5) {G0,W5,D3,L1,V1,M1} I { multiplication( X, one ) ==> X }.
% 0.47/1.14  parent0: (117) {G0,W5,D3,L1,V1,M1}  { multiplication( X, one ) = X }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := X
% 0.47/1.14  end
% 0.47/1.14  permutation0:
% 0.47/1.14     0 ==> 0
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  subsumption: (13) {G0,W11,D5,L1,V1,M1} I { addition( X, multiplication( 
% 0.47/1.14    domain( X ), X ) ) ==> multiplication( domain( X ), X ) }.
% 0.47/1.14  parent0: (125) {G0,W11,D5,L1,V1,M1}  { addition( X, multiplication( domain
% 0.47/1.14    ( X ), X ) ) = multiplication( domain( X ), X ) }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := X
% 0.47/1.14  end
% 0.47/1.14  permutation0:
% 0.47/1.14     0 ==> 0
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  subsumption: (15) {G0,W6,D4,L1,V1,M1} I { addition( domain( X ), one ) ==> 
% 0.47/1.14    one }.
% 0.47/1.14  parent0: (127) {G0,W6,D4,L1,V1,M1}  { addition( domain( X ), one ) = one
% 0.47/1.14     }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := X
% 0.47/1.14  end
% 0.47/1.14  permutation0:
% 0.47/1.14     0 ==> 0
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  subsumption: (18) {G0,W4,D3,L1,V0,M1} I { ! domain( one ) ==> one }.
% 0.47/1.14  parent0: (130) {G0,W4,D3,L1,V0,M1}  { ! domain( one ) = one }.
% 0.47/1.14  substitution0:
% 0.47/1.14  end
% 0.47/1.14  permutation0:
% 0.47/1.14     0 ==> 0
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  *** allocated 15000 integers for clauses
% 0.47/1.14  eqswap: (182) {G0,W6,D4,L1,V1,M1}  { one ==> addition( domain( X ), one )
% 0.47/1.14     }.
% 0.47/1.14  parent0[0]: (15) {G0,W6,D4,L1,V1,M1} I { addition( domain( X ), one ) ==> 
% 0.47/1.14    one }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := X
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  paramod: (183) {G1,W6,D4,L1,V1,M1}  { one ==> addition( one, domain( X ) )
% 0.47/1.14     }.
% 0.47/1.14  parent0[0]: (0) {G0,W7,D3,L1,V2,M1} I { addition( X, Y ) = addition( Y, X )
% 0.47/1.14     }.
% 0.47/1.14  parent1[0; 2]: (182) {G0,W6,D4,L1,V1,M1}  { one ==> addition( domain( X ), 
% 0.47/1.14    one ) }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := domain( X )
% 0.47/1.14     Y := one
% 0.47/1.14  end
% 0.47/1.14  substitution1:
% 0.47/1.14     X := X
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  eqswap: (186) {G1,W6,D4,L1,V1,M1}  { addition( one, domain( X ) ) ==> one
% 0.47/1.14     }.
% 0.47/1.14  parent0[0]: (183) {G1,W6,D4,L1,V1,M1}  { one ==> addition( one, domain( X )
% 0.47/1.14     ) }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := X
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  subsumption: (25) {G1,W6,D4,L1,V1,M1} P(15,0) { addition( one, domain( X )
% 0.47/1.14     ) ==> one }.
% 0.47/1.14  parent0: (186) {G1,W6,D4,L1,V1,M1}  { addition( one, domain( X ) ) ==> one
% 0.47/1.14     }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := X
% 0.47/1.14  end
% 0.47/1.14  permutation0:
% 0.47/1.14     0 ==> 0
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  eqswap: (188) {G0,W11,D5,L1,V1,M1}  { multiplication( domain( X ), X ) ==> 
% 0.47/1.14    addition( X, multiplication( domain( X ), X ) ) }.
% 0.47/1.14  parent0[0]: (13) {G0,W11,D5,L1,V1,M1} I { addition( X, multiplication( 
% 0.47/1.14    domain( X ), X ) ) ==> multiplication( domain( X ), X ) }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := X
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  paramod: (191) {G1,W9,D4,L1,V0,M1}  { multiplication( domain( one ), one ) 
% 0.47/1.14    ==> addition( one, domain( one ) ) }.
% 0.47/1.14  parent0[0]: (5) {G0,W5,D3,L1,V1,M1} I { multiplication( X, one ) ==> X }.
% 0.47/1.14  parent1[0; 7]: (188) {G0,W11,D5,L1,V1,M1}  { multiplication( domain( X ), X
% 0.47/1.14     ) ==> addition( X, multiplication( domain( X ), X ) ) }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := domain( one )
% 0.47/1.14  end
% 0.47/1.14  substitution1:
% 0.47/1.14     X := one
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  paramod: (192) {G1,W7,D4,L1,V0,M1}  { domain( one ) ==> addition( one, 
% 0.47/1.14    domain( one ) ) }.
% 0.47/1.14  parent0[0]: (5) {G0,W5,D3,L1,V1,M1} I { multiplication( X, one ) ==> X }.
% 0.47/1.14  parent1[0; 1]: (191) {G1,W9,D4,L1,V0,M1}  { multiplication( domain( one ), 
% 0.47/1.14    one ) ==> addition( one, domain( one ) ) }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := domain( one )
% 0.47/1.14  end
% 0.47/1.14  substitution1:
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  paramod: (195) {G2,W4,D3,L1,V0,M1}  { domain( one ) ==> one }.
% 0.47/1.14  parent0[0]: (25) {G1,W6,D4,L1,V1,M1} P(15,0) { addition( one, domain( X ) )
% 0.47/1.14     ==> one }.
% 0.47/1.14  parent1[0; 3]: (192) {G1,W7,D4,L1,V0,M1}  { domain( one ) ==> addition( one
% 0.47/1.14    , domain( one ) ) }.
% 0.47/1.14  substitution0:
% 0.47/1.14     X := one
% 0.47/1.14  end
% 0.47/1.14  substitution1:
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  subsumption: (108) {G2,W4,D3,L1,V0,M1} P(5,13);d(25) { domain( one ) ==> 
% 0.47/1.14    one }.
% 0.47/1.14  parent0: (195) {G2,W4,D3,L1,V0,M1}  { domain( one ) ==> one }.
% 0.47/1.14  substitution0:
% 0.47/1.14  end
% 0.47/1.14  permutation0:
% 0.47/1.14     0 ==> 0
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  resolution: (199) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.47/1.14  parent0[0]: (18) {G0,W4,D3,L1,V0,M1} I { ! domain( one ) ==> one }.
% 0.47/1.14  parent1[0]: (108) {G2,W4,D3,L1,V0,M1} P(5,13);d(25) { domain( one ) ==> one
% 0.47/1.14     }.
% 0.47/1.14  substitution0:
% 0.47/1.14  end
% 0.47/1.14  substitution1:
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  subsumption: (110) {G3,W0,D0,L0,V0,M0} S(108);r(18) {  }.
% 0.47/1.14  parent0: (199) {G1,W0,D0,L0,V0,M0}  {  }.
% 0.47/1.14  substitution0:
% 0.47/1.14  end
% 0.47/1.14  permutation0:
% 0.47/1.14  end
% 0.47/1.14  
% 0.47/1.14  Proof check complete!
% 0.47/1.14  
% 0.47/1.14  Memory use:
% 0.47/1.14  
% 0.47/1.14  space for terms:        1516
% 0.47/1.14  space for clauses:      8497
% 0.47/1.14  
% 0.47/1.14  
% 0.47/1.14  clauses generated:      436
% 0.47/1.14  clauses kept:           111
% 0.47/1.14  clauses selected:       30
% 0.47/1.14  clauses deleted:        2
% 0.47/1.14  clauses inuse deleted:  0
% 0.47/1.14  
% 0.47/1.14  subsentry:          578
% 0.47/1.14  literals s-matched: 349
% 0.47/1.14  literals matched:   349
% 0.47/1.14  full subsumption:   22
% 0.47/1.14  
% 0.47/1.14  checksum:           -462227560
% 0.47/1.14  
% 0.47/1.14  
% 0.47/1.14  Bliksem ended
%------------------------------------------------------------------------------