TSTP Solution File: KLE048+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE048+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:36 EDT 2022

% Result   : Theorem 2.33s 2.54s
% Output   : Refutation 2.33s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    7
%            Number of leaves      :   14
% Syntax   : Number of clauses     :   28 (  21 unt;   0 nHn;  16 RR)
%            Number of literals    :   35 (  19 equ;   8 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    5 (   1 avg)
%            Number of predicates  :    5 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   2 con; 0-2 aty)
%            Number of variables   :   34 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ le_q(A,B)
    | addition(A,B) = B ),
    file('KLE048+1.p',unknown),
    [] ).

cnf(2,axiom,
    ( le_q(A,B)
    | addition(A,B) != B ),
    file('KLE048+1.p',unknown),
    [] ).

cnf(3,axiom,
    ( ~ le_q(addition(multiplication(A,B),C),B)
    | le_q(multiplication(star(A),C),B) ),
    file('KLE048+1.p',unknown),
    [] ).

cnf(5,axiom,
    ( ~ test(A)
    | complement(dollar_f1(A),A) ),
    file('KLE048+1.p',unknown),
    [] ).

cnf(9,axiom,
    ( ~ complement(A,B)
    | addition(B,A) = one ),
    file('KLE048+1.p',unknown),
    [] ).

cnf(13,axiom,
    star(dollar_c1) != one,
    file('KLE048+1.p',unknown),
    [] ).

cnf(16,axiom,
    addition(A,B) = addition(B,A),
    file('KLE048+1.p',unknown),
    [] ).

cnf(17,axiom,
    addition(A,addition(B,C)) = addition(addition(A,B),C),
    file('KLE048+1.p',unknown),
    [] ).

cnf(19,plain,
    addition(addition(A,B),C) = addition(A,addition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[17])]),
    [iquote('copy,17,flip.1')] ).

cnf(22,axiom,
    addition(A,A) = A,
    file('KLE048+1.p',unknown),
    [] ).

cnf(28,axiom,
    multiplication(A,one) = A,
    file('KLE048+1.p',unknown),
    [] ).

cnf(30,axiom,
    multiplication(one,A) = A,
    file('KLE048+1.p',unknown),
    [] ).

cnf(33,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE048+1.p',unknown),
    [] ).

cnf(39,axiom,
    le_q(addition(one,multiplication(A,star(A))),star(A)),
    file('KLE048+1.p',unknown),
    [] ).

cnf(42,axiom,
    test(dollar_c1),
    file('KLE048+1.p',unknown),
    [] ).

cnf(45,plain,
    complement(dollar_f1(dollar_c1),dollar_c1),
    inference(hyper,[status(thm)],[42,5]),
    [iquote('hyper,42,5')] ).

cnf(56,plain,
    addition(dollar_c1,dollar_f1(dollar_c1)) = one,
    inference(hyper,[status(thm)],[45,9]),
    [iquote('hyper,45,9')] ).

cnf(62,plain,
    ( addition(A,B) = A
    | ~ le_q(B,A) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[16,1])]),
    [iquote('para_into,16.1.1,1.2.1,flip.1')] ).

cnf(78,plain,
    le_q(A,A),
    inference(hyper,[status(thm)],[22,2]),
    [iquote('hyper,22,2')] ).

cnf(83,plain,
    addition(A,addition(A,B)) = addition(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,22])]),
    [iquote('para_into,18.1.1.1,22.1.1,flip.1')] ).

cnf(104,plain,
    ( ~ le_q(addition(A,B),one)
    | le_q(multiplication(star(A),B),one) ),
    inference(para_from,[status(thm),theory(equality)],[28,3]),
    [iquote('para_from,27.1.1,3.1.1.1')] ).

cnf(165,plain,
    addition(one,addition(multiplication(A,star(A)),star(A))) = star(A),
    inference(demod,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[39,1]),19]),
    [iquote('hyper,39,1,demod,19')] ).

cnf(977,plain,
    addition(dollar_c1,one) = one,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[83,56]),56]),
    [iquote('para_into,83.1.1.2,55.1.1,demod,56')] ).

cnf(1072,plain,
    addition(multiplication(dollar_c1,A),A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[977,33]),30,30])]),
    [iquote('para_from,977.1.1,33.1.1.1,demod,30,30,flip.1')] ).

cnf(1944,plain,
    le_q(star(dollar_c1),one),
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[104,977]),28]),78]),
    [iquote('para_into,104.1.1,977.1.1,demod,28,unit_del,78')] ).

cnf(1977,plain,
    addition(one,star(dollar_c1)) = one,
    inference(hyper,[status(thm)],[1944,62]),
    [iquote('hyper,1944,62')] ).

cnf(3004,plain,
    star(dollar_c1) = one,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[165,1072]),1977])]),
    [iquote('para_into,165.1.1.2,1072.1.1,demod,1977,flip.1')] ).

cnf(3006,plain,
    $false,
    inference(binary,[status(thm)],[3004,13]),
    [iquote('binary,3004.1,13.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : KLE048+1 : TPTP v8.1.0. Released v4.0.0.
% 0.13/0.13  % Command  : otter-tptp-script %s
% 0.13/0.34  % Computer : n018.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Wed Jul 27 06:34:16 EDT 2022
% 0.19/0.35  % CPUTime  : 
% 1.77/1.97  ----- Otter 3.3f, August 2004 -----
% 1.77/1.97  The process was started by sandbox on n018.cluster.edu,
% 1.77/1.97  Wed Jul 27 06:34:16 2022
% 1.77/1.97  The command was "./otter".  The process ID is 6056.
% 1.77/1.97  
% 1.77/1.97  set(prolog_style_variables).
% 1.77/1.97  set(auto).
% 1.77/1.97     dependent: set(auto1).
% 1.77/1.97     dependent: set(process_input).
% 1.77/1.97     dependent: clear(print_kept).
% 1.77/1.97     dependent: clear(print_new_demod).
% 1.77/1.97     dependent: clear(print_back_demod).
% 1.77/1.97     dependent: clear(print_back_sub).
% 1.77/1.97     dependent: set(control_memory).
% 1.77/1.97     dependent: assign(max_mem, 12000).
% 1.77/1.97     dependent: assign(pick_given_ratio, 4).
% 1.77/1.97     dependent: assign(stats_level, 1).
% 1.77/1.97     dependent: assign(max_seconds, 10800).
% 1.77/1.97  clear(print_given).
% 1.77/1.97  
% 1.77/1.97  formula_list(usable).
% 1.77/1.97  all A (A=A).
% 1.77/1.97  all A B (addition(A,B)=addition(B,A)).
% 1.77/1.97  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.77/1.97  all A (addition(A,zero)=A).
% 1.77/1.97  all A (addition(A,A)=A).
% 1.77/1.97  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.77/1.97  all A (multiplication(A,one)=A).
% 1.77/1.97  all A (multiplication(one,A)=A).
% 1.77/1.97  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.77/1.97  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.77/1.97  all A (multiplication(A,zero)=zero).
% 1.77/1.97  all A (multiplication(zero,A)=zero).
% 1.77/1.97  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.77/1.97  all A le_q(addition(one,multiplication(A,star(A))),star(A)).
% 1.77/1.97  all A le_q(addition(one,multiplication(star(A),A)),star(A)).
% 1.77/1.97  all A B C (le_q(addition(multiplication(A,B),C),B)->le_q(multiplication(star(A),C),B)).
% 1.77/1.97  all A B C (le_q(addition(multiplication(A,B),C),A)->le_q(multiplication(C,star(B)),A)).
% 1.77/1.97  all X0 (test(X0)<-> (exists X1 complement(X1,X0))).
% 1.77/1.97  all X0 X1 (complement(X1,X0)<->multiplication(X0,X1)=zero&multiplication(X1,X0)=zero&addition(X0,X1)=one).
% 1.77/1.97  all X0 X1 (test(X0)-> (c(X0)=X1<->complement(X0,X1))).
% 1.77/1.97  all X0 (-test(X0)->c(X0)=zero).
% 1.77/1.97  -(all X0 (test(X0)->star(X0)=one)).
% 1.77/1.97  end_of_list.
% 1.77/1.97  
% 1.77/1.97  -------> usable clausifies to:
% 1.77/1.97  
% 1.77/1.97  list(usable).
% 1.77/1.97  0 [] A=A.
% 1.77/1.97  0 [] addition(A,B)=addition(B,A).
% 1.77/1.97  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.77/1.97  0 [] addition(A,zero)=A.
% 1.77/1.97  0 [] addition(A,A)=A.
% 1.77/1.97  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.77/1.97  0 [] multiplication(A,one)=A.
% 1.77/1.97  0 [] multiplication(one,A)=A.
% 1.77/1.97  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.77/1.97  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.77/1.97  0 [] multiplication(A,zero)=zero.
% 1.77/1.97  0 [] multiplication(zero,A)=zero.
% 1.77/1.97  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.77/1.97  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.77/1.97  0 [] le_q(addition(one,multiplication(A,star(A))),star(A)).
% 1.77/1.97  0 [] le_q(addition(one,multiplication(star(A),A)),star(A)).
% 1.77/1.97  0 [] -le_q(addition(multiplication(A,B),C),B)|le_q(multiplication(star(A),C),B).
% 1.77/1.97  0 [] -le_q(addition(multiplication(A,B),C),A)|le_q(multiplication(C,star(B)),A).
% 1.77/1.97  0 [] -test(X0)|complement($f1(X0),X0).
% 1.77/1.97  0 [] test(X0)| -complement(X1,X0).
% 1.77/1.97  0 [] -complement(X1,X0)|multiplication(X0,X1)=zero.
% 1.77/1.97  0 [] -complement(X1,X0)|multiplication(X1,X0)=zero.
% 1.77/1.97  0 [] -complement(X1,X0)|addition(X0,X1)=one.
% 1.77/1.97  0 [] complement(X1,X0)|multiplication(X0,X1)!=zero|multiplication(X1,X0)!=zero|addition(X0,X1)!=one.
% 1.77/1.97  0 [] -test(X0)|c(X0)!=X1|complement(X0,X1).
% 1.77/1.97  0 [] -test(X0)|c(X0)=X1| -complement(X0,X1).
% 1.77/1.97  0 [] test(X0)|c(X0)=zero.
% 1.77/1.97  0 [] test($c1).
% 1.77/1.97  0 [] star($c1)!=one.
% 1.77/1.97  end_of_list.
% 1.77/1.97  
% 1.77/1.97  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=4.
% 1.77/1.97  
% 1.77/1.97  This ia a non-Horn set with equality.  The strategy will be
% 1.77/1.97  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.77/1.97  deletion, with positive clauses in sos and nonpositive
% 1.77/1.97  clauses in usable.
% 1.77/1.97  
% 1.77/1.97     dependent: set(knuth_bendix).
% 1.77/1.97     dependent: set(anl_eq).
% 1.77/1.97     dependent: set(para_from).
% 1.77/1.97     dependent: set(para_into).
% 1.77/1.97     dependent: clear(para_from_right).
% 1.77/1.97     dependent: clear(para_into_right).
% 1.77/1.97     dependent: set(para_from_vars).
% 1.77/1.97     dependent: set(eq_units_both_ways).
% 1.77/1.97     dependent: set(dynamic_demod_all).
% 1.77/1.97     dependent: set(dynamic_demod).
% 1.77/1.97     dependent: set(order_eq).
% 1.77/1.97     dependent: set(back_demod).
% 1.77/1.97     dependent: set(lrpo).
% 1.77/1.97     dependent: set(hyper_res).
% 1.77/1.97     dependent: set(unit_deletion).
% 1.77/1.97     dependent: set(factor).
% 1.77/1.97  
% 1.77/1.97  ------------> process usable:
% 2.33/2.54  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 2.33/2.54  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 2.33/2.54  ** KEPT (pick-wt=13): 3 [] -le_q(addition(multiplication(A,B),C),B)|le_q(multiplication(star(A),C),B).
% 2.33/2.54  ** KEPT (pick-wt=13): 4 [] -le_q(addition(multiplication(A,B),C),A)|le_q(multiplication(C,star(B)),A).
% 2.33/2.54  ** KEPT (pick-wt=6): 5 [] -test(A)|complement($f1(A),A).
% 2.33/2.54  ** KEPT (pick-wt=5): 6 [] test(A)| -complement(B,A).
% 2.33/2.54  ** KEPT (pick-wt=8): 7 [] -complement(A,B)|multiplication(B,A)=zero.
% 2.33/2.54  ** KEPT (pick-wt=8): 8 [] -complement(A,B)|multiplication(A,B)=zero.
% 2.33/2.54  ** KEPT (pick-wt=8): 9 [] -complement(A,B)|addition(B,A)=one.
% 2.33/2.54  ** KEPT (pick-wt=18): 10 [] complement(A,B)|multiplication(B,A)!=zero|multiplication(A,B)!=zero|addition(B,A)!=one.
% 2.33/2.54  ** KEPT (pick-wt=9): 11 [] -test(A)|c(A)!=B|complement(A,B).
% 2.33/2.54  ** KEPT (pick-wt=9): 12 [] -test(A)|c(A)=B| -complement(A,B).
% 2.33/2.54  ** KEPT (pick-wt=4): 13 [] star($c1)!=one.
% 2.33/2.54  
% 2.33/2.54  ------------> process sos:
% 2.33/2.54  ** KEPT (pick-wt=3): 15 [] A=A.
% 2.33/2.54  ** KEPT (pick-wt=7): 16 [] addition(A,B)=addition(B,A).
% 2.33/2.54  ** KEPT (pick-wt=11): 18 [copy,17,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 2.33/2.54  ---> New Demodulator: 19 [new_demod,18] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 2.33/2.54  ** KEPT (pick-wt=5): 20 [] addition(A,zero)=A.
% 2.33/2.54  ---> New Demodulator: 21 [new_demod,20] addition(A,zero)=A.
% 2.33/2.54  ** KEPT (pick-wt=5): 22 [] addition(A,A)=A.
% 2.33/2.54  ---> New Demodulator: 23 [new_demod,22] addition(A,A)=A.
% 2.33/2.54  ** KEPT (pick-wt=11): 25 [copy,24,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.33/2.54  ---> New Demodulator: 26 [new_demod,25] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.33/2.54  ** KEPT (pick-wt=5): 27 [] multiplication(A,one)=A.
% 2.33/2.54  ---> New Demodulator: 28 [new_demod,27] multiplication(A,one)=A.
% 2.33/2.54  ** KEPT (pick-wt=5): 29 [] multiplication(one,A)=A.
% 2.33/2.54  ---> New Demodulator: 30 [new_demod,29] multiplication(one,A)=A.
% 2.33/2.54  ** KEPT (pick-wt=13): 31 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.33/2.54  ---> New Demodulator: 32 [new_demod,31] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.33/2.54  ** KEPT (pick-wt=13): 33 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.33/2.54  ---> New Demodulator: 34 [new_demod,33] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.33/2.54  ** KEPT (pick-wt=5): 35 [] multiplication(A,zero)=zero.
% 2.33/2.54  ---> New Demodulator: 36 [new_demod,35] multiplication(A,zero)=zero.
% 2.33/2.54  ** KEPT (pick-wt=5): 37 [] multiplication(zero,A)=zero.
% 2.33/2.54  ---> New Demodulator: 38 [new_demod,37] multiplication(zero,A)=zero.
% 2.33/2.54  ** KEPT (pick-wt=9): 39 [] le_q(addition(one,multiplication(A,star(A))),star(A)).
% 2.33/2.54  ** KEPT (pick-wt=9): 40 [] le_q(addition(one,multiplication(star(A),A)),star(A)).
% 2.33/2.54  ** KEPT (pick-wt=6): 41 [] test(A)|c(A)=zero.
% 2.33/2.54  ** KEPT (pick-wt=2): 42 [] test($c1).
% 2.33/2.54    Following clause subsumed by 15 during input processing: 0 [copy,15,flip.1] A=A.
% 2.33/2.54    Following clause subsumed by 16 during input processing: 0 [copy,16,flip.1] addition(A,B)=addition(B,A).
% 2.33/2.54  >>>> Starting back demodulation with 19.
% 2.33/2.54  >>>> Starting back demodulation with 21.
% 2.33/2.54  >>>> Starting back demodulation with 23.
% 2.33/2.54      >> back demodulating 14 with 23.
% 2.33/2.54  >>>> Starting back demodulation with 26.
% 2.33/2.54  >>>> Starting back demodulation with 28.
% 2.33/2.54  >>>> Starting back demodulation with 30.
% 2.33/2.54  >>>> Starting back demodulation with 32.
% 2.33/2.54  >>>> Starting back demodulation with 34.
% 2.33/2.54  >>>> Starting back demodulation with 36.
% 2.33/2.54  >>>> Starting back demodulation with 38.
% 2.33/2.54  
% 2.33/2.54  ======= end of input processing =======
% 2.33/2.54  
% 2.33/2.54  =========== start of search ===========
% 2.33/2.54  
% 2.33/2.54  
% 2.33/2.54  Resetting weight limit to 8.
% 2.33/2.54  
% 2.33/2.54  
% 2.33/2.54  Resetting weight limit to 8.
% 2.33/2.54  
% 2.33/2.54  sos_size=1868
% 2.33/2.54  
% 2.33/2.54  
% 2.33/2.54  Resetting weight limit to 7.
% 2.33/2.54  
% 2.33/2.54  
% 2.33/2.54  Resetting weight limit to 7.
% 2.33/2.54  
% 2.33/2.54  sos_size=1914
% 2.33/2.54  
% 2.33/2.54  -------- PROOF -------- 
% 2.33/2.54  
% 2.33/2.54  ----> UNIT CONFLICT at   0.55 sec ----> 3006 [binary,3004.1,13.1] $F.
% 2.33/2.54  
% 2.33/2.54  Length of proof is 13.  Level of proof is 6.
% 2.33/2.54  
% 2.33/2.54  ---------------- PROOF ----------------
% 2.33/2.54  % SZS status Theorem
% 2.33/2.54  % SZS output start Refutation
% See solution above
% 2.33/2.54  ------------ end of proof -------------
% 2.33/2.54  
% 2.33/2.54  
% 2.33/2.54  Search stopped by max_proofs option.
% 2.33/2.54  
% 2.33/2.54  
% 2.33/2.54  Search stopped by max_proofs option.
% 2.33/2.54  
% 2.33/2.54  ============ end of search ============
% 2.33/2.54  
% 2.33/2.54  -------------- statistics -------------
% 2.33/2.54  clauses given                326
% 2.33/2.54  clauses generated          15575
% 2.33/2.54  clauses kept                2882
% 2.33/2.54  clauses forward subsumed    7186
% 2.33/2.54  clauses back subsumed        577
% 2.33/2.54  Kbytes malloced             4882
% 2.33/2.54  
% 2.33/2.54  ----------- times (seconds) -----------
% 2.33/2.54  user CPU time          0.55          (0 hr, 0 min, 0 sec)
% 2.33/2.54  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 2.33/2.54  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.33/2.54  
% 2.33/2.54  That finishes the proof of the theorem.
% 2.33/2.54  
% 2.33/2.54  Process 6056 finished Wed Jul 27 06:34:18 2022
% 2.33/2.54  Otter interrupted
% 2.33/2.54  PROOF FOUND
%------------------------------------------------------------------------------