TSTP Solution File: KLE037+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : KLE037+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 05:35:37 EDT 2023

% Result   : Theorem 0.21s 0.41s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : KLE037+1 : TPTP v8.1.2. Released v4.0.0.
% 0.13/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.35  % Computer : n012.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 300
% 0.13/0.35  % DateTime : Tue Aug 29 11:15:24 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.21/0.41  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.21/0.41  
% 0.21/0.41  % SZS status Theorem
% 0.21/0.41  
% 0.21/0.41  % SZS output start Proof
% 0.21/0.41  Take the following subset of the input axioms:
% 0.21/0.41    fof(additive_associativity, axiom, ![A, B, C]: addition(A, addition(B, C))=addition(addition(A, B), C)).
% 0.21/0.41    fof(additive_commutativity, axiom, ![A3, B2]: addition(A3, B2)=addition(B2, A3)).
% 0.21/0.41    fof(additive_idempotence, axiom, ![A3]: addition(A3, A3)=A3).
% 0.21/0.41    fof(goals, conjecture, ![X0]: leq(one, star(X0))).
% 0.21/0.41    fof(left_distributivity, axiom, ![A3, B2, C2]: multiplication(addition(A3, B2), C2)=addition(multiplication(A3, C2), multiplication(B2, C2))).
% 0.21/0.41    fof(multiplicative_left_identity, axiom, ![A3]: multiplication(one, A3)=A3).
% 0.21/0.41    fof(order, axiom, ![A2, B2]: (leq(A2, B2) <=> addition(A2, B2)=B2)).
% 0.21/0.41    fof(star_unfold_right, axiom, ![A3]: leq(addition(one, multiplication(A3, star(A3))), star(A3))).
% 0.21/0.41  
% 0.21/0.42  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.42  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.42  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.42    fresh(y, y, x1...xn) = u
% 0.21/0.42    C => fresh(s, t, x1...xn) = v
% 0.21/0.42  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.42  variables of u and v.
% 0.21/0.42  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.42  input problem has no model of domain size 1).
% 0.21/0.42  
% 0.21/0.42  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.42  
% 0.21/0.42  Axiom 1 (multiplicative_left_identity): multiplication(one, X) = X.
% 0.21/0.42  Axiom 2 (additive_idempotence): addition(X, X) = X.
% 0.21/0.42  Axiom 3 (additive_commutativity): addition(X, Y) = addition(Y, X).
% 0.21/0.42  Axiom 4 (additive_associativity): addition(X, addition(Y, Z)) = addition(addition(X, Y), Z).
% 0.21/0.42  Axiom 5 (order_1): fresh(X, X, Y, Z) = Z.
% 0.21/0.42  Axiom 6 (order): fresh3(X, X, Y, Z) = true.
% 0.21/0.42  Axiom 7 (left_distributivity): multiplication(addition(X, Y), Z) = addition(multiplication(X, Z), multiplication(Y, Z)).
% 0.21/0.42  Axiom 8 (order_1): fresh(leq(X, Y), true, X, Y) = addition(X, Y).
% 0.21/0.42  Axiom 9 (order): fresh3(addition(X, Y), Y, X, Y) = leq(X, Y).
% 0.21/0.42  Axiom 10 (star_unfold_right): leq(addition(one, multiplication(X, star(X))), star(X)) = true.
% 0.21/0.42  
% 0.21/0.42  Lemma 11: addition(one, multiplication(addition(X, one), star(X))) = star(X).
% 0.21/0.42  Proof:
% 0.21/0.42    addition(one, multiplication(addition(X, one), star(X)))
% 0.21/0.42  = { by axiom 3 (additive_commutativity) R->L }
% 0.21/0.42    addition(one, multiplication(addition(one, X), star(X)))
% 0.21/0.42  = { by axiom 7 (left_distributivity) }
% 0.21/0.42    addition(one, addition(multiplication(one, star(X)), multiplication(X, star(X))))
% 0.21/0.42  = { by axiom 1 (multiplicative_left_identity) }
% 0.21/0.42    addition(one, addition(star(X), multiplication(X, star(X))))
% 0.21/0.42  = { by axiom 3 (additive_commutativity) R->L }
% 0.21/0.42    addition(one, addition(multiplication(X, star(X)), star(X)))
% 0.21/0.42  = { by axiom 4 (additive_associativity) }
% 0.21/0.42    addition(addition(one, multiplication(X, star(X))), star(X))
% 0.21/0.42  = { by axiom 8 (order_1) R->L }
% 0.21/0.42    fresh(leq(addition(one, multiplication(X, star(X))), star(X)), true, addition(one, multiplication(X, star(X))), star(X))
% 0.21/0.42  = { by axiom 10 (star_unfold_right) }
% 0.21/0.42    fresh(true, true, addition(one, multiplication(X, star(X))), star(X))
% 0.21/0.42  = { by axiom 5 (order_1) }
% 0.21/0.42    star(X)
% 0.21/0.42  
% 0.21/0.42  Goal 1 (goals): leq(one, star(x0)) = true.
% 0.21/0.42  Proof:
% 0.21/0.42    leq(one, star(x0))
% 0.21/0.42  = { by axiom 9 (order) R->L }
% 0.21/0.42    fresh3(addition(one, star(x0)), star(x0), one, star(x0))
% 0.21/0.42  = { by lemma 11 R->L }
% 0.21/0.42    fresh3(addition(one, addition(one, multiplication(addition(x0, one), star(x0)))), star(x0), one, star(x0))
% 0.21/0.42  = { by axiom 4 (additive_associativity) }
% 0.21/0.42    fresh3(addition(addition(one, one), multiplication(addition(x0, one), star(x0))), star(x0), one, star(x0))
% 0.21/0.42  = { by axiom 2 (additive_idempotence) }
% 0.21/0.42    fresh3(addition(one, multiplication(addition(x0, one), star(x0))), star(x0), one, star(x0))
% 0.21/0.42  = { by lemma 11 }
% 0.21/0.42    fresh3(star(x0), star(x0), one, star(x0))
% 0.21/0.42  = { by axiom 6 (order) }
% 0.21/0.42    true
% 0.21/0.42  % SZS output end Proof
% 0.21/0.42  
% 0.21/0.42  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------