TSTP Solution File: KLE022+4 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : KLE022+4 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n029.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 05:35:31 EDT 2023

% Result   : Theorem 0.20s 0.44s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.12  % Problem  : KLE022+4 : TPTP v8.1.2. Released v4.0.0.
% 0.12/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n029.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Tue Aug 29 12:15:56 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.20/0.44  Command-line arguments: --no-flatten-goal
% 0.20/0.44  
% 0.20/0.44  % SZS status Theorem
% 0.20/0.44  
% 0.20/0.45  % SZS output start Proof
% 0.20/0.45  Take the following subset of the input axioms:
% 0.20/0.45    fof(additive_commutativity, axiom, ![A, B]: addition(A, B)=addition(B, A)).
% 0.20/0.45    fof(additive_idempotence, axiom, ![A3]: addition(A3, A3)=A3).
% 0.20/0.45    fof(goals, conjecture, ![X0, X1]: (test(X1) => (leq(X0, addition(multiplication(X0, X1), multiplication(X0, c(X1)))) & leq(addition(multiplication(X0, X1), multiplication(X0, c(X1))), X0)))).
% 0.20/0.45    fof(multiplicative_right_identity, axiom, ![A3]: multiplication(A3, one)=A3).
% 0.20/0.45    fof(order, axiom, ![A2, B2]: (leq(A2, B2) <=> addition(A2, B2)=B2)).
% 0.20/0.45    fof(right_distributivity, axiom, ![C, A3, B2]: multiplication(A3, addition(B2, C))=addition(multiplication(A3, B2), multiplication(A3, C))).
% 0.20/0.45    fof(test_2, axiom, ![X0_2, X1_2]: (complement(X1_2, X0_2) <=> (multiplication(X0_2, X1_2)=zero & (multiplication(X1_2, X0_2)=zero & addition(X0_2, X1_2)=one)))).
% 0.20/0.45    fof(test_3, axiom, ![X0_2, X1_2]: (test(X0_2) => (c(X0_2)=X1_2 <=> complement(X0_2, X1_2)))).
% 0.20/0.45  
% 0.20/0.45  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.45  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.45  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.45    fresh(y, y, x1...xn) = u
% 0.20/0.45    C => fresh(s, t, x1...xn) = v
% 0.20/0.45  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.45  variables of u and v.
% 0.20/0.45  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.45  input problem has no model of domain size 1).
% 0.20/0.45  
% 0.20/0.45  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.45  
% 0.20/0.45  Axiom 1 (goals): test(x1) = true.
% 0.20/0.45  Axiom 2 (additive_idempotence): addition(X, X) = X.
% 0.20/0.45  Axiom 3 (additive_commutativity): addition(X, Y) = addition(Y, X).
% 0.20/0.45  Axiom 4 (multiplicative_right_identity): multiplication(X, one) = X.
% 0.20/0.45  Axiom 5 (order): fresh15(X, X, Y, Z) = true.
% 0.20/0.45  Axiom 6 (test_2_1): fresh12(X, X, Y, Z) = one.
% 0.20/0.45  Axiom 7 (test_3): fresh9(X, X, Y, Z) = complement(Y, Z).
% 0.20/0.45  Axiom 8 (test_3): fresh8(X, X, Y, Z) = true.
% 0.20/0.45  Axiom 9 (test_3): fresh9(test(X), true, X, Y) = fresh8(c(X), Y, X, Y).
% 0.20/0.45  Axiom 10 (order): fresh15(addition(X, Y), Y, X, Y) = leq(X, Y).
% 0.20/0.45  Axiom 11 (test_2_1): fresh12(complement(X, Y), true, Y, X) = addition(Y, X).
% 0.20/0.45  Axiom 12 (right_distributivity): multiplication(X, addition(Y, Z)) = addition(multiplication(X, Y), multiplication(X, Z)).
% 0.20/0.45  
% 0.20/0.45  Lemma 13: leq(X, X) = true.
% 0.20/0.45  Proof:
% 0.20/0.45    leq(X, X)
% 0.20/0.45  = { by axiom 10 (order) R->L }
% 0.20/0.45    fresh15(addition(X, X), X, X, X)
% 0.20/0.45  = { by axiom 2 (additive_idempotence) }
% 0.20/0.45    fresh15(X, X, X, X)
% 0.20/0.45  = { by axiom 5 (order) }
% 0.20/0.45    true
% 0.20/0.45  
% 0.20/0.45  Lemma 14: addition(x1, c(x1)) = one.
% 0.20/0.45  Proof:
% 0.20/0.45    addition(x1, c(x1))
% 0.20/0.45  = { by axiom 3 (additive_commutativity) R->L }
% 0.20/0.45    addition(c(x1), x1)
% 0.20/0.45  = { by axiom 11 (test_2_1) R->L }
% 0.20/0.45    fresh12(complement(x1, c(x1)), true, c(x1), x1)
% 0.20/0.45  = { by axiom 7 (test_3) R->L }
% 0.20/0.45    fresh12(fresh9(true, true, x1, c(x1)), true, c(x1), x1)
% 0.20/0.45  = { by axiom 1 (goals) R->L }
% 0.20/0.45    fresh12(fresh9(test(x1), true, x1, c(x1)), true, c(x1), x1)
% 0.20/0.45  = { by axiom 9 (test_3) }
% 0.20/0.45    fresh12(fresh8(c(x1), c(x1), x1, c(x1)), true, c(x1), x1)
% 0.20/0.45  = { by axiom 8 (test_3) }
% 0.20/0.45    fresh12(true, true, c(x1), x1)
% 0.20/0.45  = { by axiom 6 (test_2_1) }
% 0.20/0.45    one
% 0.20/0.45  
% 0.20/0.45  Goal 1 (goals_1): tuple(leq(addition(multiplication(x0, x1), multiplication(x0, c(x1))), x0), leq(x0, addition(multiplication(x0, x1), multiplication(x0, c(x1))))) = tuple(true, true).
% 0.20/0.45  Proof:
% 0.20/0.45    tuple(leq(addition(multiplication(x0, x1), multiplication(x0, c(x1))), x0), leq(x0, addition(multiplication(x0, x1), multiplication(x0, c(x1)))))
% 0.20/0.45  = { by axiom 12 (right_distributivity) R->L }
% 0.20/0.45    tuple(leq(multiplication(x0, addition(x1, c(x1))), x0), leq(x0, addition(multiplication(x0, x1), multiplication(x0, c(x1)))))
% 0.20/0.45  = { by axiom 12 (right_distributivity) R->L }
% 0.20/0.45    tuple(leq(multiplication(x0, addition(x1, c(x1))), x0), leq(x0, multiplication(x0, addition(x1, c(x1)))))
% 0.20/0.45  = { by lemma 14 }
% 0.20/0.45    tuple(leq(multiplication(x0, one), x0), leq(x0, multiplication(x0, addition(x1, c(x1)))))
% 0.20/0.45  = { by lemma 14 }
% 0.20/0.45    tuple(leq(multiplication(x0, one), x0), leq(x0, multiplication(x0, one)))
% 0.20/0.45  = { by axiom 4 (multiplicative_right_identity) }
% 0.20/0.45    tuple(leq(x0, x0), leq(x0, multiplication(x0, one)))
% 0.20/0.45  = { by axiom 4 (multiplicative_right_identity) }
% 0.20/0.45    tuple(leq(x0, x0), leq(x0, x0))
% 0.20/0.45  = { by lemma 13 }
% 0.20/0.45    tuple(true, leq(x0, x0))
% 0.20/0.45  = { by lemma 13 }
% 0.20/0.45    tuple(true, true)
% 0.20/0.45  % SZS output end Proof
% 0.20/0.45  
% 0.20/0.45  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------