TSTP Solution File: KLE010+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE010+1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n008.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:28 EDT 2022

% Result   : Theorem 3.13s 3.38s
% Output   : Refutation 3.13s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    9
%            Number of leaves      :   20
% Syntax   : Number of clauses     :   60 (  48 unt;   0 nHn;  42 RR)
%            Number of literals    :   78 (  50 equ;  25 neg)
%            Maximal clause size   :    4 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    5 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   4 con; 0-2 aty)
%            Number of variables   :   59 (   4 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ le_q(A,B)
    | addition(A,B) = B ),
    file('KLE010+1.p',unknown),
    [] ).

cnf(2,axiom,
    ( le_q(A,B)
    | addition(A,B) != B ),
    file('KLE010+1.p',unknown),
    [] ).

cnf(3,axiom,
    ( ~ test(A)
    | complement(dollar_f1(A),A) ),
    file('KLE010+1.p',unknown),
    [] ).

cnf(5,axiom,
    ( ~ complement(A,B)
    | multiplication(B,A) = zero ),
    file('KLE010+1.p',unknown),
    [] ).

cnf(6,axiom,
    ( ~ complement(A,B)
    | multiplication(A,B) = zero ),
    file('KLE010+1.p',unknown),
    [] ).

cnf(7,axiom,
    ( ~ complement(A,B)
    | addition(B,A) = one ),
    file('KLE010+1.p',unknown),
    [] ).

cnf(8,axiom,
    ( complement(A,B)
    | multiplication(B,A) != zero
    | multiplication(A,B) != zero
    | addition(B,A) != one ),
    file('KLE010+1.p',unknown),
    [] ).

cnf(9,axiom,
    ( ~ test(A)
    | c(A) != B
    | complement(A,B) ),
    file('KLE010+1.p',unknown),
    [] ).

cnf(10,axiom,
    ( ~ test(A)
    | c(A) = B
    | ~ complement(A,B) ),
    file('KLE010+1.p',unknown),
    [] ).

cnf(11,axiom,
    one != addition(addition(addition(addition(multiplication(dollar_c1,dollar_c2),multiplication(c(dollar_c1),dollar_c2)),multiplication(dollar_c2,dollar_c1)),multiplication(c(dollar_c2),dollar_c1)),multiplication(c(dollar_c2),c(dollar_c1))),
    file('KLE010+1.p',unknown),
    [] ).

cnf(12,plain,
    addition(addition(addition(addition(multiplication(dollar_c1,dollar_c2),multiplication(c(dollar_c1),dollar_c2)),multiplication(dollar_c2,dollar_c1)),multiplication(c(dollar_c2),dollar_c1)),multiplication(c(dollar_c2),c(dollar_c1))) != one,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[11])]),
    [iquote('copy,11,flip.1')] ).

cnf(14,axiom,
    A = A,
    file('KLE010+1.p',unknown),
    [] ).

cnf(15,axiom,
    addition(A,B) = addition(B,A),
    file('KLE010+1.p',unknown),
    [] ).

cnf(16,axiom,
    addition(A,addition(B,C)) = addition(addition(A,B),C),
    file('KLE010+1.p',unknown),
    [] ).

cnf(18,plain,
    addition(addition(A,B),C) = addition(A,addition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[16])]),
    [iquote('copy,16,flip.1')] ).

cnf(21,axiom,
    addition(A,A) = A,
    file('KLE010+1.p',unknown),
    [] ).

cnf(27,axiom,
    multiplication(A,one) = A,
    file('KLE010+1.p',unknown),
    [] ).

cnf(29,axiom,
    multiplication(one,A) = A,
    file('KLE010+1.p',unknown),
    [] ).

cnf(30,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE010+1.p',unknown),
    [] ).

cnf(32,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE010+1.p',unknown),
    [] ).

cnf(39,axiom,
    test(dollar_c1),
    file('KLE010+1.p',unknown),
    [] ).

cnf(40,axiom,
    test(dollar_c2),
    file('KLE010+1.p',unknown),
    [] ).

cnf(41,plain,
    addition(multiplication(dollar_c1,dollar_c2),addition(multiplication(c(dollar_c1),dollar_c2),addition(multiplication(dollar_c2,dollar_c1),addition(multiplication(c(dollar_c2),dollar_c1),multiplication(c(dollar_c2),c(dollar_c1)))))) != one,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[12]),18,18,18,18,18,18]),
    [iquote('back_demod,12,demod,18,18,18,18,18,18')] ).

cnf(43,plain,
    complement(dollar_c1,c(dollar_c1)),
    inference(hyper,[status(thm)],[39,9,14]),
    [iquote('hyper,39,9,14')] ).

cnf(44,plain,
    complement(dollar_f1(dollar_c1),dollar_c1),
    inference(hyper,[status(thm)],[39,3]),
    [iquote('hyper,39,3')] ).

cnf(46,plain,
    complement(dollar_f1(dollar_c2),dollar_c2),
    inference(hyper,[status(thm)],[40,3]),
    [iquote('hyper,40,3')] ).

cnf(47,plain,
    addition(c(dollar_c1),dollar_c1) = one,
    inference(hyper,[status(thm)],[43,7]),
    [iquote('hyper,43,7')] ).

cnf(56,plain,
    ( addition(A,B) = one
    | ~ complement(A,B) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[15,7])]),
    [iquote('para_into,15.1.1,7.2.1,flip.1')] ).

cnf(57,plain,
    ( addition(A,B) = A
    | ~ le_q(B,A) ),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[15,1])]),
    [iquote('para_into,15.1.1,1.2.1,flip.1')] ).

cnf(58,plain,
    ( complement(A,B)
    | multiplication(B,A) != zero
    | multiplication(A,B) != zero
    | addition(A,B) != one ),
    inference(para_from,[status(thm),theory(equality)],[15,8]),
    [iquote('para_from,15.1.1,8.4.1')] ).

cnf(60,plain,
    addition(dollar_c1,dollar_f1(dollar_c1)) = one,
    inference(hyper,[status(thm)],[44,7]),
    [iquote('hyper,44,7')] ).

cnf(62,plain,
    multiplication(dollar_f1(dollar_c1),dollar_c1) = zero,
    inference(hyper,[status(thm)],[44,6]),
    [iquote('hyper,44,6')] ).

cnf(65,plain,
    multiplication(dollar_c1,dollar_f1(dollar_c1)) = zero,
    inference(hyper,[status(thm)],[44,5]),
    [iquote('hyper,44,5')] ).

cnf(75,plain,
    addition(dollar_c2,dollar_f1(dollar_c2)) = one,
    inference(hyper,[status(thm)],[46,7]),
    [iquote('hyper,46,7')] ).

cnf(78,plain,
    multiplication(dollar_f1(dollar_c2),dollar_c2) = zero,
    inference(hyper,[status(thm)],[46,6]),
    [iquote('hyper,46,6')] ).

cnf(80,plain,
    multiplication(dollar_c2,dollar_f1(dollar_c2)) = zero,
    inference(hyper,[status(thm)],[46,5]),
    [iquote('hyper,46,5')] ).

cnf(84,plain,
    addition(A,addition(B,C)) = addition(B,addition(C,A)),
    inference(para_into,[status(thm),theory(equality)],[18,15]),
    [iquote('para_into,17.1.1,15.1.1')] ).

cnf(87,plain,
    addition(A,addition(B,C)) = addition(C,addition(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[84])]),
    [iquote('copy,84,flip.1')] ).

cnf(104,plain,
    addition(A,addition(A,B)) = addition(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[21,18])]),
    [iquote('para_from,21.1.1,17.1.1.1,flip.1')] ).

cnf(164,plain,
    addition(multiplication(A,c(dollar_c1)),multiplication(A,dollar_c1)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[47,30]),27])]),
    [iquote('para_from,47.1.1,30.1.1.2,demod,27,flip.1')] ).

cnf(194,plain,
    addition(multiplication(dollar_c1,dollar_c2),addition(multiplication(c(dollar_c1),dollar_c2),addition(multiplication(dollar_c2,dollar_c1),c(dollar_c2)))) != one,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[41,15]),164]),
    [iquote('para_into,41.1.1.2.2.2,15.1.1,demod,164')] ).

cnf(218,plain,
    addition(dollar_f1(dollar_c1),dollar_c1) = one,
    inference(para_into,[status(thm),theory(equality)],[60,15]),
    [iquote('para_into,60.1.1,15.1.1')] ).

cnf(220,plain,
    addition(multiplication(A,dollar_c1),multiplication(A,dollar_f1(dollar_c1))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[60,30]),27])]),
    [iquote('para_from,60.1.1,30.1.1.2,demod,27,flip.1')] ).

cnf(223,plain,
    addition(multiplication(dollar_c1,A),multiplication(dollar_f1(dollar_c1),A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[60,32]),29])]),
    [iquote('para_from,60.1.1,32.1.1.1,demod,29,flip.1')] ).

cnf(229,plain,
    complement(dollar_c1,dollar_f1(dollar_c1)),
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[62,8]),65,218]),14,14,14]),
    [iquote('para_from,62.1.1,8.2.1,demod,65,218,unit_del,14,14,14')] ).

cnf(234,plain,
    c(dollar_c1) = dollar_f1(dollar_c1),
    inference(hyper,[status(thm)],[229,10,39]),
    [iquote('hyper,229,10,39')] ).

cnf(256,plain,
    addition(multiplication(dollar_c1,dollar_c2),addition(multiplication(dollar_f1(dollar_c1),dollar_c2),addition(multiplication(dollar_c2,dollar_c1),c(dollar_c2)))) != one,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[194]),234]),
    [iquote('back_demod,194,demod,234')] ).

cnf(291,plain,
    addition(dollar_f1(dollar_c2),dollar_c2) = one,
    inference(hyper,[status(thm)],[56,46]),
    [iquote('hyper,56,46')] ).

cnf(360,plain,
    complement(dollar_c2,dollar_f1(dollar_c2)),
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[58,75]),78,80]),14,14,14]),
    [iquote('para_into,58.4.1,75.1.1,demod,78,80,unit_del,14,14,14')] ).

cnf(365,plain,
    c(dollar_c2) = dollar_f1(dollar_c2),
    inference(hyper,[status(thm)],[360,10,40]),
    [iquote('hyper,360,10,40')] ).

cnf(408,plain,
    addition(multiplication(dollar_c1,dollar_c2),addition(multiplication(dollar_f1(dollar_c1),dollar_c2),addition(multiplication(dollar_c2,dollar_c1),dollar_f1(dollar_c2)))) != one,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[256]),365]),
    [iquote('back_demod,256,demod,365')] ).

cnf(1498,plain,
    le_q(A,addition(A,B)),
    inference(hyper,[status(thm)],[104,2]),
    [iquote('hyper,104,2')] ).

cnf(1547,plain,
    le_q(A,addition(B,addition(A,C))),
    inference(para_into,[status(thm),theory(equality)],[1498,87]),
    [iquote('para_into,1498.1.2,87.1.1')] ).

cnf(1552,plain,
    le_q(dollar_c2,one),
    inference(para_into,[status(thm),theory(equality)],[1498,75]),
    [iquote('para_into,1498.1.2,75.1.1')] ).

cnf(1560,plain,
    addition(one,dollar_c2) = one,
    inference(hyper,[status(thm)],[1552,57]),
    [iquote('hyper,1552,57')] ).

cnf(2986,plain,
    le_q(multiplication(A,dollar_c1),addition(B,A)),
    inference(para_into,[status(thm),theory(equality)],[1547,220]),
    [iquote('para_into,1547.1.2.2,220.1.1')] ).

cnf(3040,plain,
    le_q(multiplication(dollar_c2,dollar_c1),one),
    inference(para_into,[status(thm),theory(equality)],[2986,1560]),
    [iquote('para_into,2986.1.2,1560.1.1')] ).

cnf(3043,plain,
    addition(multiplication(dollar_c2,dollar_c1),one) = one,
    inference(hyper,[status(thm)],[3040,1]),
    [iquote('hyper,3040,1')] ).

cnf(3222,plain,
    one != one,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[408,87]),223,18,291,3043]),
    [iquote('para_into,408.1.1,87.1.1,demod,223,18,291,3043')] ).

cnf(3223,plain,
    $false,
    inference(binary,[status(thm)],[3222,14]),
    [iquote('binary,3222.1,14.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.11  % Problem  : KLE010+1 : TPTP v8.1.0. Released v4.0.0.
% 0.06/0.12  % Command  : otter-tptp-script %s
% 0.12/0.32  % Computer : n008.cluster.edu
% 0.12/0.32  % Model    : x86_64 x86_64
% 0.12/0.32  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.32  % Memory   : 8042.1875MB
% 0.12/0.32  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.32  % CPULimit : 300
% 0.12/0.32  % WCLimit  : 300
% 0.12/0.32  % DateTime : Wed Jul 27 06:34:53 EDT 2022
% 0.12/0.32  % CPUTime  : 
% 1.75/1.96  ----- Otter 3.3f, August 2004 -----
% 1.75/1.96  The process was started by sandbox on n008.cluster.edu,
% 1.75/1.96  Wed Jul 27 06:34:53 2022
% 1.75/1.96  The command was "./otter".  The process ID is 16560.
% 1.75/1.96  
% 1.75/1.96  set(prolog_style_variables).
% 1.75/1.96  set(auto).
% 1.75/1.96     dependent: set(auto1).
% 1.75/1.96     dependent: set(process_input).
% 1.75/1.96     dependent: clear(print_kept).
% 1.75/1.96     dependent: clear(print_new_demod).
% 1.75/1.96     dependent: clear(print_back_demod).
% 1.75/1.96     dependent: clear(print_back_sub).
% 1.75/1.96     dependent: set(control_memory).
% 1.75/1.96     dependent: assign(max_mem, 12000).
% 1.75/1.96     dependent: assign(pick_given_ratio, 4).
% 1.75/1.96     dependent: assign(stats_level, 1).
% 1.75/1.96     dependent: assign(max_seconds, 10800).
% 1.75/1.96  clear(print_given).
% 1.75/1.96  
% 1.75/1.96  formula_list(usable).
% 1.75/1.96  all A (A=A).
% 1.75/1.96  all A B (addition(A,B)=addition(B,A)).
% 1.75/1.96  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.75/1.96  all A (addition(A,zero)=A).
% 1.75/1.96  all A (addition(A,A)=A).
% 1.75/1.96  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.75/1.96  all A (multiplication(A,one)=A).
% 1.75/1.96  all A (multiplication(one,A)=A).
% 1.75/1.96  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.75/1.96  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.75/1.96  all A (multiplication(A,zero)=zero).
% 1.75/1.96  all A (multiplication(zero,A)=zero).
% 1.75/1.96  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.75/1.96  all X0 (test(X0)<-> (exists X1 complement(X1,X0))).
% 1.75/1.96  all X0 X1 (complement(X1,X0)<->multiplication(X0,X1)=zero&multiplication(X1,X0)=zero&addition(X0,X1)=one).
% 1.75/1.96  all X0 X1 (test(X0)-> (c(X0)=X1<->complement(X0,X1))).
% 1.75/1.96  all X0 (-test(X0)->c(X0)=zero).
% 1.75/1.96  -(all X0 X1 (test(X1)&test(X0)->one=addition(addition(addition(addition(multiplication(X1,X0),multiplication(c(X1),X0)),multiplication(X0,X1)),multiplication(c(X0),X1)),multiplication(c(X0),c(X1))))).
% 1.75/1.96  end_of_list.
% 1.75/1.96  
% 1.75/1.96  -------> usable clausifies to:
% 1.75/1.96  
% 1.75/1.96  list(usable).
% 1.75/1.96  0 [] A=A.
% 1.75/1.96  0 [] addition(A,B)=addition(B,A).
% 1.75/1.96  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.75/1.96  0 [] addition(A,zero)=A.
% 1.75/1.96  0 [] addition(A,A)=A.
% 1.75/1.96  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.75/1.96  0 [] multiplication(A,one)=A.
% 1.75/1.96  0 [] multiplication(one,A)=A.
% 1.75/1.96  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.75/1.96  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.75/1.96  0 [] multiplication(A,zero)=zero.
% 1.75/1.96  0 [] multiplication(zero,A)=zero.
% 1.75/1.96  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.75/1.96  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.75/1.96  0 [] -test(X0)|complement($f1(X0),X0).
% 1.75/1.96  0 [] test(X0)| -complement(X1,X0).
% 1.75/1.96  0 [] -complement(X1,X0)|multiplication(X0,X1)=zero.
% 1.75/1.96  0 [] -complement(X1,X0)|multiplication(X1,X0)=zero.
% 1.75/1.96  0 [] -complement(X1,X0)|addition(X0,X1)=one.
% 1.75/1.96  0 [] complement(X1,X0)|multiplication(X0,X1)!=zero|multiplication(X1,X0)!=zero|addition(X0,X1)!=one.
% 1.75/1.96  0 [] -test(X0)|c(X0)!=X1|complement(X0,X1).
% 1.75/1.96  0 [] -test(X0)|c(X0)=X1| -complement(X0,X1).
% 1.75/1.96  0 [] test(X0)|c(X0)=zero.
% 1.75/1.96  0 [] test($c1).
% 1.75/1.96  0 [] test($c2).
% 1.75/1.96  0 [] one!=addition(addition(addition(addition(multiplication($c1,$c2),multiplication(c($c1),$c2)),multiplication($c2,$c1)),multiplication(c($c2),$c1)),multiplication(c($c2),c($c1))).
% 1.75/1.96  end_of_list.
% 1.75/1.96  
% 1.75/1.96  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=4.
% 1.75/1.96  
% 1.75/1.96  This ia a non-Horn set with equality.  The strategy will be
% 1.75/1.96  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.75/1.96  deletion, with positive clauses in sos and nonpositive
% 1.75/1.96  clauses in usable.
% 1.75/1.96  
% 1.75/1.96     dependent: set(knuth_bendix).
% 1.75/1.96     dependent: set(anl_eq).
% 1.75/1.96     dependent: set(para_from).
% 1.75/1.96     dependent: set(para_into).
% 1.75/1.96     dependent: clear(para_from_right).
% 1.75/1.96     dependent: clear(para_into_right).
% 1.75/1.96     dependent: set(para_from_vars).
% 1.75/1.96     dependent: set(eq_units_both_ways).
% 1.75/1.96     dependent: set(dynamic_demod_all).
% 1.75/1.96     dependent: set(dynamic_demod).
% 1.75/1.96     dependent: set(order_eq).
% 1.75/1.96     dependent: set(back_demod).
% 1.75/1.96     dependent: set(lrpo).
% 1.75/1.96     dependent: set(hyper_res).
% 1.75/1.96     dependent: set(unit_deletion).
% 1.75/1.96     dependent: set(factor).
% 1.75/1.96  
% 1.75/1.96  ------------> process usable:
% 1.75/1.96  ** KEPT (pick-wt=8): 1 [] -le_q(A,B)|addition(A,B)=B.
% 1.75/1.96  ** KEPT (pick-wt=8): 2 [] le_q(A,B)|addition(A,B)!=B.
% 1.75/1.96  ** KEPT (pick-wt=6): 3 [] -test(A)|complement($f1(A),A).
% 1.75/1.96  ** KEPT (pick-wt=5): 4 [] test(A)| -complement(B,A).
% 1.75/1.96  ** KEPT (pick-wt=8): 5 [] -complement(A,B)|multiplication(B,A)=zero.
% 3.13/3.38  ** KEPT (pick-wt=8): 6 [] -complement(A,B)|multiplication(A,B)=zero.
% 3.13/3.38  ** KEPT (pick-wt=8): 7 [] -complement(A,B)|addition(B,A)=one.
% 3.13/3.38  ** KEPT (pick-wt=18): 8 [] complement(A,B)|multiplication(B,A)!=zero|multiplication(A,B)!=zero|addition(B,A)!=one.
% 3.13/3.38  ** KEPT (pick-wt=9): 9 [] -test(A)|c(A)!=B|complement(A,B).
% 3.13/3.38  ** KEPT (pick-wt=9): 10 [] -test(A)|c(A)=B| -complement(A,B).
% 3.13/3.38  ** KEPT (pick-wt=25): 12 [copy,11,flip.1] addition(addition(addition(addition(multiplication($c1,$c2),multiplication(c($c1),$c2)),multiplication($c2,$c1)),multiplication(c($c2),$c1)),multiplication(c($c2),c($c1)))!=one.
% 3.13/3.38  
% 3.13/3.38  ------------> process sos:
% 3.13/3.38  ** KEPT (pick-wt=3): 14 [] A=A.
% 3.13/3.38  ** KEPT (pick-wt=7): 15 [] addition(A,B)=addition(B,A).
% 3.13/3.38  ** KEPT (pick-wt=11): 17 [copy,16,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 3.13/3.38  ---> New Demodulator: 18 [new_demod,17] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 3.13/3.38  ** KEPT (pick-wt=5): 19 [] addition(A,zero)=A.
% 3.13/3.38  ---> New Demodulator: 20 [new_demod,19] addition(A,zero)=A.
% 3.13/3.38  ** KEPT (pick-wt=5): 21 [] addition(A,A)=A.
% 3.13/3.38  ---> New Demodulator: 22 [new_demod,21] addition(A,A)=A.
% 3.13/3.38  ** KEPT (pick-wt=11): 24 [copy,23,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 3.13/3.38  ---> New Demodulator: 25 [new_demod,24] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 3.13/3.38  ** KEPT (pick-wt=5): 26 [] multiplication(A,one)=A.
% 3.13/3.38  ---> New Demodulator: 27 [new_demod,26] multiplication(A,one)=A.
% 3.13/3.38  ** KEPT (pick-wt=5): 28 [] multiplication(one,A)=A.
% 3.13/3.38  ---> New Demodulator: 29 [new_demod,28] multiplication(one,A)=A.
% 3.13/3.38  ** KEPT (pick-wt=13): 30 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 3.13/3.38  ---> New Demodulator: 31 [new_demod,30] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 3.13/3.38  ** KEPT (pick-wt=13): 32 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 3.13/3.38  ---> New Demodulator: 33 [new_demod,32] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 3.13/3.38  ** KEPT (pick-wt=5): 34 [] multiplication(A,zero)=zero.
% 3.13/3.38  ---> New Demodulator: 35 [new_demod,34] multiplication(A,zero)=zero.
% 3.13/3.38  ** KEPT (pick-wt=5): 36 [] multiplication(zero,A)=zero.
% 3.13/3.38  ---> New Demodulator: 37 [new_demod,36] multiplication(zero,A)=zero.
% 3.13/3.38  ** KEPT (pick-wt=6): 38 [] test(A)|c(A)=zero.
% 3.13/3.38  ** KEPT (pick-wt=2): 39 [] test($c1).
% 3.13/3.38  ** KEPT (pick-wt=2): 40 [] test($c2).
% 3.13/3.38    Following clause subsumed by 14 during input processing: 0 [copy,14,flip.1] A=A.
% 3.13/3.38    Following clause subsumed by 15 during input processing: 0 [copy,15,flip.1] addition(A,B)=addition(B,A).
% 3.13/3.38  >>>> Starting back demodulation with 18.
% 3.13/3.38      >> back demodulating 12 with 18.
% 3.13/3.38  >>>> Starting back demodulation with 20.
% 3.13/3.38  >>>> Starting back demodulation with 22.
% 3.13/3.38      >> back demodulating 13 with 22.
% 3.13/3.38  >>>> Starting back demodulation with 25.
% 3.13/3.38  >>>> Starting back demodulation with 27.
% 3.13/3.38  >>>> Starting back demodulation with 29.
% 3.13/3.38  >>>> Starting back demodulation with 31.
% 3.13/3.38  >>>> Starting back demodulation with 33.
% 3.13/3.38  >>>> Starting back demodulation with 35.
% 3.13/3.38  >>>> Starting back demodulation with 37.
% 3.13/3.38  
% 3.13/3.38  ======= end of input processing =======
% 3.13/3.38  
% 3.13/3.38  =========== start of search ===========
% 3.13/3.38  
% 3.13/3.38  
% 3.13/3.38  Resetting weight limit to 7.
% 3.13/3.38  
% 3.13/3.38  
% 3.13/3.38  Resetting weight limit to 7.
% 3.13/3.38  
% 3.13/3.38  sos_size=2219
% 3.13/3.38  
% 3.13/3.38  -------- PROOF -------- 
% 3.13/3.38  
% 3.13/3.38  ----> UNIT CONFLICT at   1.42 sec ----> 3223 [binary,3222.1,14.1] $F.
% 3.13/3.38  
% 3.13/3.38  Length of proof is 39.  Level of proof is 8.
% 3.13/3.38  
% 3.13/3.38  ---------------- PROOF ----------------
% 3.13/3.38  % SZS status Theorem
% 3.13/3.38  % SZS output start Refutation
% See solution above
% 3.13/3.38  ------------ end of proof -------------
% 3.13/3.38  
% 3.13/3.38  
% 3.13/3.38  Search stopped by max_proofs option.
% 3.13/3.38  
% 3.13/3.38  
% 3.13/3.38  Search stopped by max_proofs option.
% 3.13/3.38  
% 3.13/3.38  ============ end of search ============
% 3.13/3.38  
% 3.13/3.38  -------------- statistics -------------
% 3.13/3.38  clauses given                576
% 3.13/3.38  clauses generated          55307
% 3.13/3.38  clauses kept                3070
% 3.13/3.38  clauses forward subsumed   14013
% 3.13/3.38  clauses back subsumed        879
% 3.13/3.38  Kbytes malloced             4882
% 3.13/3.38  
% 3.13/3.38  ----------- times (seconds) -----------
% 3.13/3.38  user CPU time          1.42          (0 hr, 0 min, 1 sec)
% 3.13/3.38  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 3.13/3.38  wall-clock time        3             (0 hr, 0 min, 3 sec)
% 3.13/3.38  
% 3.13/3.38  That finishes the proof of the theorem.
% 3.13/3.38  
% 3.13/3.38  Process 16560 finished Wed Jul 27 06:34:56 2022
% 3.13/3.38  Otter interrupted
% 3.13/3.38  PROOF FOUND
%------------------------------------------------------------------------------