TSTP Solution File: HEN005-4 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : HEN005-4 : TPTP v8.1.2. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 01:56:54 EDT 2023

% Result   : Unsatisfiable 0.21s 0.40s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : HEN005-4 : TPTP v8.1.2. Released v1.0.0.
% 0.12/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n005.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Thu Aug 24 13:23:53 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.21/0.40  Command-line arguments: --ground-connectedness --complete-subsets
% 0.21/0.40  
% 0.21/0.40  % SZS status Unsatisfiable
% 0.21/0.40  
% 0.21/0.40  % SZS output start Proof
% 0.21/0.40  Take the following subset of the input axioms:
% 0.21/0.40    fof(a_LE_b, hypothesis, less_equal(a, b)).
% 0.21/0.40    fof(b_LE_c, hypothesis, less_equal(b, c)).
% 0.21/0.40    fof(prove_a_LE_c, negated_conjecture, ~less_equal(a, c)).
% 0.21/0.40    fof(quotient_less_equal1, axiom, ![X, Y]: (~less_equal(X, Y) | divide(X, Y)=zero)).
% 0.21/0.40    fof(quotient_less_equal2, axiom, ![X2, Y2]: (divide(X2, Y2)!=zero | less_equal(X2, Y2))).
% 0.21/0.40    fof(quotient_property, axiom, ![Z, X2, Y2]: less_equal(divide(divide(X2, Z), divide(Y2, Z)), divide(divide(X2, Y2), Z))).
% 0.21/0.40    fof(x_divide_zero_is_x, axiom, ![X2]: divide(X2, zero)=X2).
% 0.21/0.40    fof(zero_divide_anything_is_zero, axiom, ![X2]: divide(zero, X2)=zero).
% 0.21/0.40  
% 0.21/0.40  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.40  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.40  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.40    fresh(y, y, x1...xn) = u
% 0.21/0.40    C => fresh(s, t, x1...xn) = v
% 0.21/0.40  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.40  variables of u and v.
% 0.21/0.40  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.40  input problem has no model of domain size 1).
% 0.21/0.40  
% 0.21/0.40  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.40  
% 0.21/0.40  Axiom 1 (b_LE_c): less_equal(b, c) = true.
% 0.21/0.40  Axiom 2 (a_LE_b): less_equal(a, b) = true.
% 0.21/0.40  Axiom 3 (x_divide_zero_is_x): divide(X, zero) = X.
% 0.21/0.40  Axiom 4 (zero_divide_anything_is_zero): divide(zero, X) = zero.
% 0.21/0.40  Axiom 5 (quotient_less_equal2): fresh4(X, X, Y, Z) = true.
% 0.21/0.40  Axiom 6 (quotient_less_equal1): fresh3(X, X, Y, Z) = zero.
% 0.21/0.40  Axiom 7 (quotient_less_equal2): fresh4(divide(X, Y), zero, X, Y) = less_equal(X, Y).
% 0.21/0.40  Axiom 8 (quotient_less_equal1): fresh3(less_equal(X, Y), true, X, Y) = divide(X, Y).
% 0.21/0.41  Axiom 9 (quotient_property): less_equal(divide(divide(X, Y), divide(Z, Y)), divide(divide(X, Z), Y)) = true.
% 0.21/0.41  
% 0.21/0.41  Goal 1 (prove_a_LE_c): less_equal(a, c) = true.
% 0.21/0.41  Proof:
% 0.21/0.41    less_equal(a, c)
% 0.21/0.41  = { by axiom 7 (quotient_less_equal2) R->L }
% 0.21/0.41    fresh4(divide(a, c), zero, a, c)
% 0.21/0.41  = { by axiom 3 (x_divide_zero_is_x) R->L }
% 0.21/0.41    fresh4(divide(divide(a, c), zero), zero, a, c)
% 0.21/0.41  = { by axiom 8 (quotient_less_equal1) R->L }
% 0.21/0.41    fresh4(fresh3(less_equal(divide(a, c), zero), true, divide(a, c), zero), zero, a, c)
% 0.21/0.41  = { by axiom 4 (zero_divide_anything_is_zero) R->L }
% 0.21/0.41    fresh4(fresh3(less_equal(divide(a, c), divide(zero, c)), true, divide(a, c), zero), zero, a, c)
% 0.21/0.41  = { by axiom 6 (quotient_less_equal1) R->L }
% 0.21/0.41    fresh4(fresh3(less_equal(divide(a, c), divide(fresh3(true, true, a, b), c)), true, divide(a, c), zero), zero, a, c)
% 0.21/0.41  = { by axiom 2 (a_LE_b) R->L }
% 0.21/0.41    fresh4(fresh3(less_equal(divide(a, c), divide(fresh3(less_equal(a, b), true, a, b), c)), true, divide(a, c), zero), zero, a, c)
% 0.21/0.41  = { by axiom 8 (quotient_less_equal1) }
% 0.21/0.41    fresh4(fresh3(less_equal(divide(a, c), divide(divide(a, b), c)), true, divide(a, c), zero), zero, a, c)
% 0.21/0.41  = { by axiom 3 (x_divide_zero_is_x) R->L }
% 0.21/0.41    fresh4(fresh3(less_equal(divide(divide(a, c), zero), divide(divide(a, b), c)), true, divide(a, c), zero), zero, a, c)
% 0.21/0.41  = { by axiom 6 (quotient_less_equal1) R->L }
% 0.21/0.41    fresh4(fresh3(less_equal(divide(divide(a, c), fresh3(true, true, b, c)), divide(divide(a, b), c)), true, divide(a, c), zero), zero, a, c)
% 0.21/0.41  = { by axiom 1 (b_LE_c) R->L }
% 0.21/0.41    fresh4(fresh3(less_equal(divide(divide(a, c), fresh3(less_equal(b, c), true, b, c)), divide(divide(a, b), c)), true, divide(a, c), zero), zero, a, c)
% 0.21/0.41  = { by axiom 8 (quotient_less_equal1) }
% 0.21/0.41    fresh4(fresh3(less_equal(divide(divide(a, c), divide(b, c)), divide(divide(a, b), c)), true, divide(a, c), zero), zero, a, c)
% 0.21/0.41  = { by axiom 9 (quotient_property) }
% 0.21/0.41    fresh4(fresh3(true, true, divide(a, c), zero), zero, a, c)
% 0.21/0.41  = { by axiom 6 (quotient_less_equal1) }
% 0.21/0.41    fresh4(zero, zero, a, c)
% 0.21/0.41  = { by axiom 5 (quotient_less_equal2) }
% 0.21/0.41    true
% 0.21/0.41  % SZS output end Proof
% 0.21/0.41  
% 0.21/0.41  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------