TSTP Solution File: GRP756-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP756-1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:46 EDT 2022

% Result   : Unsatisfiable 2.16s 2.31s
% Output   : Refutation 2.16s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :    7
% Syntax   : Number of clauses     :   34 (  34 unt;   0 nHn;   5 RR)
%            Number of literals    :   34 (  33 equ;   4 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   3 con; 0-2 aty)
%            Number of variables   :   74 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    mult(mult(a,b),c) != mult(a,mult(b,c)),
    file('GRP756-1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('GRP756-1.p',unknown),
    [] ).

cnf(4,axiom,
    mult(A,ld(A,B)) = B,
    file('GRP756-1.p',unknown),
    [] ).

cnf(5,axiom,
    ld(A,mult(A,B)) = B,
    file('GRP756-1.p',unknown),
    [] ).

cnf(7,axiom,
    mult(rd(A,B),B) = A,
    file('GRP756-1.p',unknown),
    [] ).

cnf(9,axiom,
    rd(mult(A,B),B) = A,
    file('GRP756-1.p',unknown),
    [] ).

cnf(11,axiom,
    mult(A,mult(mult(B,B),C)) = mult(mult(A,B),mult(B,C)),
    file('GRP756-1.p',unknown),
    [] ).

cnf(12,plain,
    mult(mult(A,B),mult(B,C)) = mult(A,mult(mult(B,B),C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[11])]),
    [iquote('copy,11,flip.1')] ).

cnf(19,plain,
    mult(mult(A,B),mult(B,ld(mult(B,B),C))) = mult(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[11,4])]),
    [iquote('para_into,11.1.1.2,3.1.1,flip.1')] ).

cnf(27,plain,
    ld(A,mult(mult(A,B),mult(B,C))) = mult(mult(B,B),C),
    inference(para_from,[status(thm),theory(equality)],[11,5]),
    [iquote('para_from,11.1.1,5.1.1.2')] ).

cnf(28,plain,
    mult(mult(A,A),B) = ld(C,mult(mult(C,A),mult(A,B))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[27])]),
    [iquote('copy,27,flip.1')] ).

cnf(38,plain,
    mult(mult(A,B),C) = mult(A,mult(mult(B,B),ld(B,C))),
    inference(para_into,[status(thm),theory(equality)],[12,4]),
    [iquote('para_into,12.1.1.2,3.1.1')] ).

cnf(46,plain,
    mult(A,mult(mult(B,B),ld(B,C))) = mult(mult(A,B),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[38])]),
    [iquote('copy,38,flip.1')] ).

cnf(61,plain,
    mult(rd(A,B),C) = mult(A,mult(B,ld(mult(B,B),C))),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,7])]),
    [iquote('para_into,19.1.1.1,7.1.1,flip.1')] ).

cnf(73,plain,
    mult(A,mult(B,ld(mult(B,B),B))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[7]),61]),
    [iquote('back_demod,7,demod,61')] ).

cnf(161,plain,
    ld(A,A) = mult(B,ld(mult(B,B),B)),
    inference(para_from,[status(thm),theory(equality)],[73,5]),
    [iquote('para_from,73.1.1,5.1.1.2')] ).

cnf(173,plain,
    mult(A,ld(mult(A,A),A)) = ld(B,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[161])]),
    [iquote('copy,161,flip.1')] ).

cnf(313,plain,
    mult(A,ld(B,B)) = A,
    inference(para_from,[status(thm),theory(equality)],[173,73]),
    [iquote('para_from,173.1.1,73.1.1.2')] ).

cnf(314,plain,
    rd(ld(A,A),ld(mult(B,B),B)) = B,
    inference(para_from,[status(thm),theory(equality)],[173,9]),
    [iquote('para_from,173.1.1,9.1.1.1')] ).

cnf(316,plain,
    ld(A,ld(B,B)) = ld(mult(A,A),A),
    inference(para_from,[status(thm),theory(equality)],[173,5]),
    [iquote('para_from,173.1.1,5.1.1.2')] ).

cnf(317,plain,
    ld(mult(A,A),A) = ld(A,ld(B,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[316])]),
    [iquote('copy,316,flip.1')] ).

cnf(328,plain,
    rd(ld(A,A),ld(B,ld(C,C))) = B,
    inference(para_from,[status(thm),theory(equality)],[317,314]),
    [iquote('para_from,317.1.1,314.1.1.2')] ).

cnf(332,plain,
    mult(mult(A,A),ld(A,ld(B,B))) = A,
    inference(para_from,[status(thm),theory(equality)],[317,4]),
    [iquote('para_from,317.1.1,3.1.1.2')] ).

cnf(388,plain,
    ld(A,mult(mult(A,B),C)) = mult(mult(B,B),ld(B,C)),
    inference(para_into,[status(thm),theory(equality)],[27,4]),
    [iquote('para_into,27.1.1.2.2,3.1.1')] ).

cnf(389,plain,
    mult(mult(A,A),ld(A,B)) = ld(C,mult(mult(C,A),B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[388])]),
    [iquote('copy,388,flip.1')] ).

cnf(420,plain,
    mult(a,mult(mult(b,b),ld(b,c))) != mult(a,mult(b,c)),
    inference(para_from,[status(thm),theory(equality)],[38,1]),
    [iquote('para_from,38.1.1,1.1.1')] ).

cnf(421,plain,
    mult(A,ld(B,mult(mult(B,C),D))) = mult(mult(A,C),D),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[46,28]),4]),
    [iquote('para_into,46.1.1.2,28.1.1,demod,4')] ).

cnf(514,plain,
    mult(a,ld(A,mult(mult(A,b),c))) != mult(a,mult(b,c)),
    inference(para_into,[status(thm),theory(equality)],[420,389]),
    [iquote('para_into,420.1.1.2,389.1.1')] ).

cnf(521,plain,
    mult(mult(A,B),ld(B,ld(C,C))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[421,332]),313])]),
    [iquote('para_into,421.1.1.2.2,332.1.1,demod,313,flip.1')] ).

cnf(547,plain,
    rd(A,ld(B,ld(C,C))) = mult(A,B),
    inference(para_from,[status(thm),theory(equality)],[521,9]),
    [iquote('para_from,521.1.1,9.1.1.1')] ).

cnf(554,plain,
    mult(ld(A,A),B) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[328]),547]),
    [iquote('back_demod,328,demod,547')] ).

cnf(563,plain,
    ld(A,mult(mult(A,B),C)) = mult(B,C),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[554,421]),554])]),
    [iquote('para_into,553.1.1,421.1.1,demod,554,flip.1')] ).

cnf(570,plain,
    mult(a,mult(b,c)) != mult(a,mult(b,c)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[514]),563]),
    [iquote('back_demod,514,demod,563')] ).

cnf(571,plain,
    $false,
    inference(binary,[status(thm)],[570,2]),
    [iquote('binary,570.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : GRP756-1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n026.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 05:40:39 EDT 2022
% 0.13/0.33  % CPUTime  : 
% 2.16/2.31  ----- Otter 3.3f, August 2004 -----
% 2.16/2.31  The process was started by sandbox on n026.cluster.edu,
% 2.16/2.31  Wed Jul 27 05:40:39 2022
% 2.16/2.31  The command was "./otter".  The process ID is 23598.
% 2.16/2.31  
% 2.16/2.31  set(prolog_style_variables).
% 2.16/2.31  set(auto).
% 2.16/2.31     dependent: set(auto1).
% 2.16/2.31     dependent: set(process_input).
% 2.16/2.31     dependent: clear(print_kept).
% 2.16/2.31     dependent: clear(print_new_demod).
% 2.16/2.31     dependent: clear(print_back_demod).
% 2.16/2.31     dependent: clear(print_back_sub).
% 2.16/2.31     dependent: set(control_memory).
% 2.16/2.31     dependent: assign(max_mem, 12000).
% 2.16/2.31     dependent: assign(pick_given_ratio, 4).
% 2.16/2.31     dependent: assign(stats_level, 1).
% 2.16/2.31     dependent: assign(max_seconds, 10800).
% 2.16/2.31  clear(print_given).
% 2.16/2.31  
% 2.16/2.31  list(usable).
% 2.16/2.31  0 [] A=A.
% 2.16/2.31  0 [] mult(A,ld(A,B))=B.
% 2.16/2.31  0 [] ld(A,mult(A,B))=B.
% 2.16/2.31  0 [] mult(rd(A,B),B)=A.
% 2.16/2.31  0 [] rd(mult(A,B),B)=A.
% 2.16/2.31  0 [] mult(A,mult(mult(B,B),C))=mult(mult(A,B),mult(B,C)).
% 2.16/2.31  0 [] mult(mult(a,b),c)!=mult(a,mult(b,c)).
% 2.16/2.31  end_of_list.
% 2.16/2.31  
% 2.16/2.31  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 2.16/2.31  
% 2.16/2.31  All clauses are units, and equality is present; the
% 2.16/2.31  strategy will be Knuth-Bendix with positive clauses in sos.
% 2.16/2.31  
% 2.16/2.31     dependent: set(knuth_bendix).
% 2.16/2.31     dependent: set(anl_eq).
% 2.16/2.31     dependent: set(para_from).
% 2.16/2.31     dependent: set(para_into).
% 2.16/2.31     dependent: clear(para_from_right).
% 2.16/2.31     dependent: clear(para_into_right).
% 2.16/2.31     dependent: set(para_from_vars).
% 2.16/2.31     dependent: set(eq_units_both_ways).
% 2.16/2.31     dependent: set(dynamic_demod_all).
% 2.16/2.31     dependent: set(dynamic_demod).
% 2.16/2.31     dependent: set(order_eq).
% 2.16/2.31     dependent: set(back_demod).
% 2.16/2.31     dependent: set(lrpo).
% 2.16/2.31  
% 2.16/2.31  ------------> process usable:
% 2.16/2.31  ** KEPT (pick-wt=11): 1 [] mult(mult(a,b),c)!=mult(a,mult(b,c)).
% 2.16/2.31  
% 2.16/2.31  ------------> process sos:
% 2.16/2.31  ** KEPT (pick-wt=3): 2 [] A=A.
% 2.16/2.31  ** KEPT (pick-wt=7): 3 [] mult(A,ld(A,B))=B.
% 2.16/2.31  ---> New Demodulator: 4 [new_demod,3] mult(A,ld(A,B))=B.
% 2.16/2.31  ** KEPT (pick-wt=7): 5 [] ld(A,mult(A,B))=B.
% 2.16/2.31  ---> New Demodulator: 6 [new_demod,5] ld(A,mult(A,B))=B.
% 2.16/2.31  ** KEPT (pick-wt=7): 7 [] mult(rd(A,B),B)=A.
% 2.16/2.31  ---> New Demodulator: 8 [new_demod,7] mult(rd(A,B),B)=A.
% 2.16/2.31  ** KEPT (pick-wt=7): 9 [] rd(mult(A,B),B)=A.
% 2.16/2.31  ---> New Demodulator: 10 [new_demod,9] rd(mult(A,B),B)=A.
% 2.16/2.31  ** KEPT (pick-wt=15): 11 [] mult(A,mult(mult(B,B),C))=mult(mult(A,B),mult(B,C)).
% 2.16/2.31    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 2.16/2.31  >>>> Starting back demodulation with 4.
% 2.16/2.31  >>>> Starting back demodulation with 6.
% 2.16/2.31  >>>> Starting back demodulation with 8.
% 2.16/2.31  >>>> Starting back demodulation with 10.
% 2.16/2.31  ** KEPT (pick-wt=15): 12 [copy,11,flip.1] mult(mult(A,B),mult(B,C))=mult(A,mult(mult(B,B),C)).
% 2.16/2.31    Following clause subsumed by 11 during input processing: 0 [copy,12,flip.1] mult(A,mult(mult(B,B),C))=mult(mult(A,B),mult(B,C)).
% 2.16/2.31  
% 2.16/2.31  ======= end of input processing =======
% 2.16/2.31  
% 2.16/2.31  =========== start of search ===========
% 2.16/2.31  
% 2.16/2.31  
% 2.16/2.31  Resetting weight limit to 15.
% 2.16/2.31  
% 2.16/2.31  
% 2.16/2.31  Resetting weight limit to 15.
% 2.16/2.31  
% 2.16/2.31  sos_size=193
% 2.16/2.31  
% 2.16/2.31  -------- PROOF -------- 
% 2.16/2.31  
% 2.16/2.31  ----> UNIT CONFLICT at   0.22 sec ----> 571 [binary,570.1,2.1] $F.
% 2.16/2.31  
% 2.16/2.31  Length of proof is 26.  Level of proof is 13.
% 2.16/2.31  
% 2.16/2.31  ---------------- PROOF ----------------
% 2.16/2.31  % SZS status Unsatisfiable
% 2.16/2.31  % SZS output start Refutation
% See solution above
% 2.16/2.31  ------------ end of proof -------------
% 2.16/2.31  
% 2.16/2.31  
% 2.16/2.31  Search stopped by max_proofs option.
% 2.16/2.31  
% 2.16/2.31  
% 2.16/2.31  Search stopped by max_proofs option.
% 2.16/2.31  
% 2.16/2.31  ============ end of search ============
% 2.16/2.31  
% 2.16/2.31  -------------- statistics -------------
% 2.16/2.31  clauses given                130
% 2.16/2.31  clauses generated          13721
% 2.16/2.31  clauses kept                 407
% 2.16/2.31  clauses forward subsumed    4665
% 2.16/2.31  clauses back subsumed          8
% 2.16/2.31  Kbytes malloced             6835
% 2.16/2.31  
% 2.16/2.31  ----------- times (seconds) -----------
% 2.16/2.31  user CPU time          0.22          (0 hr, 0 min, 0 sec)
% 2.16/2.31  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.16/2.31  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.16/2.31  
% 2.16/2.31  That finishes the proof of the theorem.
% 2.16/2.31  
% 2.16/2.31  Process 23598 finished Wed Jul 27 05:40:41 2022
% 2.16/2.31  Otter interrupted
% 2.16/2.31  PROOF FOUND
%------------------------------------------------------------------------------