TSTP Solution File: GRP724-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP724-1 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:57:44 EDT 2022

% Result   : Unknown 1.74s 1.94s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : GRP724-1 : TPTP v8.1.0. Released v4.0.0.
% 0.03/0.13  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n012.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:20:50 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 1.74/1.93  ----- Otter 3.3f, August 2004 -----
% 1.74/1.93  The process was started by sandbox on n012.cluster.edu,
% 1.74/1.93  Wed Jul 27 05:20:50 2022
% 1.74/1.93  The command was "./otter".  The process ID is 19389.
% 1.74/1.93  
% 1.74/1.93  set(prolog_style_variables).
% 1.74/1.93  set(auto).
% 1.74/1.93     dependent: set(auto1).
% 1.74/1.93     dependent: set(process_input).
% 1.74/1.93     dependent: clear(print_kept).
% 1.74/1.93     dependent: clear(print_new_demod).
% 1.74/1.93     dependent: clear(print_back_demod).
% 1.74/1.93     dependent: clear(print_back_sub).
% 1.74/1.93     dependent: set(control_memory).
% 1.74/1.93     dependent: assign(max_mem, 12000).
% 1.74/1.93     dependent: assign(pick_given_ratio, 4).
% 1.74/1.93     dependent: assign(stats_level, 1).
% 1.74/1.93     dependent: assign(max_seconds, 10800).
% 1.74/1.93  clear(print_given).
% 1.74/1.93  
% 1.74/1.93  list(usable).
% 1.74/1.93  0 [] A=A.
% 1.74/1.93  0 [] mult(unit,A)=A.
% 1.74/1.93  0 [] mult(A,unit)=A.
% 1.74/1.93  0 [] mult(A,ld(A,B))=B.
% 1.74/1.93  0 [] ld(A,mult(A,B))=B.
% 1.74/1.93  0 [] rd(mult(A,B),B)=A.
% 1.74/1.93  0 [] mult(rd(A,B),B)=A.
% 1.74/1.93  0 [] mult(s(A),s(A))=A.
% 1.74/1.93  0 [] s(mult(A,A))=A.
% 1.74/1.93  0 [] op_l(A,B,C)=ld(mult(C,B),mult(C,mult(B,A))).
% 1.74/1.93  0 [] op_r(A,B,C)=rd(mult(mult(A,B),C),mult(B,C)).
% 1.74/1.93  0 [] op_t(A,B)=ld(B,mult(A,B)).
% 1.74/1.93  0 [] op_r(op_r(A,B,C),D,E)=op_r(op_r(A,D,E),B,C).
% 1.74/1.93  0 [] op_l(op_r(A,B,C),D,E)=op_r(op_l(A,D,E),B,C).
% 1.74/1.93  0 [] op_l(op_l(A,B,C),D,E)=op_l(op_l(A,D,E),B,C).
% 1.74/1.93  0 [] op_t(op_r(A,B,C),D)=op_r(op_t(A,D),B,C).
% 1.74/1.93  0 [] op_t(op_l(A,B,C),D)=op_l(op_t(A,D),B,C).
% 1.74/1.93  0 [] op_t(op_t(A,B),C)=op_t(op_t(A,C),B).
% 1.74/1.93  0 [] op_t(op_t(A,B),B)=A.
% 1.74/1.93  0 [] op_r(op_r(A,B,C),B,C)=A.
% 1.74/1.93  0 [] op_l(op_l(A,B,C),B,C)=A.
% 1.74/1.93  0 [] mult(mult(a,b),c)!=mult(a,mult(b,c)).
% 1.74/1.93  end_of_list.
% 1.74/1.93  
% 1.74/1.93  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.74/1.93  
% 1.74/1.93  All clauses are units, and equality is present; the
% 1.74/1.93  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.74/1.93  
% 1.74/1.93     dependent: set(knuth_bendix).
% 1.74/1.93     dependent: set(anl_eq).
% 1.74/1.93     dependent: set(para_from).
% 1.74/1.93     dependent: set(para_into).
% 1.74/1.93     dependent: clear(para_from_right).
% 1.74/1.93     dependent: clear(para_into_right).
% 1.74/1.93     dependent: set(para_from_vars).
% 1.74/1.93     dependent: set(eq_units_both_ways).
% 1.74/1.93     dependent: set(dynamic_demod_all).
% 1.74/1.93     dependent: set(dynamic_demod).
% 1.74/1.93     dependent: set(order_eq).
% 1.74/1.93     dependent: set(back_demod).
% 1.74/1.93     dependent: set(lrpo).
% 1.74/1.93  
% 1.74/1.93  ------------> process usable:
% 1.74/1.93  ** KEPT (pick-wt=11): 1 [] mult(mult(a,b),c)!=mult(a,mult(b,c)).
% 1.74/1.93  
% 1.74/1.93  ------------> process sos:
% 1.74/1.93  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.74/1.93  ** KEPT (pick-wt=5): 3 [] mult(unit,A)=A.
% 1.74/1.93  ---> New Demodulator: 4 [new_demod,3] mult(unit,A)=A.
% 1.74/1.93  ** KEPT (pick-wt=5): 5 [] mult(A,unit)=A.
% 1.74/1.93  ---> New Demodulator: 6 [new_demod,5] mult(A,unit)=A.
% 1.74/1.93  ** KEPT (pick-wt=7): 7 [] mult(A,ld(A,B))=B.
% 1.74/1.93  ---> New Demodulator: 8 [new_demod,7] mult(A,ld(A,B))=B.
% 1.74/1.93  ** KEPT (pick-wt=7): 9 [] ld(A,mult(A,B))=B.
% 1.74/1.93  ---> New Demodulator: 10 [new_demod,9] ld(A,mult(A,B))=B.
% 1.74/1.93  ** KEPT (pick-wt=7): 11 [] rd(mult(A,B),B)=A.
% 1.74/1.93  ---> New Demodulator: 12 [new_demod,11] rd(mult(A,B),B)=A.
% 1.74/1.93  ** KEPT (pick-wt=7): 13 [] mult(rd(A,B),B)=A.
% 1.74/1.93  ---> New Demodulator: 14 [new_demod,13] mult(rd(A,B),B)=A.
% 1.74/1.93  ** KEPT (pick-wt=7): 15 [] mult(s(A),s(A))=A.
% 1.74/1.93  ---> New Demodulator: 16 [new_demod,15] mult(s(A),s(A))=A.
% 1.74/1.93  ** KEPT (pick-wt=6): 17 [] s(mult(A,A))=A.
% 1.74/1.93  ---> New Demodulator: 18 [new_demod,17] s(mult(A,A))=A.
% 1.74/1.93  ** KEPT (pick-wt=14): 20 [copy,19,flip.1] ld(mult(A,B),mult(A,mult(B,C)))=op_l(C,B,A).
% 1.74/1.93  ---> New Demodulator: 21 [new_demod,20] ld(mult(A,B),mult(A,mult(B,C)))=op_l(C,B,A).
% 1.74/1.93  ** KEPT (pick-wt=14): 23 [copy,22,flip.1] rd(mult(mult(A,B),C),mult(B,C))=op_r(A,B,C).
% 1.74/1.93  ---> New Demodulator: 24 [new_demod,23] rd(mult(mult(A,B),C),mult(B,C))=op_r(A,B,C).
% 1.74/1.93  ** KEPT (pick-wt=9): 25 [] op_t(A,B)=ld(B,mult(A,B)).
% 1.74/1.93  ---> New Demodulator: 26 [new_demod,25] op_t(A,B)=ld(B,mult(A,B)).
% 1.74/1.93  ** KEPT (pick-wt=15): 27 [] op_r(op_r(A,B,C),D,E)=op_r(op_r(A,D,E),B,C).
% 1.74/1.93  ** KEPT (pick-wt=15): 29 [copy,28,flip.1] op_r(op_l(A,B,C),D,E)=op_l(op_r(A,D,E),B,C).
% 1.74/1.93  ---> New Demodulator: 30 [new_demod,29] op_r(op_l(A,B,C),D,E)=op_l(op_r(A,D,E),B,C).
% 1.74/1.93  ** KEPT (pick-wt=15): 31 [] op_l(op_l(A,B,C),D,E)=op_l(op_l(A,D,E),B,C).
% 1.74/1.93  ** KEPT (pick-wt=17): 33 [copy,32,demod,26,26] ld(A,mult(op_r(B,C,D),A))=op_r(ld(A,mult(B,A)),C,D).
% 1.74/1.93  ---> New Demodulator: 34 [new_demod,33] ld(A,mult(op_r(B,C,D),A))=op_r(ld(A,mult(B,A)),C,D).
% 1.74/1.93  ** KEPT (pick-wt=17): 36 [copy,35,demod,26,26] ld(A,mult(op_l(B,C,D),A))=op_l(ld(A,mult(B,A)),C,D).
% 1.74/1.93  ---> New Demodulator: 37 [new_demod,36] ld(A,mult(op_l(B,C,D),A))=op_l(ld(A,mult(B,A)),C,D).
% 1.74/1.94  ** KEPT (pick-wt=19): 39 [copy,38,demod,26,26,26,26] ld(A,mult(ld(B,mult(C,B)),A))=ld(B,mult(ld(A,mult(C,A)),B)).
% 1.74/1.94  ** KEPT (pick-wt=11): 41 [copy,40,demod,26,26] ld(A,mult(ld(A,mult(B,A)),A))=B.
% 1.74/1.94  ---> New Demodulator: 42 [new_demod,41] ld(A,mult(ld(A,mult(B,A)),A))=B.
% 1.74/1.94  ** KEPT (pick-wt=9): 43 [] op_r(op_r(A,B,C),B,C)=A.
% 1.74/1.94  ---> New Demodulator: 44 [new_demod,43] op_r(op_r(A,B,C),B,C)=A.
% 1.74/1.94  ** KEPT (pick-wt=9): 45 [] op_l(op_l(A,B,C),B,C)=A.
% 1.74/1.94  ---> New Demodulator: 46 [new_demod,45] op_l(op_l(A,B,C),B,C)=A.
% 1.74/1.94    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.74/1.94  >>>> Starting back demodulation with 4.
% 1.74/1.94  >>>> Starting back demodulation with 6.
% 1.74/1.94  >>>> Starting back demodulation with 8.
% 1.74/1.94  >>>> Starting back demodulation with 10.
% 1.74/1.94  >>>> Starting back demodulation with 12.
% 1.74/1.94  >>>> Starting back demodulation with 14.
% 1.74/1.94  >>>> Starting back demodulation with 16.
% 1.74/1.94  >>>> Starting back demodulation with 18.
% 1.74/1.94  >>>> Starting back demodulation with 21.
% 1.74/1.94  >>>> Starting back demodulation with 24.
% 1.74/1.94  >>>> Starting back demodulation with 26.
% 1.74/1.94    Following clause subsumed by 27 during input processing: 0 [copy,27,flip.1] op_r(op_r(A,B,C),D,E)=op_r(op_r(A,D,E),B,C).
% 1.74/1.94  >>>> Starting back demodulation with 30.
% 1.74/1.94    Following clause subsumed by 31 during input processing: 0 [copy,31,flip.1] op_l(op_l(A,B,C),D,E)=op_l(op_l(A,D,E),B,C).
% 1.74/1.94  >>>> Starting back demodulation with 34.
% 1.74/1.94  >>>> Starting back demodulation with 37.
% 1.74/1.94    Following clause subsumed by 39 during input processing: 0 [copy,39,flip.1] ld(A,mult(ld(B,mult(C,B)),A))=ld(B,mult(ld(A,mult(C,A)),B)).
% 1.74/1.94  >>>> Starting back demodulation with 42.
% 1.74/1.94  >>>> Starting back demodulation with 44.
% 1.74/1.94  >>>> Starting back demodulation with 46.
% 1.74/1.94  
% 1.74/1.94  ======= end of input processing =======
% 1.74/1.94  
% 1.74/1.94  =========== start of search ===========
% 1.74/1.94  
% 1.74/1.94  
% 1.74/1.94  Resetting weight limit to 15.
% 1.74/1.94  
% 1.74/1.94  
% 1.74/1.94  Resetting weight limit to 15.
% 1.74/1.94  
% 1.74/1.94  sos_size=49
% 1.74/1.94  
% 1.74/1.94  Search stopped because sos empty.
% 1.74/1.94  
% 1.74/1.94  
% 1.74/1.94  Search stopped because sos empty.
% 1.74/1.94  
% 1.74/1.94  ============ end of search ============
% 1.74/1.94  
% 1.74/1.94  -------------- statistics -------------
% 1.74/1.94  clauses given                 71
% 1.74/1.94  clauses generated            939
% 1.74/1.94  clauses kept                 161
% 1.74/1.94  clauses forward subsumed     665
% 1.74/1.94  clauses back subsumed          0
% 1.74/1.94  Kbytes malloced             4882
% 1.74/1.94  
% 1.74/1.94  ----------- times (seconds) -----------
% 1.74/1.94  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.74/1.94  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.74/1.94  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.74/1.94  
% 1.74/1.94  Process 19389 finished Wed Jul 27 05:20:52 2022
% 1.74/1.94  Otter interrupted
% 1.74/1.94  PROOF NOT FOUND
%------------------------------------------------------------------------------